Министерство науки и высшего образования РФ Федеральное государственное бюджетное образовательное учреждение высшего образования «Национальный исследовательский университет «МЭИ»

Направление подготовки/специальность: 01.04.02 Прикладная математика и информатика

Наименование образовательной программы: Математическое и программное обеспечение

вычислительных машин и компьютерных сетей

Уровень образования: высшее образование - магистратура

Форма обучения: Очная

Оценочные материалы по дисциплине Дополнительные главы дискретной математики

Москва 2024

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ РАЗРАБОТАЛ:

 Подписано электронной подписью ФГБОУ ВО «НИУ «МЭИ»

 Сведения о владельце ЦЭП МЭИ

 Владелец
 Алексиадис Н.Ф.

 Идентификатор
 Rbbf7859b-AlexiadisNF-00e41c26

СОГЛАСОВАНО:

Руководитель образовательной программы

Разработчик

NOSO POST	Подписано электронной подписью ФГБОУ ВО «НИУ «МЭИ»			
	Сведения о владельце ЦЭП МЭИ			
NSM	Владелец	Чернецов А.М.		
	Идентификатор	Re594826f-ChernetsovAM-0080e09		

А.М. Чернецов

Н.Ф.

Алексиадис

Заведующий выпускающей кафедрой

CICCALIONATE POR	Подписано электронн	ой подписью ФГБОУ ВО «НИУ «МЭИ»		
		Сведения о владельце ЦЭП МЭИ		
		Владелец	Варшавский П.Р.	
» <u>МЭИ</u> «	Идентификатор	R9a563c96-VarshavskyPR-efb4bbd		

П.Р. Варшавский

ОБЩАЯ ЧАСТЬ

Оценочные материалы по дисциплине предназначены для оценки: достижения обучающимися запланированных результатов обучения по дисциплине, этапа формирования запланированных компетенций и уровня освоения дисциплины.

Оценочные материалы по дисциплине включают оценочные средства для проведения мероприятий текущего контроля успеваемости и промежуточной аттестации.

Формируемые у обучающегося компетенции:

1. ПК-1 Способен выполнять работы на всем жизненном цикле информационных систем в выбранной среде разработки компьютерного ПО

ИД-2 Демонстрирует знание современных программно-технических средств, информационных технологий и тенденции их развития

и включает:

для текущего контроля успеваемости:

Форма реализации: Письменная работа

- 1. КМ-1 "Проблема полноты" (Контрольная работа)
- 2. КМ-2 «Регулярные языки и конечные автоматы» (Контрольная работа)
- 3. КМ-3 «Рекурсивные функции и машины Тьюринга» (Контрольная работа)
- 4. КМ-4 «Теория алгоритмов» (Контрольная работа)

БРС дисциплины

1 семестр

	Веса контрольных мероприятий, %				
Раздан имаминими	Индекс	KM-1	KM-2	KM-3	КМ-4
Раздел дисциплины	KM:				
	Срок КМ:	4	8	12	15
Функциональные системы					
Проблема полноты		+			
Теория булевых функций		+			
Регулярные языки и конечные автоматы					
Регулярные языки			+		
Конечные автоматы			+		
Рекурсивные функции и машины Тьюринга					
Рекурсивные функции				+	+
Машины Тьюринга				+	+
Теория алгоритмов					

Вычислимые функции			+	+
Сложность алгоритмов			+	
Bec KM:	25	25	25	25

\$Общая часть/Для промежуточной аттестации\$

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ТЕКУЩЕГО КОНТРОЛЯ

I. Оценочные средства для оценки запланированных результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций

Индекс	Индикатор	Запланированные	Контрольная точка
компетенции	1	результаты обучения по	•
		дисциплине	
ПК-1	ИД-2пк-1 Демонстрирует	Знать:	КМ-1 "Проблема полноты" (Контрольная работа)
	знание современных	терминологию и основные	КМ-2 «Регулярные языки и конечные автоматы» (Контрольная работа)
	программно-технических	результаты теории	КМ-3 «Рекурсивные функции и машины Тьюринга» (Контрольная
	средств, информационных	булевых функций	работа)
	технологий и тенденции	терминологию и основные	КМ-4 «Теория алгоритмов» (Контрольная работа)
	их развития	результаты теории	
		рекурсивных функций и	
		машин Тьюринга	
		терминологию и основные	
		результаты теории	
		конечных автоматов	
		Уметь:	
		применять основные	
		понятия и факты теории	
		алгоритмов для решения	
		прикладных задач	
		уметь построить машины	
		Тьюринга с данными	
		свойствами	
		анализ и синтез конечных	
		автоматов	
		распознавать полноту	
		систем булевых функции;	
		находить базисы полных	
		систем булевых функций	

II. Содержание оценочных средств. Шкала и критерии оценивания

КМ-1. КМ-1 "Проблема полноты"

Формы реализации: Письменная работа

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 25

Процедура проведения контрольного мероприятия: Проводится на практическом занятии, продолжительность выполнения работы 90 минут. Студентам выдаётся несколько

вариантов заданий

Краткое содержание задания:

В работе проверяется знание критерий полноты систем булевых функций и умение применять его для решения прикладных задач

L'avenage ve va pagnage v/aggavere

Контрольные вопросы/задания:	
Знать: терминологию и основные	1.Определение функциональной системы; ее
результаты теории булевых	особенность. Операции суперпозиции
функций	2.Оператор замыкания. Замкнутые и предполные
	классы
	3.Полные системы. Базис
	4.Понятие функции алгебры логики (булевы
	функции). Способы их задания. Число булевых
	функций от n переменных
	5.Разложение булевых функций по переменным;
	ДНФ, КНФ, СДНФ, СКНФ. Полином Жегалкина
	6. Теорема о полноте (Пост). Полные системы
Уметь: распознавать полноту	1.Построить СДНФ, СКНФ для функции $f = 11011011$
систем булевых функции;	2.Построить полином Жегалкина для функции $(\rightarrow) \rightarrow$
находить базисы полных систем	yz.
булевых функций	3. Являются ли функция $x \lor y \lor z$ самодвойственной?
	4.Приведите пример базиса
	а) мощности 3;
	б) мощности 4.
	5. Является ли полной система булевых функций
	$\{1, x+y, xy, x \lor y\}?$

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 75

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется во всех остальных случаях

КМ-2. КМ-2 «Регулярные языки и конечные автоматы»

Формы реализации: Письменная работа

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 25

Процедура проведения контрольного мероприятия: Проводится на практическом занятии, продолжительность выполнения работы 90 минут. Студентам выдаётся несколько вариантов заданий

Краткое содержание задания:

В работе проверяется знание базовых понятий теории конечных автоматов и регулярных языков и умение применять их в решении практических задач, в построении математических моделей

Контрольные вопросы/задания:

Контрольные вопросы/задания:	
Знать: терминологию и основные	1.Основные понятия теории регулярных языков:
результаты теории конечных	алфавит, слово, выражение, язык. Операции над
автоматов	языками
	2.Определение (алгебраическое) регулярного
	выражения и языка
	3. Конечные автоматы: основные понятия теории
	конечных автоматов, способы их задания и описания
	функционирования
	4. Эквивалентность конечных автоматов, автоматы
	приведенного вида, теорема Мура
	5. Теорема Клини о регулярных событиях
Уметь: анализ и синтез конечных	1.а) Любой ли подъязык регулярного языка является
автоматов	регулярным?
	б) Привести пример регулярного языка, любой
	подъязык которого является регулярным.
	2.Написать регулярное выражение над алфавитом \sum
	$= \{0, 1\}$, которое задает язык, состоящий из всех слов,
	содержащих хотя бы один символ 0 и хотя бы один
	символ 1.
	3. Написать регулярное выражение над алфавит $\Sigma =$
	{0, 1}, которое задает язык, состоящий из всех слов, в
	которых число нулей кратно 3.
	4.Построить конечный автомат с входным алфавитом
	$\Sigma = \{0, 1\}$, который распознает язык $L = \{u: u\}$
	начинается на 1 и оканчивается на 1}.
	5.Построить конечный автомат с входным алфавитом
	$\Sigma = \{0, 1\}$, который распознает язык $L = \{010, 101\}$.

Описание шкалы оценивания:

Оиенка: 5

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется во всех остальных случаях

КМ-3. КМ-3 «Рекурсивные функции и машины Тьюринга»

Формы реализации: Письменная работа

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 25

Процедура проведения контрольного мероприятия: Проводится на практическом занятии, продолжительность выполнения работы 90 минут. Студентам выдаётся несколько вариантов заданий

Краткое содержание задания:

В работе проверяется знание базовых понятий теории рекурсивных функций и машин Тьюринга и умение применять их в решении практических задач, в построении математических моделей

Контрольные вопросы/задания:

контрольные вопросы задания.	
Знать: терминологию и основные	1.Простейшие рекурсивные функции; операции над
результаты теории рекурсивных	рекурсивными функциями (суперпозиции,
функций и машин Тьюринга	примитивной рекурсии, минимизации)
	2. Алгебраическое определение рекурсивной
	(примитивно-рекурсивной, общерекурсивной,
	частично-рекурсивной) функции
	3. Определение машин Тьюринга; описание
	функционирования машин
	4. Техника программирования машин Тьюринга
	5. Машины Тьюринга и частично-рекурсивные
	функции
Уметь: применять основные	1. Доказать, что функция $f(x, y) = x + y$ является
понятия и факты теории	рекурсивной.
алгоритмов для решения	2. Является ли функция $f(x,y) = xy$ рекурсивной?
прикладных задач	3.Построить машину Тьюринга, которая
	произвольное непустое слово над алфавитом $\{0, 1, 2,$
	3, 4, 5, 6, 7, 8, 9} увеличивает на 1.
	4.Построить машину Тьюринга, которая перенесет
	первый символ произвольного непустого слова над
	алфавитом {a, b, c} в его конец.
	$5.$ Построить машину Тьюринга над алфавитом $\{0, 1\}$,
	которая оставляет данное слово без изменений, если

это слово оканчивается на 0, если же слово оканчивается на 1, то машина Тьюринга удаляет всё
слово.

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 75

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется во всех остальных случаях

КМ-4. КМ-4 «Теория алгоритмов»

Формы реализации: Письменная работа

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 25

Процедура проведения контрольного мероприятия: Проводится на практическом занятии, продолжительность выполнения работы 90 минут. Студентам выдаётся несколько вариантов заданий

Краткое содержание задания:

В работе проверяется знание базовых понятий теории алгоритмов и умение применять их в решении практических задач, в построении математических моделей

Контрольные вопросы/задания:

контрольные вопросы/задания.	
Знать: терминологию и основные	1.Определение (интуитивное) алгоритма. Свойства
результаты теории рекурсивных	алгоритмов.
функций и машин Тьюринга	2.Определение вычислимой функции. Тезис Черча
	3.Сложность алгоритмов
	4.Полиномиальная сводимость проблем
	5.Классы Р и NP
Уметь: уметь построить машины	1.Доказать, что если $f(n) = O(g(n))$ и $g(n) =$
Тьюринга с данными свойствами	O(h(n)), to $f(n) = O(h(n))$.
	2. Какие из приведенных ниже функций имеют
	порядок $O(n^3)$?
	a) $n!$; b) $ln(n!)$; c) $5n^3 + 3n^2 - 7n + 19$; d) $n^3 lnn$.
	3.Доказать, что если задача А сводится к задаче В,
	для решения которой существует полиномиальный
	алгоритм, то для решения задачи А существует
	полиномиальный алгоритм.

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 75 Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 60 Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 50 Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется во всех остальных случаях

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

1 семестр

Форма промежуточной аттестации: Зачет

Пример билета

Вопрос 1. Теорема о полноте (Пост).

Вопрос 2. Определение машин Тьюринга; описание функционирования машин Тьюринга.

Задача 3. Построить конечный автомат с входным алфавитом $\Sigma = \{0, 1\}$, который распознает язык $L = \{u: u \text{ начинается на 1 или оканчивается на 1}\}.$

Процедура проведения

Экзамен проводится в письменно-устной форме. На подготовку ответа дается 60 минут. Кроме ответа на вопросы билета, студент должен ответить на дополнительные вопросы.

I. Перечень компетенций/индикаторов и контрольных вопросов проверки результатов освоения дисциплины

1. Компетенция/Индикатор: ИД- $2_{\Pi K-1}$ Демонстрирует знание современных программнотехнических средств, информационных технологий и тенденции их развития

Вопросы, задания

- 1.Основные определения: функциональные системы, операции суперпозиции, замкнутые и предполные классы, полные системы, базис полных систем.
- 2. Булевы функции (определение, способы задания)
- 3.ДНФ, КНФ, СДНФ, СКНФ
- 4.Полином Жегалкина
- 5. Важнейшие замкнутые классы
- 6. Теорема о полноте (Пост)
- 7. Минимизация булевых функций
- 8.Основные понятия теории регулярных языков: алфавит, слово, выражение, язык
- 9. Операции над словами и языками
- 10.Определение (алгебраическое) регулярного выражения и языка
- 11.Основные понятия теории конечных автоматов, способы задания и описания функционирования конечных автоматов
- 12. Эквивалентность конечных автоматов, автоматы приведенного вида, теорема Мура
- 13. Теорема Клини о регулярных событиях
- 14. Минимизация конечных автоматов
- 15.Простейшие рекурсивные функции; операции над рекурсивными функциями (суперпозиции, примитивной рекурсии, минимизации)
- 16. Алгебраическое определение рекурсивной (примитивно-рекурсивной, общерекурсивной, частично-рекурсивной) функции
- 17. Определение машин Тьюринга; описание функционирования машин Тьюринга
- 18. Техника программирования машин Тьюринга
- 19. Машины Тьюринга и частично-рекурсивные функции.
- 20.Определение (интуитивное) алгоритма. Свойства алгоритмов.
- 21. Определение вычислимой функции. Тезис Черча.
- 22. Сложность алгоритмов; Полиномиальная сводимость
- 23. Классы Р и NP; NP-полные задачи

- 24. Найти СДНФ и СКНФ для функции (хzy)хz
- 25. Построить полином Жегалкина для функции &(x+z)
- 27.Являются ли функция (xVy)xy линейной?
- 28. Являются ли функция z + xy + z монотонной?
- 29. Является ли полной система булевых функций
- $\{1, x + y, \}$?
- 30. Напишите регулярное выражение для следующего языка: множество всех слов из 0 и 1, в которых число нулей кратно 5.
- 31. Напишите регулярное выражение для следующего языка: множество всех слов из 0 и 1, в которых десятый от правого края символ равен 1.
- 32. Построить ДКА, который над алфавитом {0, 1} распознает язык всех слов, оканчивающихся на 00.
- 33. Построить ДКА, который над алфавитом {0, 1} распознает язык всех слов, содержащих подслово 001.
- 34. Доказать, что $x^y y$ (0° = 1) является рекурсивной функцией.
- 35. Доказать, что |x y| является рекурсивной функцией.
- $36.A = \{a,b,c\}$ –входной алфавит машины Тьюринга. Приписать слева к данному слову Pсимвол b.
- $37.\Sigma = \{0, 1\}$ входной алфавит машины Тьюринга. Если непустое слово четной длины, то выдавать ответ 0, а иначе 1.

Материалы для проверки остаточных знаний

- 1. Являются ли функция *хуVуzVzx* самодвойственной? Ответы:
- 1. да
- 2. нет

Верный ответ: Верный ответ: 1. да

2. Являются ли функция xy + yz + x монотонной?

Ответы:

- 1. да
- 2. нет

Верный ответ: Верный ответ: 2. нет

3.Являются ли функция (xVy) & линейной?

Ответы:

- 1. да
- 2. нет

Верный ответ: Верный ответ: 1. да

4. Является ли полной система булевых функций $\{x + y, xVy, xy\}$?

Ответы:

- 1. да
- 2. нет

Верный ответ: Верный ответ: 2. нет

5. Является ли полной система булевых функций $\{1, x + y, xy\}$?

Ответы:

- 1. да
- 2. нет

Верный ответ: Верный ответ: 1. да

6.В алгебре логики существует ли базис мощности 1? Ответы:

- 1. да
- 2. нет

```
Верный ответ: Верный ответ: 1. да
7.В алгебре логики существует ли базис мощности 2?
    Ответы:
1. да
2. нет
    Верный ответ: Верный ответ: 1. да
8.В алгебре логики существует ли базис мощности 3?
    Ответы:
1. да
2. нет
    Верный ответ: Верный ответ: 1. да
9.В алгебре логики существует ли базис мощности 4?
    Ответы:
1. да
2. нет
    Верный ответ: Верный ответ: 1. да
10.В алгебре логики существует ли базис мощности 5?
    Ответы:
1. да
2. нет
    Верный ответ: Верный ответ: 2. нет
11.В алгебре логики существует ли базис мощности 10, 20?
    Ответы:
1. да
2. нет
    Верный ответ: Верный ответ: 2. нет
12.В алгебре логики существует ли полная система мощности 5, 10, 20?
    Ответы:
1. да
2. нет
    Верный ответ: Верный ответ: 1. да
13. Является ли регулярным выражение R \ Q, если R и Q - регулярные языки?
    Ответы:
1. да
2. нет
    Верный ответ: Верный ответ: 1. да
14. Верно ли равенство L^{\cdot} = L^{+}?
    Ответы:
1. да
2. нет
    Верный ответ: Верный ответ: 2. нет
15. Любой ли подъязык регулярного языка является регулярным?
    Ответы:
1. да
2. нет
    Верный ответ: Верный ответ: 2. нет
16.Суперпозиция общерекурсивных функций всегда является общерекурсивным/?
    Ответы:
1. да
2. нет
    Верный ответ: Верный ответ: 1. да
17. Нигде не определенная функция является ли частично-рекурсивной?
```

Ответы:

- 1. да
- 2. нет

Верный ответ: Верный ответ: 1. да

18. Любая вычислимая функция является ли частично-рекурсивной?

Ответы:

- 1. да
- 2. нет

Верный ответ: Верный ответ: 1. да

19.

1. Существует ли машина Тьюринга, которая никогда не останавливается?

Ответы:

- 1. да
- 2. нет

Верный ответ: Верный ответ: 1. да

20.Существует ли машина Тьюринга, которая никогда не останавливается на непустой ленте и останавливается на пустой ленте?

Ответы:

- 1. да
- 2. нет

Верный ответ: Верный ответ: 1. да

II. Описание шкалы оценивания

Оценка: 5

Нижний порог выполнения задания в процентах: 75

Описание характеристики выполнения знания: Работа выполнена в рамках "продвинутого" уровня. Ответы даны верно, четко сформулированы особенности практических решений.

Оценка: 4

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Работа выполнена в рамках "базового" уровня. Большинство ответов даны верно. В части материала есть незначительные ошибки

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Работа выполнена в рамках "порогового" уровня. Основная часть задания выполнена верно

Оценка: 2

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется во всех остальных случаях.

III. Правила выставления итоговой оценки по курсу

Оценка определяется в соответствии с Положением о бально-рейтинговой системе для студентов НИУ «МЭИ» на основании семестровой и экзаменационной составляющих.