Министерство науки и высшего образования РФ Федеральное государственное бюджетное образовательное учреждение высшего образования «Национальный исследовательский университет «МЭИ»

Направление подготовки/специальность: 01.04.02 Прикладная математика и информатика

Наименование образовательной программы: Искусственный интеллект

Уровень образования: высшее образование - магистратура

Форма обучения: Очная

Оценочные материалы по дисциплине Дополнительные главы дискретной математики

Москва 2025

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ РАЗРАБОТАЛ:

NASO

 Подписано электронной подписью ФГБОУ ВО «НИУ «МЭИ»

 Сведения о владельце ЦЭП МЭИ

 Владелец
 Алексиадис Н.Ф.

 Идентификатор
 Rbbf7859b-AlexiadisNF-00e41c26

СОГЛАСОВАНО:

Руководитель образовательной программы

Разработчик

S HIM THURSDAY MIN S	сведения о владельце цэтт мэй		
	Владелец	Варшавский П.Р.	
» Mon	Идентификатор	R9a563c96-VarshavskyPR-efb4bbd	

П.Р. Варшавский

Алексиадис

Н.Ф.

Заведующий выпускающей кафедрой

W. S. Washing	Подписано электронн	юй подписью ФГБОУ ВО «НИУ «МЭИ»	
	Сведения о владельце ЦЭП МЭИ		
	Владелец	Варшавский П.Р.	
¾ M3M ¾	Илонтификатор	R9a563c96-VarchayskyPR-efh4hhd	

Подписано электронной подписью ФГБОУ ВО «НИУ «МЭИ»

П.Р. Варшавский

ОБЩАЯ ЧАСТЬ

Оценочные материалы по дисциплине предназначены для оценки достижения обучающимися запланированных результатов обучения по дисциплине, этапа формирования запланированных компетенций и уровня освоения дисциплины.

Оценочные материалы по дисциплине включают оценочные средства для проведения мероприятий текущего контроля успеваемости и промежуточной аттестации.

Формируемые у обучающегося компетенции:

1. ПК-1 Способен выполнять работы на всем жизненном цикле информационных систем в выбранной среде разработки компьютерного ПО

ИД-2 Демонстрирует знание современных программно-технических средств, информационных технологий и тенденции их развития

и включает:

для текущего контроля успеваемости:

Форма реализации: Письменная работа

- 1. КМ-1 "Проблема полноты" (Контрольная работа)
- 2. КМ-2 «Регулярные языки и конечные автоматы» (Контрольная работа)
- 3. КМ-3 «Рекурсивные функции и машины Тьюринга» (Контрольная работа)
- 4. КМ-4 «Теория алгоритмов» (Контрольная работа)

БРС дисциплины

1 семестр

Перечень контрольных мероприятий <u>текущего контроля</u> успеваемости по дисциплине:

- КМ-1 "Проблема полноты" (Контрольная работа)
- КМ-2 «Регулярные языки и конечные автоматы» (Контрольная работа)
- КМ-3 «Рекурсивные функции и машины Тьюринга» (Контрольная работа)
- КМ-4 «Теория алгоритмов» (Контрольная работа)

Вид промежуточной аттестации – Зачет.

	Веса контрольных мероприятий, %				
Роз под писимприми	Индекс	KM-1	KM-2	KM-3	KM-4
Раздел дисциплины	КМ:				
	Срок КМ:	4	8	12	15
Функциональные системы					
Проблема полноты	+				
Теория булевых функций	+				
Регулярные языки и конечные автоматы					

Регулярные языки		+		
Конечные автоматы		+		
Рекурсивные функции и машины Тьюринга				
Рекурсивные функции			+	+
Машины Тьюринга			+	+
Теория алгоритмов				
Вычислимые функции			+	+
Сложность алгоритмов			+	
Bec KM:	25	25	25	25

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ТЕКУЩЕГО КОНТРОЛЯ

I. Оценочные средства для оценки запланированных результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций

Индекс	Индикатор	Запланированные	Контрольная точка
компетенции	-	результаты обучения по	
		дисциплине	
ПК-1	ИД-2пк-1 Демонстрирует	Знать:	КМ-1 КМ-1 "Проблема полноты" (Контрольная работа)
	знание современных	терминологию и основные	КМ-2 КМ-2 «Регулярные языки и конечные автоматы» (Контрольная
	программно-технических	результаты теории	работа)
	средств, информационных	булевых функций	КМ-3 КМ-3 «Рекурсивные функции и машины Тьюринга»
	технологий и тенденции	терминологию и основные	(Контрольная работа)
	их развития	результаты теории	КМ-4 КМ-4 «Теория алгоритмов» (Контрольная работа)
	_	рекурсивных функций и	
		машин Тьюринга	
		терминологию и основные	
		результаты теории	
		конечных автоматов	
		Уметь:	
		применять основные	
		понятия и факты теории	
		алгоритмов для решения	
		прикладных задач	
		уметь построить машины	
		Тьюринга с данными	
		свойствами	
		анализ и синтез конечных	
		автоматов	
		распознавать полноту	
		систем булевых функции;	
		находить базисы полных	
		систем булевых функций	

II. Содержание оценочных средств. Шкала и критерии оценивания

КМ-1. КМ-1 "Проблема полноты"

Формы реализации: Письменная работа

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 25

Процедура проведения контрольного мероприятия: Проводится на практическом занятии, продолжительность выполнения работы 90 минут. Студентам выдаётся несколько вариантов заданий.

Краткое содержание задания:

В работе проверяется знание критерий полноты систем булевых функций и умение применять его для решения прикладных задач

Контрольные вопросы/задания:

Контрольные вопросы/задания:	Ι
Запланированные результаты обучения	Вопросы/задания для проверки
по дисциплине	
Знать: терминологию и основные	1.Определение функциональной системы; ее
результаты теории булевых функций	особенность. Операции суперпозиции
	2.Оператор замыкания. Замкнутые и
	предполные классы
	3.Полные системы. Базис
	4.Понятие функции алгебры логики (булевы
	функции). Способы их задания. Число
	булевых функций от <i>п</i> переменных
	5.Разложение булевых функций по
	переменным; ДНФ, КНФ, СДНФ, СКНФ.
	Полином Жегалкина
	6.Теорема о полноте (Пост). Полные
	системы
Уметь: распознавать полноту систем	1.Построить СДНФ, СКНФ для функции $f =$
булевых функции; находить базисы	11011011
полных систем булевых функций	2.Построить полином Жегалкина для
2 2	ϕ ункции $(\rightarrow) \rightarrow yz$.
	3 . Являются ли функция $x \lor y \lor z$
	самодвойственной?
	4.Приведите пример базиса
	а) мощности 3;
	б) мощности 4.
	5. Является ли полной система булевых
	функций
	$\{1, x + y, xy, x \lor y\}?$

Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 75

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется во всех остальных случаях

КМ-2. КМ-2 «Регулярные языки и конечные автоматы»

Формы реализации: Письменная работа

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 25

Процедура проведения контрольного мероприятия: Проводится на практическом занятии, продолжительность выполнения работы 90 минут. Студентам выдаётся несколько вариантов заданий.

Краткое содержание задания:

В работе проверяется знание базовых понятий теории конечных автоматов и регулярных языков и умение применять их в решении практических задач, в построении математических моделей

Контрольные вопросы/задания:

контрольные вопросы/задания:				
Запланированные результаты	Вопросы/задания для проверки			
обучения по дисциплине				
Знать: терминологию и	1.Основные понятия теории регулярных языков:			
основные результаты теории	алфавит, слово, выражение, язык. Операции над			
конечных автоматов	языками			
	2.Определение (алгебраическое) регулярного			
	выражения и языка			
	3. Конечные автоматы: основные понятия теории			
	конечных автоматов, способы их задания и описания			
	функционирования			
	4. Эквивалентность конечных автоматов, автоматы			
	приведенного вида, теорема Мура			
	5. Теорема Клини о регулярных событиях			
Уметь: анализ и синтез	1.а) Любой ли подъязык регулярного языка является			
конечных автоматов	регулярным?			
	б) Привести пример регулярного языка, любой			
	подъязык которого является регулярным.			
	2.Написать регулярное выражение над алфавитом Σ =			
	$\{0,1\}$, которое задает язык, состоящий из всех слов,			
	содержащих хотя бы один символ 0 и хотя бы один			
	символ 1.			
	3. Написать регулярное выражение над алфавит $\Sigma = \{0, $			
	1}, которое задает язык, состоящий из всех слов, в			
	которых число нулей кратно 3.			
	4.Построить конечный автомат с входным алфавитом \sum			

Запланированные	результаты	Вопросы/задания для проверки
обучения по дисциплине		
		$= \{0, 1\}$, который распознает язык $L = \{u: u \text{ начинается } \}$
		на 1 и оканчивается на 1}.
		$5.\Pi$ остроить конечный автомат с входным алфавитом Σ
		$= \{0, 1\}$, который распознает язык $L = \{010, 101\}$.

Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 75

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется во всех остальных случаях

КМ-3. КМ-3 «Рекурсивные функции и машины Тьюринга»

Формы реализации: Письменная работа

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 25

Процедура проведения контрольного мероприятия: Проводится на практическом занятии, продолжительность выполнения работы 90 минут. Студентам выдаётся несколько вариантов заданий.

Краткое содержание задания:

В работе проверяется знание базовых понятий теории рекурсивных функций и машин Тьюринга и умение применять их в решении практических задач, в построении математических молелей

Контрольные вопросы/задания:

Запланированные результаты	Вопросы/задания для проверки
обучения по дисциплине	
Знать: терминологию и	1.Простейшие рекурсивные функции; операции над
основные результаты теории	рекурсивными функциями (суперпозиции,
рекурсивных функций и машин	примитивной рекурсии, минимизации)
Тьюринга	2.Алгебраическое определение рекурсивной
	(примитивно-рекурсивной, общерекурсивной,
	частично-рекурсивной) функции
	3. Определение машин Тьюринга; описание
	функционирования машин
	4. Техника программирования машин Тьюринга
	5. Машины Тьюринга и частично-рекурсивные

Запланированные результаты	Вопросы/задания для проверки
обучения по дисциплине	
	функции
Уметь: применять основные понятия и факты теории алгоритмов для решения прикладных задач	 1.Доказать, что функция f(x, y) = x + y является рекурсивной. 2. Является ли функция f(x, y) = xy рекурсивной? 3.Построить машину Тьюринга, которая произвольное непустое слово над алфавитом {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} увеличивает на 1. 4.Построить машину Тьюринга, которая перенесет первый символ произвольного непустого слова над алфавитом {a, b, c} в его конец. 5.Построить машину Тьюринга над алфавитом {0, 1}, которая оставляет данное слово без изменений, если это слово оканчивается на 0, если же слово
	оканчивается на 1, то машина Тьюринга удаляет всё слово.

Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 75

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется во всех остальных случаях

КМ-4. КМ-4 «Теория алгоритмов»

Формы реализации: Письменная работа

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 25

Процедура проведения контрольного мероприятия: Проводится на практическом занятии, продолжительность выполнения работы 90 минут. Студентам выдаётся несколько вариантов заданий.

Краткое содержание задания:

В работе проверяется знание базовых понятий теории алгоритмов и умение применять их в решении практических задач, в построении математических моделей

Контрольные вопросы/задания:

Запланированные	результаты	Вопросы/задания для проверки
обучения по дисциплине		

Запланированные результаты	Вопросы/задания для проверки
обучения по дисциплине	
Знать: терминологию и основные	1.Определение (интуитивное) алгоритма. Свойства
результаты теории рекурсивных	алгоритмов.
функций и машин Тьюринга	2.Определение вычислимой функции. Тезис Черча
	3.Сложность алгоритмов
	4.Полиномиальная сводимость проблем
	5.Классы Р и NP
Уметь: уметь построить машины	1.Доказать, что если $f(n) = O(g(n))$ и $g(n) =$
Тьюринга с данными свойствами	O(h(n)), to $. f(n) = O(h(n))$.
	2.Какие из приведенных ниже функций имеют
	порядок $O(n^3)$?
	a) $n!$; b) $ln(n!)$; c) $5n^3 + 3n^2 - 7n + 19$; d) $n^3 lnn$.
	3.Доказать, что если задача А сводится к задаче В,
	для решения которой существует полиномиальный
	алгоритм, то для решения задачи А существует
	полиномиальный алгоритм.

Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 75

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется во всех остальных случаях

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

1 семестр

Форма промежуточной аттестации: Зачет

Пример билета

Вопрос 1. Теорема о полноте (Пост).

Вопрос 2. Определение машин Тьюринга; описание функционирования машин Тьюринга.

Задача 3. Построить конечный автомат с входным алфавитом $\Sigma = \{0, 1\}$, который распознает язык $L = \{u: u \text{ начинается на 1 или оканчивается на 1}\}.$

Процедура проведения

Экзамен проводится в письменно-устной форме. На подготовку ответа дается 60 минут. Кроме ответа на вопросы билета, студент должен ответить на дополнительные вопросы.

I. Перечень компетенций/индикаторов и контрольных вопросов проверки результатов освоения дисциплины

1. Компетенция/Индикатор: ИД- $2_{\Pi K-1}$ Демонстрирует знание современных программнотехнических средств, информационных технологий и тенденции их развития

Вопросы, задания

- 1.Основные определения: функциональные системы, операции суперпозиции, замкнутые и предполные классы, полные системы, базис полных систем.
- 2. Булевы функции (определение, способы задания)
- 3.ДНФ, КНФ, СДНФ, СКНФ
- 4.Полином Жегалкина
- 5. Важнейшие замкнутые классы
- 6. Теорема о полноте (Пост)
- 7. Минимизация булевых функций
- 8.Основные понятия теории регулярных языков: алфавит, слово, выражение, язык
- 9. Операции над словами и языками
- 10.Определение (алгебраическое) регулярного выражения и языка
- 11.Основные понятия теории конечных автоматов, способы задания и описания функционирования конечных автоматов
- 12. Эквивалентность конечных автоматов, автоматы приведенного вида, теорема Мура
- 13. Теорема Клини о регулярных событиях
- 14. Минимизация конечных автоматов
- 15. Простейшие рекурсивные функции; операции над рекурсивными функциями (суперпозиции, примитивной рекурсии, минимизации)
- 16. Алгебраическое определение рекурсивной (примитивно-рекурсивной, общерекурсивной, частично-рекурсивной) функции
- 17. Определение машин Тьюринга; описание функционирования машин Тьюринга
- 18. Техника программирования машин Тьюринга
- 19. Машины Тьюринга и частично-рекурсивные функции.
- 20.Определение (интуитивное) алгоритма. Свойства алгоритмов.
- 21. Определение вычислимой функции. Тезис Черча.
- 22. Сложность алгоритмов; Полиномиальная сводимость
- 23. Классы Р и NP; NP-полные задачи

- 24. Найти СДНФ и СКНФ для функции (хzy)хz
- 25. Построить полином Жегалкина для функции &(x+z)
- 27.Являются ли функция (xVy)xy линейной?
- 28. Являются ли функция z + xy + z монотонной?
- 29. Является ли полной система булевых функций
- $\{1, x + y, \}$?
- 30. Напишите регулярное выражение для следующего языка: множество всех слов из 0 и 1, в которых число нулей кратно 5.
- 31. Напишите регулярное выражение для следующего языка: множество всех слов из 0 и 1, в которых десятый от правого края символ равен 1.
- 32. Построить ДКА, который над алфавитом {0, 1} распознает язык всех слов, оканчивающихся на 00.
- 33. Построить ДКА, который над алфавитом {0, 1} распознает язык всех слов, содержащих подслово 001.
- 34. Доказать, что $x^y y$ (0° = 1) является рекурсивной функцией.
- 35. Доказать, что |x y| является рекурсивной функцией.
- $36.A = \{a,b,c\}$ –входной алфавит машины Тьюринга. Приписать слева к данному слову Pсимвол b.
- $37.\Sigma = \{0, 1\}$ входной алфавит машины Тьюринга. Если непустое слово четной длины, то выдавать ответ 0, а иначе 1.

Материалы для проверки остаточных знаний

- 1. Являются ли функция *хуVуzVzx* самодвойственной? Ответы:
- 1. да
- 2. нет

Верный ответ: Верный ответ: 1. да

2. Являются ли функция xy + yz + x монотонной?

Ответы:

- 1. да
- 2. нет

Верный ответ: Верный ответ: 2. нет

3.Являются ли функция (xVy) & линейной?

Ответы:

- 1. да
- 2. нет

Верный ответ: Верный ответ: 1. да

4. Является ли полной система булевых функций $\{x + y, xVy, xy\}$?

Ответы:

- 1. да
- 2. нет

Верный ответ: Верный ответ: 2. нет

5. Является ли полной система булевых функций $\{1, x + y, xy\}$?

Ответы:

- 1. да
- 2. нет

Верный ответ: Верный ответ: 1. да

6.В алгебре логики существует ли базис мощности 1? Ответы:

1. да 2. нет

```
Верный ответ: Верный ответ: 1. да
7.В алгебре логики существует ли базис мощности 2?
    Ответы:
1. да
2. нет
    Верный ответ: Верный ответ: 1. да
8.В алгебре логики существует ли базис мощности 3?
    Ответы:
1. да
2. нет
    Верный ответ: Верный ответ: 1. да
9.В алгебре логики существует ли базис мощности 4?
    Ответы:
1. да
2. нет
    Верный ответ: Верный ответ: 1. да
10.В алгебре логики существует ли базис мощности 5?
    Ответы:
1. да
2. нет
    Верный ответ: Верный ответ: 2. нет
11.В алгебре логики существует ли базис мощности 10, 20?
    Ответы:
1. да
2. нет
    Верный ответ: Верный ответ: 2. нет
12.В алгебре логики существует ли полная система мощности 5, 10, 20?
    Ответы:
1. да
2. нет
    Верный ответ: Верный ответ: 1. да
13. Является ли регулярным выражение R \ Q, если R и Q - регулярные языки?
    Ответы:
1. да
2. нет
    Верный ответ: Верный ответ: 1. да
14. Верно ли равенство L^{\cdot} = L^{+}?
    Ответы:
1. да
2. нет
    Верный ответ: Верный ответ: 2. нет
15. Любой ли подъязык регулярного языка является регулярным?
    Ответы:
1. да
2. нет
    Верный ответ: Верный ответ: 2. нет
16.Суперпозиция общерекурсивных функций всегда является общерекурсивным/?
    Ответы:
1. да
2. нет
    Верный ответ: Верный ответ: 1. да
17. Нигде не определенная функция является ли частично-рекурсивной?
```

Ответы:

- 1. да
- 2. нет

Верный ответ: Верный ответ: 1. да

18. Любая вычислимая функция является ли частично-рекурсивной?

Ответы:

- 1. да
- 2. нет

Верный ответ: Верный ответ: 1. да

19.

1. Существует ли машина Тьюринга, которая никогда не останавливается?

Ответы:

- 1. да
- 2. нет

Верный ответ: Верный ответ: 1. да

20.Существует ли машина Тьюринга, которая никогда не останавливается на непустой ленте и останавливается на пустой ленте?

Ответы:

- 1. да
- 2. нет

Верный ответ: Верный ответ: 1. да

II. Описание шкалы оценивания

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 75

Описание характеристики выполнения знания: Работа выполнена в рамках "продвинутого" уровня. Ответы даны верно, четко сформулированы особенности практических решений.

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Работа выполнена в рамках "базового" уровня. Большинство ответов даны верно. В части материала есть незначительные ошибки

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Работа выполнена в рамках "порогового" уровня. Основная часть задания выполнена верно

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется во всех остальных случаях.

III. Правила выставления итоговой оценки по курсу

Оценка определяется в соответствии с Положением о бально-рейтинговой системе для студентов НИУ «МЭИ» на основании семестровой и экзаменационной составляющих.