Министерство науки и высшего образования РФ Федеральное государственное бюджетное образовательное учреждение высшего образования «Национальный исследовательский университет «МЭИ»

Направление подготовки/специальность: 09.03.01 Информатика и вычислительная техника

Наименование образовательной программы: Вычислительно-измерительные системы

Уровень образования: высшее образование - бакалавриат

Форма обучения: Очная

Оценочные материалы по дисциплине Измерительные преобразователи

Москва 2021

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ РАЗРАБОТАЛ:

Преподаватель (должность)

(подпись)

В.Д. Глушнев (расшифровка подписи)

СОГЛАСОВАНО:

Руководитель образовательной программы

(должность, ученая степень, ученое звание)

Заведующий выпускающей кафедры

(должность, ученая степень, ученое звание)

(подпись)

1030	Подписано электронн	ой подписью ФГБОУ ВО «НИУ «МЭИ»			
New	Сведения о владельце ЦЭП МЭИ				
	Владелец	Желбаков И.Н.			
	Идентификатор	R839a3a63-ZhelbakovlgN-f73624c			
()					

(подпись)

Н.А. Серов (расшифровка

подписи)

И.Н. Желбаков

(расшифровка подписи)

ОБЩАЯ ЧАСТЬ

Оценочные материалы по дисциплине предназначены для оценки: достижения обучающимися запланированных результатов обучения по дисциплине, этапа формирования запланированных компетенций и уровня освоения дисциплины.

Оценочные материалы по дисциплине включают оценочные средства для проведения мероприятий текущего контроля успеваемости и промежуточной аттестации.

Формируемые у обучающегося компетенции:

- 1. ПК-1 Способен обосновывать принимаемые проектные решения, осуществлять постановку и выполнять эксперименты по проверке их корректности и эффективности ИД-3 Производит оценку влияния применяемых технических решений на общее функционирование системы
- 2. ПК-4 Способен анализировать состояние средств измерений в организации, внедрение в процессы производства необходимых средств измерений и стандартных образцов и методик измерений
 - ИД-2 Проводит калибровочные процедуры измерительных систем

и включает:

для текущего контроля успеваемости:

Форма реализации: Проверка задания

- 1. Измерительные преобразователи неэлектрических величин (Домашнее задание)
- 2. Измерительные преобразователи электрических сигналов в электрические (Контрольная работа)
- 3. Метрологические характеристики измерительных преобразователей (Контрольная работа)
- 4. Основные характеристики измерительных преобразователей (Домашнее задание)

БРС дисциплины

5 семестр

	Веса контрольных мероприятий, %				
Раздел дисциплины	Индекс	КМ-	КМ-	КМ-	КМ-
г аздел дисциплины	KM:	1	2	3	4
	Срок КМ:	4	8	12	16
Основные характеристики измерительных преобразователей					
Измерительные преобразователи и вычислительно-		+	+		
измерительные системы				+	+
Метрологические характеристики измерительных					
преобразователей					
Функция преобразования измерительных преобразователей					
(ИП) Калибровочная функция и функция влияния. Переходные			+	+	+
характеристики и передаточные функции ИП					
Измерительные преобразователи электрических сигналов в					
электрические					
Преобразователи на пассивных элементах Операционные					
усилители в качестве ИП электрических величин				+	+

Измерительные преобразователи неэлектрических величин				
Параметрические преобразователи резистивного, емкостного и индуктивного типов. Акустические и оптические ИП параметрического типа			+	+
Преобразователи генераторного типа. Магнитоиндукционные, пьезоэлектрические, фотоэлектрические				+
Bec KM:	20	20	20	40

\$Общая часть/Для промежуточной аттестации\$

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ТЕКУЩЕГО КОНТРОЛЯ

I. Оценочные средства для оценки запланированных результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций

Индекс	Индикатор	Запланированные	Контрольная точка
компетенции		результаты обучения по	
		дисциплине	
ПК-1	ИД-3 _{ПК-1} Производит	Знать:	Основные характеристики измерительных преобразователей
	оценку влияния	основы схемотехники	(Домашнее задание)
	применяемых технических	измерительных	Метрологические характеристики измерительных преобразователей
	решений на общее	преобразователей,	(Контрольная работа)
	функционирование	принципы построения	Измерительные преобразователи электрических сигналов в
	системы	структурных,	электрические (Контрольная работа)
		функциональных и	Измерительные преобразователи неэлектрических величин (Домашнее
		принципиальных схем	задание)
		измерительных	
		преобразователей	
		особенности применяемых	
		технических решений	
		теорию погрешностей	
		средств измерений	
		Уметь:	
		оценивать влияние	
		применяемых технических	
		решений на общее	
		функционирование	
		системы	
		проводить калибровочные	
		процедуры измерительных	
		систем	
ПК-4	ИД-2пк-4 Проводит		Основные характеристики измерительных преобразователей
	калибровочные процедуры	требования к эталонным	(Домашнее задание)

измерительных систем	средствам измерений содержание закона «Об обеспечении единства измерений» Уметь: выбирать эталонные средства измерений, соответствующие техническому заданию применять знания	Метрологические характеристики измерительных преобразователей (Контрольная работа) Измерительные преобразователи электрических сигналов в электрические (Контрольная работа)
	_	
	1 * .	
	•	
	техническому заданию	
	применять знания	
	содержания закона «Об	
	обеспечении единства	
	измерений» при	
	эксплуатации и разработке	
	средств измерений	

II. Содержание оценочных средств. Шкала и критерии оценивания

КМ-1. Основные характеристики измерительных преобразователей

Формы реализации: Проверка задания

Тип контрольного мероприятия: Домашнее задание

Вес контрольного мероприятия в БРС: 20

Процедура проведения контрольного мероприятия: Производится проверка правильности

решения задач и ответов на вопросы в задании

Краткое содержание задания:

Технические характеристики измерительных преобразователей и их связь с характеристиками вычислительно-измерительных систем (ВИС). Метрологические характеристики вычислительно-измерительных систем.

Номинальная функция преобразования измерительного преобразователя (ИП).

Статические и динамические характеристики ИП.

Особенности нормирования метрологических характеристик ИП. Классы точности.

Расчет характеристик при последовательном соединении ИП. Отрицательная обратная связь.

Динамические характеристики ИП, нормирование и расчет.

Контрольные вопросы/задания:

- Контрольные вопросы/задания:			
Знать: основы схемотехники	1. динамические характеристики ИП, нормирование и		
измерительных	расчет		
преобразователей, принципы			
построения структурных,			
функциональных и			
принципиальных схем			
измерительных			
преобразователей			
Знать: теорию погрешностей	1.вывод функции преобразования для системы с		
средств измерений	последовательным соединением ИП и для ИП с		
	отрицательной обратной связью		
Знать: содержание закона «Об	1.общие принципы классификации измерительных		
обеспечении единства	преобразователей		
измерений»	2.что такое метрологические, эксплуатационные		
	характеристики и характеристики надежности, связь		
	метрологических характеристик ВИС с		
	метрологическими характеристиками ИП		
Уметь: проводить	1.рассчитывать калибровочные функции по		
калибровочные процедуры	известным функциям преобразования		
измерительных систем			

Описание шкалы оценивания:

Оценка: зачтено

Описание характеристики выполнения знания: Отсутствие в ответе принципиальных ошибок, допускаются незначительные ошибки в формулировках, не искажающие смысл понятий и результатов расчета

Оценка: не зачтено

Описание характеристики выполнения знания: Неправильные ответы, неправильные формулы, искажающие результаты расчетов.

КМ-2. Метрологические характеристики измерительных преобразователей

Формы реализации: Проверка задания

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 20

Процедура проведения контрольного мероприятия: Производится проверка правильности

решения задач и ответов на вопросы в задании

Краткое содержание задания:

Что такое измерительный преобразователь (ИП)? Основное назначение функции преобразования и калибровочной функции ИП. Для известной функции преобразования, заданной аналитическим выражением, определить калибровочную функцию X=f(Y)

Контрольные вопросы/задания:

Контрольные вопросы/задания:	
Знать: теорию погрешностей	1.что такое номинальная ФП, кто и когда ее
средств измерений	определяет?
Знать: требования к эталонным	1.Чем измерительный преобразователь (ИП)
средствам измерений	отличается от измерительного прибора?
	2.назначение функции преобразования(ФП) и
	калибровочной функции ИП
	3.методы определения аналитического выражения
	для калибровочной функцию $X=f(Y)$ для заданной
	функции преобразования ИП.
Уметь: проводить	1.Функция преобразования для платинового
калибровочные процедуры	термопреобразователя сопротивления (ТПС)
измерительных систем	задана формулой $Rt = Ro(1+A t+B t^2)$, где Rt
	сопротивление ТП, Ro - его сопротивление при 0
	град.С, А=3.9690 е-3, В=-5.841 е-7. Найти
	выражение для калибровочной функции и
	определить значение температуры, если
	сопротивления Rt = 118,3 Ом, Ro=100.0 Ом
Уметь: выбирать эталонные	1.Для измерительного преобразователя температуры
средства измерений,	в цифровой код, который состоит из платинового
соответствующие техническому	термопреобразователя сопротивления (ТПС),
заданию	имеющего предельную погрешность по входу 0,15
	град.С и функцию преобразования $Rt = 100 (1 + A t + B)$
	<i>t</i> ^2), (A=3.9690 e-3, B=-5.841 e-7) и преобразователя
	сопротивления в цифровой код (АЦП) с
	относительной погрешностью преобразования R -
	0,1%, рассчитать предельное значение
V	погрешности ИП по температуре
Уметь: применять знания	1. Найти калибровочную функцию для токового
содержания закона «Об обеспечении единства	преобразователя 4-20 мА, имеющего следующую
обеспечении единства измерений» при эксплуатации и	ФП: Івых =4 + 16 Хвх/Хт, где Івых - выходной ток, мА; Хвх - входная величина; Хт – верхний
разработке средств измерений	ток, ма; зах - входная величина; зт — верхнии предел преобразования ИП по входу
разработке средств измерении	предел преобразования или по входу

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Правильные ответы на все вопросы и решение всех задач, допускаются неточности в определениях и вычислениях, не влияющие на основные выводы и результаты расчетов

Оценка: 4

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Правильные, в целом, ответы на все вопросы и решение всех задач в задании, но при ответе на уточняющие вопросы обнаруживается не полное понимание сущности решаемых задач. Допускаются незначительные ошибки в определениях и расчетах.

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Ошибочный ответ на один из теоретических вопросов. Ошибки в решении задачи, но при уточняющем вопросе, самостоятельно обнаруживает и исправляет ошибки.

КМ-3. Измерительные преобразователи электрических сигналов в электрические

Формы реализации: Проверка задания

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 20

Процедура проведения контрольного мероприятия: Производится проверка правильности

решения задач и ответов на вопросы в задании

Краткое содержание задания:

Назначение, типы и характеристики измерительных усилителей (ИУ).

Требования к операционным усилителям и пассивным элементам, используемым в ИУ.

Принцип действия и назначения индуктивных и емкостных ИП.

Применение фазовых детекторов для преобразования информативных параметров индуктивных и емкостных преобразователей

Контрольные вопросы/задания:

контрольные вопросы/задания.					
Уметь: оценивать влияние	1. рассчитать коэффициент усиления ИУ,				
применяемых технических	выполненного на базе операционного усилителя,				
решений на общее	охваченного параллельной отрицательной обратной				
функционирование системы	связью: входное сопротивление R1=100 кОм,				
	сопротивление обратной связи R2 = 1 МОм, и				
	рассчитать отклонение коэффициента усиления от				
	номинального при точности резисторов +-0,1%				
	2.Рассчитать коэффициенты преобразования для				
	интегрирующего усилителя: входное сопротивление				
	R1=10 кОм, С1=10 нФ				
Уметь: выбирать эталонные	1.рассчитывать электрические схемы резистивных,				
средства измерений,	емкостных и индуктивных ИП				
соответствующие техническому					
заданию					
Уметь: применять знания	1.Рассчитывать смещение нуля измерительного				
содержания закона «Об	усилителя на базе операционного усилителя (ОУ) с				
обеспечении единства	параллельной и последовательной ООС, для				

измерений» при эксплуатации и	заданных параметров ОУ и параметров пассивных
разработке средств измерений	элементов схемы.

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: Правильные ответы на все вопросы и решение всех задач, допускаются неточности в определениях и вычислениях, не влияющие на основные выводы и результаты расчетов

Оценка: 4

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Правильные, в целом, ответы на все вопросы и решение всех задач в задании, но при ответе на уточняющие вопросы обнаруживается не полное понимание сущности решаемых задач. Допускаются незначительные ошибки в определениях и расчетах.

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Ошибочный ответ на один из теоретических вопросов. Ошибки в решении задачи, но при уточняющем вопросе, самостоятельно обнаруживает и исправляет ошибки.

КМ-4. Измерительные преобразователи неэлектрических величин

Формы реализации: Проверка задания

Тип контрольного мероприятия: Домашнее задание

Вес контрольного мероприятия в БРС: 40

Процедура проведения контрольного мероприятия: Производится проверка правильности

решения задач и ответов на вопросы в задании

Краткое содержание задания:

Принцип действие и функции преобразования реостатных, емкостных и индуктивных датчиков перемещения и деформаций

Тензорезисторные ИП, принцип действия, устройство, функция преобразования, источники погрешности

Пьезоэлектрические и пьезорезонансные ИП, принцип действия и устройство Терморезистивные ИП, принцип действия и устройство функция преобразования, погрешности

Индукционные ИП, принцип действия и устройство. Индукционные датчики расхода.

Контрольные вопросы/задания:

Знать:	особенности	1. Принцип действие, устройство, функция
применяемых	технических	преобразования и функция влияния для реостатных
решений		датчиков перемещения и деформаций
		2.Принцип действие, устройство, функция
		преобразования и функция влияния для емкостных
		датчиков перемещения и деформаций
		3. Принцип действие, устройство, функция
		преобразования и функция влияния индуктивных
		датчиков перемещения и деформаций
		4.Принцип действие, устройство, функции
		преобразования и функции влияния

	тензорезисторных ИП			
	5.Принцип действие и устройство			
	пьезоэлектрических и пьезорезонансных ИП, их			
	назначение и область применения			
	6. Принцип действие и устройство индукционных			
	ИП, их назначение и область применения			
Уметь: оценивать влияние	1.Исходя из требований к ИП температуры			
применяемых технических	рассчитывать параметры основных элементов			
решений на общее	конструкции и электрических схем			
функционирование системы	терморезистивных ИП			
Уметь: проводить	1. Исходя из требований к ИП перемещений и			
калибровочные процедуры	деформаций рассчитывать параметры основных			
измерительных систем	элементов конструкции и электрических схем			
	емкостных ИП			

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Правильные ответы на все вопросы и решение всех задач, допускаются неточности в определениях и вычислениях, не влияющие на основные выводы и результаты расчетов

Оценка: 4

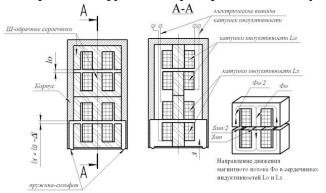
Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Правильные, в целом, ответы на все вопросы и решение всех задач в задании, но при ответе на уточняющие вопросы обнаруживается не полное понимание сущности решаемых задач. Допускаются незначительные ошибки в определениях и расчетах.

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Ошибочный ответ на один из теоретических вопросов. Ошибки в решении задачи, но при уточняющем вопросе, самостоятельно обнаруживает и исправляет ошибки.


СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

5 семестр

Форма промежуточной аттестации: Зачет с оценкой

Пример билета

1. Определить функцию преобразования индуктивного ИП, изображенного

на рисунке

- 2. Рассчитать количество витков катушек индуктивности, обеспечивающее для заданных в табл. 1 параметров МПР, требуемое значение индуктивности Lо.
- 3. Вывести формулу для выходного напряжения мостовой схемы, в нижнее плечо которой включена катушка индуктивности Lx индуктивного преобразователя.
- 4. Рассчитать погрешность нелинейности индуктивного ИП

Вариант	Площадь МПР Ѕмп, см2	Длина магнитной силовой линии в магнитопроводе , мм	Относительная магнитная проницаемость	Начальный зазор , мм	δн = ΔK /K , мм	Значение индуктивности <i>L</i> o, мГн
№ 1	1,0	100	2000	2	-0,2	10
№ 2	5,0	200	2000	4	-0,5	20
№ 3	2,0	150	4000	5	-0,25	15
№ 4	4,0	180	4000	3	-0,3	50

Процедура проведения

Студент получает задание за 4 недели до проведения зачета. Проводит анализ задания и производит необходимые расчеты элементов конструкции и метрологические характеристики, оформляет пояснительную записку к расчетам. На зачете преподаватель проверяет правильность расчетов, при необходимости, задает дополнительные вопросы

I. Перечень компетенций/индикаторов и контрольных вопросов проверки результатов освоения дисциплины

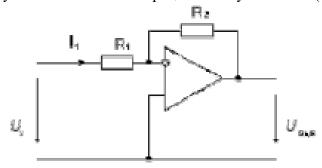
1. Компетенция/Индикатор: ИД-3_{ПК-1} Производит оценку влияния применяемых технических решений на общее функционирование системы

Вопросы, задания

1. функциональная схема измерительных преобразователей параметрического типа (резистивных, емкостных, индуктивных) при малых изменениях информативного параметра, обосновать применение мостовых схем и фазовых детекторов

- 2.Схемы преобразования информативного параметра резистивных ИП в интервал времени, анализ диапазона преобразования, точности и быстродействия
- 3.Полупроводниковые преобразователи температуры (терморезисторы, преобразователи на р-п переходах), достоинства и недостатки по сравнению термометрами сопротивления
- 4. Определить формулу для погрешности информационной системы, вычисляющей количество тепловой энергии -Q по формуле
- Q = c*(T1 T2)*ro(T1)*V1, где c удельная теплоемкость теплоносителя, кДж/(кг град.С); T1, T2 температура воды, град, в подающем и обратном трубопроводах тепловой системы, измеряемая соответствующими термометрами, ro(T1) плотность теплоносителя, ro(T1) объем теплоносителя, м3. Учесть, что все входящие в формулу параметры измеряются и вычисляются c известными погрешностями.
- 5. Рассчитать требование к усилителю напряжения для термоэлектрического преобразователя с чувствительностью 30 мкВ/град, работающего в диапазоне температур (30 ... 1000) град.С, обеспечивающего на выходе напряжение 2,1 В для верхнего предела преобразования
- 6. Методы борьбы с электрическими помехами нормального и общего вида

Материалы для проверки остаточных знаний


1.Известно: ИП — это динамическая система 1-го порядка. Укажите правильные формулы для расчета времени установления результата с погрешностью не более 5%

Ответы:

- 1. $t_{\rm v}= au$, где au постоянная времени ИП
- 2. $t_v = 2\tau$
- 3. $t_{\rm y}=3/(2\pi f_{\rm 0})$, где $f_{\rm 0}$ верхняя граничная частота полосы пропускания ИП по уровню 0,707
- 4. $t_v = 1/\omega_0$, где $\omega_0 = 2\pi f_0$
- 5. $t_v = 3/\omega_0$

Верный ответ: 3, 5

2.Определить коэффициент усиления и входное сопротивление Rвх измерительного усилителя на базе операционного усилителя (см. рисунок), если R1=1 кОм; R2=100 кОм

Ответы:

- RBX = 100 KOM, Ky = 100
- RBx = 1 kOm, Ky = 1000
- Rex = 1 kOm, Ky = 100
- RBx > 1 MOM, Ky = 100
- RBX = 1 KOM, Ky = 101

Верный ответ: 3

2. Компетенция/Индикатор: ИД-2_{ПК-4} Проводит калибровочные процедуры измерительных систем

Вопросы, задания

- 1. требования к точности эталонных средств измерений, используемых при калибровке и поверке индуктивных и емкостных ИП перемещений
- 2.Определить максимально допустимую погрешность меры сопротивления, используемую для калибровки измерительного преобразователя сопротивления в напряжения с основной погрешностью 0,1 %, найти абсолютное значение этой погрешности, если мера воспроизводит сопротивления в диапазоне от 100 до 200 Ом.
- 3. Основные требования к средствам измерений, установленные в законе «Об обеспечении единства измерений»

Материалы для проверки остаточных знаний

1. Функция преобразования измерительного преобразователя (ИП) определяет:

Ответы:

- 1. Связь входной величины с выходной величиной ИП
- 2. Зависимость выходной величины от влияющих величин
- 3. Зависимость выходной величины (ИП) от входной величины и влияющих величин
- 4. Зависимость выходной величины от входной величины
- 5. Зависимость результата преобразования от влияющих величин Верный ответ: 3, 4
- 2.С какой целью нормируют метрологические характеристики ИП? Ответы:
- 1. Чтобы уменьшить погрешность преобразования ИП
- 2. Чтобы уменьшить влияние неинформативных параметров входной величины на результат измерения
- 3. Для расчета неопределенности (погрешности) результата измерения при использовании данного ИП в измерительном приборе
- 4. Для расчета значений входной величины
- 5. Для расчета погрешностей вычислительно-измерительной системы, использующей данный Π

Верный ответ: 3, 4, 5

- 3. Какие из перечисленных ниже характеристик ИП являются метрологическими? Ответы:
- 1. Нижний и верхний пределы преобразования входной величины
- 2. Степень защиты ИП от проникновения пыли и влаги
- 3. Номинальная статическая функция преобразования ИП
- 4. Срок службы ИП
- 5. Предел допускаемой погрешности ИП по входу Верный ответ: 1, 3, 5
- 4. Какие из указанных характеристик ИП определяют его динамическую погрешность? Ответы:
- 1. Масса ИП
- 2. Верхняя и нижняя граничные частоты полосы пропускания
- 3. Размеры ИП
- 4. Постоянная времени ИП
- 5. Время установления результата преобразования
- 6. Предельно допускаемые частота и амплитуда вибраций Верный ответ: 2, 4, 5

II. Описание шкалы оценивания

Оценка: 5

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Работа выполнена в рамках "продвинутого" уровня. Ответы даны верно, четко сформулированные особенности практических решений

Оценка: 4

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Работа выполнена в рамках "базового" уровня. Большинство ответов даны верно. В части материала есть незначительные недостатки

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Работа выполнена в рамках "порогового" уровня. Основная часть задания выполнена верно. на вопросы углубленного уровня не было получено правильных ответов

ІІІ. Правила выставления итоговой оценки по курсу

Итоговая оценка по совокупности результатов текущего контроля успеваемости и промежуточной аттестации. формула для оценки: ИТО Γ =0,1KM1+0,1KM2+0,1KM3+0,1KM4+0,6 Γ A