Министерство науки и высшего образования РФ Федеральное государственное бюджетное образовательное учреждение высшего образования «Национальный исследовательский университет «МЭИ»

Направление подготовки/специальность: 01.04.02 Прикладная математика и информатика

Наименование образовательной программы: Искусственный интеллект

Уровень образования: высшее образование - магистратура

Форма обучения: Очная

Оценочные материалы по дисциплине Методы и средства анализа данных

Москва 2025

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ РАЗРАБОТАЛ:

 Подписано электронной подписью ФГБОУ ВО «НИУ «МЭИ»

 Сведения о владельце ЦЭП МЭИ

 Владелец
 Михайлов И.С.

 Идентификатор
 Ra29e5243-MikhailovIS-1df6126d

Разработчик

Руководитель образовательной программы

СОГЛАСОВАНО:

S AND DESCRIPTIONS AND D	Сведения о владельце ЦЭП МЭИ					
	Владелец	Варшавский П.Р.				
» Mon »	Идентификатор	R9a563c96-VarshavskyPR-efb4bbd				

П.Р. Варшавский

Михайлов

И.С.

Заведующий	
выпускающей	
кафедрой	

NASO E	Подписано электрон	ной подписью ФГБОУ ВО «НИУ «МЭИ»					
200	Сведения о владельце ЦЭП МЭИ						
	Владелец	Варшавский П.Р.					
» <u>МЭИ</u> »	Идентификатор	идентификатор R9a563c96-VarshavskyPR-efb4bbd					

Подписано электронной подписью ФГБОУ ВО «НИУ «МЭИ»

П.Р. Варшавский

ОБЩАЯ ЧАСТЬ

Оценочные материалы по дисциплине предназначены для оценки достижения обучающимися запланированных результатов обучения по дисциплине, этапа формирования запланированных компетенций и уровня освоения дисциплины.

Оценочные материалы по дисциплине включают оценочные средства для проведения мероприятий текущего контроля успеваемости и промежуточной аттестации.

Формируемые у обучающегося компетенции:

- 1. РПК-2 Способен применять методы проектирования для обеспечения реализации результатов анализа
 - ИД-1 Формализует описания бизнес-процессов
 - ИД-2 Демонстрирует умение следить за изменениями требований

и включает:

для текущего контроля успеваемости:

Форма реализации: Компьютерное задание

- 1. Классификация текстов. Байесовский классификатор. (Лабораторная работа)
- 2. Машина опорных векторов (SVM) (Лабораторная работа)
- 3. Реализация алгоритм CART для построения дерева решений (Лабораторная работа)
- 4. Реализация алгоритма DBSCAN для решения задачи кластеризации (Лабораторная работа)
- 5. Реализация алгоритма K-means для решения задачи кластеризации (Лабораторная работа)

БРС дисциплины

1 семестр

Перечень контрольных мероприятий <u>текущего контроля</u> успеваемости по дисциплине:

- КМ-1 Реализация алгоритма K-means для решения задачи кластеризации (Лабораторная работа)
- КМ-2 Реализация алгоритма DBSCAN для решения задачи кластеризации (Лабораторная работа)
- КМ-3 Реализация алгоритм CART для построения дерева решений (Лабораторная работа)
- КМ-4 Классификация текстов. Байесовский классификатор. (Лабораторная работа)
- КМ-5 Машина опорных векторов (SVM) (Лабораторная работа)

Вид промежуточной аттестации – Экзамен.

	Веса контрольных мероприятий, %						
Ворион ниоминичии	Индекс	КМ-	КМ-	КМ-	КМ-	КМ-	
Раздел дисциплины	KM:	1	2	3	4	5	
	Срок КМ:	4	8	12	14	16	
Интеллектуальный анализ данных (Data Mini							
исследования данных с помощью методов Da	ata Mining.						
Типы закономерностей. Методы Data Mining							
Интеллектуальный анализ данных (Data Mini	ng). Этапы						
исследования данных с помощью методов Da	ata Mining.	+	+		+	+	

Типы закономерностей. Методы Data Mining.					
Задачи Data Mining. Задача кластеризации. Смесь					
нормальных распределений. EM-алгоритм. K-means и					
его модификации.					
Задачи Data Mining. Задача кластеризации. Смесь					
нормальных распределений. ЕМ-алгоритм. K-means и	+				
его модификации.					
Байесовская классификация. Иерархическая					
классификация. Расстояние между кластерами.					
Алгоритм DBSCAN.					
Байесовская классификация. Иерархическая					
классификация. Расстояние между кластерами.		+			
Алгоритм DBSCAN.					
Задачи классификации и регрессии. Деревья решений.					
Алгоритм CART, другие алгоритмы.					
Задачи классификации и регрессии. Деревья решений.			+		
Алгоритм CART, другие алгоритмы.			'		
Классификация текстов.					
Классификация текстов.				+	
Системы аналитической обработки данных. Линейные					
модели для классификации и регрессии. Машина					
опорных векторов.					
Системы аналитической обработки данных. Линейные					
модели для классификации и регрессии. Машина					+
опорных векторов.					
Bec KM:	20	20	20	20	20

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ТЕКУЩЕГО КОНТРОЛЯ

I. Оценочные средства для оценки запланированных результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций

Индекс	Индикатор		Запланированные	Контрольная точка
компетенции			результаты обучения по	
			дисциплине	
РПК-2	ИД-1РПК-2 Форма.	лизует	Знать:	КМ-1 Реализация алгоритма К-means для решения задачи
	описания б	бизнес-	методы системного	кластеризации (Лабораторная работа)
	процессов		анализа	КМ-2 Реализация алгоритма DBSCAN для решения задачи
			алгоритмы анализа	кластеризации (Лабораторная работа)
			больших объёмов	КМ-3 Реализация алгоритм CART для построения дерева решений
			информации	(Лабораторная работа)
			основные подходы к	КМ-4 Классификация текстов. Байесовский классификатор.
			реализации методов	(Лабораторная работа)
			искусственного интеллекта	КМ-5 Машина опорных векторов (SVM) (Лабораторная работа)
			для анализа данных	
			Уметь:	
			реализовать методы	
			системного анализа	
			реализовать алгоритмы	
			анализа больших объёмов	
			данных	
			современные платформы и	
			языки программирования	
			высокого уровня	
РПК-2	ИД-2 _{РПК-2} Демонстр	рирует	Знать:	КМ-2 Реализация алгоритма DBSCAN для решения задачи
	умение следить	за	этапы жизненного цикла	кластеризации (Лабораторная работа)
	изменениями требова	аний	информационных систем	КМ-4 Классификация текстов. Байесовский классификатор.
			подходы к тестированию	(Лабораторная работа)
			информационных систем Уметь:	КМ-5 Машина опорных векторов (SVM) (Лабораторная работа)

	выполнять доработку модулей информационных систем	
	осуществлять поддержку разработки информационных систем	

II. Содержание оценочных средств. Шкала и критерии оценивания

КМ-1. Реализация алгоритма K-means для решения задачи кластеризации

Формы реализации: Компьютерное задание

Тип контрольного мероприятия: Лабораторная работа

Вес контрольного мероприятия в БРС: 20

Процедура проведения контрольного мероприятия: Лабораторная работа на компьютере.

Краткое содержание задания:

Разработать и реализовать алгоритм K-means для решения задачи классификации. Выполнить тестирование разработанного приложения и написать вывод о работе алгоритма.

Контрольные вопросы/задания:

Запланированные	результаты	обучения	ПО	Вопросы/задания для проверки
дисциплине				
Знать: алгоритмы	анализа бо	льших объё	ёмов	1.Описание метода K-means
информации				
Уметь: современ	ные платфор	омы и яз	выки	1.Реализовать метод K-means
программирования	высокого уров	ня		2. Обосновать выбор количества
				кластеров

Описание шкалы опенивания:

Оценка: «зачтено»

Описание характеристики выполнения знания: Студент выполнил лабораторную работу

Оценка: «не зачтено»

Описание характеристики выполнения знания: Студент не выполнил лабораторную работу

КМ-2. Реализация алгоритма DBSCAN для решения задачи кластеризации

Формы реализации: Компьютерное задание

Тип контрольного мероприятия: Лабораторная работа

Вес контрольного мероприятия в БРС: 20

Процедура проведения контрольного мероприятия: Лабораторная работа на компьютере.

Краткое содержание задания:

Разработать и реализовать алгоритм K-means для решения задачи классификации. Выполнить тестирование разработанного приложения и написать вывод о работе алгоритма.

Контрольные вопросы/задания:

Запланир	ованные	результаты	обучения	ПО	Вопросы/задания для проверки
дисципли	не				
Знать: ос	новные под	дходы к реал	изации мето	одов	1.Описание алгоритма DBSCAN
искусстве	енного инте	еллекта для аг			
Знать:	этапы	жизненн	юго ці	икла	1.Перечислить основные достоинства
информац	ционных си	стем			и недостатки алгоритма DBSCAN
Уметь:	выполнят	гь дорабо	тку моду	улей	1.Реализация алгоритма DBSCAN

Запланированные	результаты	обучения	ПО	Вопросы/задания для проверки
дисциплине				
информационных с	систем			

Описание шкалы оценивания:

Оценка: «зачтено»

Описание характеристики выполнения знания: Студент выполнил лабораторную работу

Оценка: «не зачтено»

Описание характеристики выполнения знания: Студент не выполнил лабораторную работу

КМ-3. Реализация алгоритм CART для построения дерева решений

Формы реализации: Компьютерное задание

Тип контрольного мероприятия: Лабораторная работа

Вес контрольного мероприятия в БРС: 20

Процедура проведения контрольного мероприятия: Лабораторная работа на компьютере.

Краткое содержание задания:

Разработать и реализовать алгоритм CART для решения задачи классификации. Выполнить тестирование разработанного приложения и написать вывод о работе алгоритма.

Контрольные вопросы/задания:

Запланированные результаты	Вопросы/задания для проверки
обучения по дисциплине	
Уметь: реализовать методы	1.Реализация алгоритма CART
системного анализа	2.Привести пример изменения построенного дерева
	решений при удалении записей из обучающего
	множества

Описание шкалы оценивания:

Оценка: «зачтено»

Описание характеристики выполнения знания: Студент выполнил лабораторную работу

Оценка: «не зачтено»

Описание характеристики выполнения знания: Студент не выполнил лабораторную работу

КМ-4. Классификация текстов. Байесовский классификатор.

Формы реализации: Компьютерное задание

Тип контрольного мероприятия: Лабораторная работа

Вес контрольного мероприятия в БРС: 20

Процедура проведения контрольного мероприятия: Лабораторная работа на компьютере.

Краткое содержание задания:

Реализовать байесовский наивный классификатор. Выполнить тестирование разработанного приложения и написать вывод о работе алгоритма.

Контрольные вопросы/задания:

Запланированные результаты		результаты	Вопросы/задания для проверки
обучения по дисциплине		плине	
Знать	: подходы к	тестированию	1.Описание байесовского наивного классификатора

Запланированные результаты	Вопросы/задания для проверки	
обучения по дисциплине		
информационных систем		
Уметь: реализовать алгоритмы	1.Реализация байесовского наивного	
анализа больших объёмов данных	классификатора	
	2.Привести пример вычисления условной	
	вероятности объекта согласно алгоритму наивного	
	байесовского классификатора	

Описание шкалы оценивания:

Оценка: «зачтено»

Описание характеристики выполнения знания: Студент выполнил лабораторную работу

Оценка: «не зачтено»

Описание характеристики выполнения знания: Студент не выполнил лабораторную работу

КМ-5. Машина опорных векторов (SVM)

Формы реализации: Компьютерное задание

Тип контрольного мероприятия: Лабораторная работа

Вес контрольного мероприятия в БРС: 20

Процедура проведения контрольного мероприятия: Лабораторная работа на компьютере.

Краткое содержание задания:

Реализовать алгоритм SVM. Выполнить тестирование разработанного приложения и написать вывод о работе алгоритма.

Контрольные вопросы/задания:

Запланированные	результаты	обучения	ПО	Вопросы/задания для проверки
дисциплине				
Знать: методы системного анализа			1.Описание алгоритма SVM	
Знать: основные подходы к реализации методов			1.Перечислить основные	
искусственного интеллекта для анализа данных			достоинства и недостатки алгоритма	
				SVM
Уметь: осуществ.	пять поддерж	кку разраб	отки	1.Реализация алгоритма SVM
информационных с	истем			

Описание шкалы оценивания:

Оценка: «зачтено»

Описание характеристики выполнения знания: Студент выполнил лабораторную работу

Оценка: «не зачтено»

Описание характеристики выполнения знания: Студент не выполнил лабораторную работу

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

1 семестр

Форма промежуточной аттестации: Экзамен

Пример билета

- 1. Основы регрессионного анализа. Понятие «регрессия». Уравнение регрессии. Интерпретация параметров регрессии. Проверка модели регрессии.
- 2. Основные алгоритмы Data-mining. Метод к-средних.

Процедура проведения

Студенту даётся 45 минут на подготовку ответа на билет. Затем он отвечает преподавателю. Преподаватель задаёт дополнительные вопросы. На основе оценки качества и подробности изложения ответа студента выставляется оценка за экзамен.

I. Перечень компетенций/индикаторов и контрольных вопросов проверки результатов освоения дисциплины

1. Компетенция/Индикатор: ИД-1РПК-2 Формализует описания бизнес-процессов

Вопросы, задания

- 1.3. Задачи Data Mining. Задача кластеризации. Смесь нормальных распределений. EMалгоритм. K-means и его модификации.
- 2.4. Байесовская классификация. Maximum a posteriori. Иерархическая классификация (agglomerative и divisive подходы). Расстояние между кластерами. DBSCAN. Выбор количества кластеров.
- 3.5. Основы регрессионного анализа. Понятие регрессия. Простая линейная взаимосвязь. Уравнение регрессии. Подгонка линии регрессии. Понятие корреляции и ковариации
- 4.6. Задачи классификации и регрессии. Подходы к моделированию. Виды моделей: генеративные модели, дискриминативные модели, функции решения. Функции потерь. Переобучение. «Проклятие размерности». Теория принятия решений. Оценка результатов классификации: разделение выборки, скользящий контроль, bootstrap. Метрики качества. ROC. Деревья решений. Алгоритм CART, другие алгоритмы.
- 5.8. Линейные модели для классификации и регрессии. Линейная регрессия. МСфункция правдоподобия. Регуляризация. Логистическая регрессия. Обобщённые линейные модели. Градиентный спуск и метод Ньютона.
- 6.9. Машина опорных векторов (SVM). Функции ядра.

Материалы для проверки остаточных знаний

1.1. Задачи и процесс Data Mining.

Ответы:

Изложение указанных алгоритмов и подходов МиСАД

Верный ответ: Корректное изложение указанных алгоритмов и подходов МиСАД

2.4. Задача кластеризации и классификации

Ответы:

Изложение указанных алгоритмов и подходов МиСАД

Верный ответ: Корректное изложение указанных алгоритмов и подходов МиСАД

3.5.1. Методы Data Mining. Методы построения правил классификации

Изложение указанных алгоритмов и подходов МиСАД

Верный ответ: Корректное изложение указанных алгоритмов и подходов МиСАД 4.5.2. Методы построения деревьев решений. Алгоритм CART.

Ответы:

Изложение указанных алгоритмов и подходов МиСАД

Верный ответ: Корректное изложение указанных алгоритмов и подходов МиСАД

5.5.4. Линейные модели классификации и регрессии

Ответы:

Изложение указанных алгоритмов и подходов МиСАД

Верный ответ: Корректное изложение указанных алгоритмов и подходов МиСАД 6.5.4. Метод опорных векторов

Ответы:

Изложение указанных алгоритмов и подходов МиСАД

Верный ответ: Корректное изложение указанных алгоритмов и подходов МиСАД 7.5.5. Алгоритм k-ближайших соседей

Ответы:

Изложение указанных алгоритмов и подходов МиСАД

Верный ответ: Корректное изложение указанных алгоритмов и подходов МиСАД 8.5.6. Алгоритм Аргіогі

Ответы:

Изложение указанных алгоритмов и подходов МиСАД

Верный ответ: Корректное изложение указанных алгоритмов и подходов МиСАД 9.5.7. EM-алгоритм

Ответы:

Изложение указанных алгоритмов и подходов МиСАД

Верный ответ: Корректное изложение указанных алгоритмов и подходов МиСАД 10.5.9. Алгоритм усиления классификаторов AdaBoost

Ответы:

Изложение указанных алгоритмов и подходов МиСАД

Верный ответ: Корректное изложение указанных алгоритмов и подходов МиСАД

2. Компетенция/Индикатор: ИД-2_{РПК-2} Демонстрирует умение следить за изменениями требований

Вопросы, задания

- 1.2. Интеллектуальный анализ данных (Data Mining). Этапы исследования данных с помощью методов Data Mining. Типы закономерностей. Методы Data Mining.
- 2.7. Классификация текстов. Обработка текстов и Naive Bayes. Задачи Text Mining. Этапы обработки текстов. Закон Ципфа. Представление документов. Байесовский классификатор.
- 3.10. Системы аналитической обработки данных. CRM технология. ERP системы. OLAP технология

Материалы для проверки остаточных знаний

1.2. Этапы исследования данных с помощью методов Data Mining

Изложение указанных алгоритмов и подходов МиСАД

Верный ответ: Корректное изложение указанных алгоритмов и подходов МиСАД

2.3. Типы закономерностей в данных

Ответы:

Изложение указанных алгоритмов и подходов МиСАД

Верный ответ: Корректное изложение указанных алгоритмов и подходов МиСАД

3.5.3. Наивный байесовский классификатор

Ответы:

Изложение указанных алгоритмов и подходов МиСАД

Верный ответ: Корректное изложение указанных алгоритмов и подходов МиСАД

4.5.8. Алгоритм ссылочного ранжирования PageRank

Ответы:

Изложение указанных алгоритмов и подходов МиСАД

Верный ответ: Корректное изложение указанных алгоритмов и подходов МиСАД 5.6. Системы аналитической обработки данных. CRM – технология. ERP – системы.

OLAP – технология.

Ответы:

Изложение указанных алгоритмов и подходов МиСАД

Верный ответ: Корректное изложение указанных алгоритмов и подходов МиСАД

II. Описание шкалы оценивания

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Работа выполнена в рамках "продвинутого" уровня. Ответы даны верно, четко сформулированные особенности практических решений

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Работа выполнена в рамках "базового" уровня. Большинство ответов даны верно. В части материала есть незначительные недостатки

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Работа выполнена в рамках "порогового" уровня. Основная часть задания выполнена верно. на вопросы углубленного уровня

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Работа не выполнена или выполнена преимущественно неправильно

III. Правила выставления итоговой оценки по курсу

Для получения итоговой оценки баллы промежуточной аттестации суммируются с балами текущей аттестации.