Министерство науки и высшего образования РФ Федеральное государственное бюджетное образовательное учреждение высшего образования «Национальный исследовательский университет «МЭИ»

Направление подготовки/специальность: 09.03.01 Информатика и вычислительная техника

Наименование образовательной программы: Вычислительно-измерительные системы

Уровень образования: высшее образование - бакалавриат

Форма обучения: Очная

Оценочные материалы по дисциплине Измерительные преобразователи

Москва 2024

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ РАЗРАБОТАЛ:

Разработчик

В.Д. Глушнев

СОГЛАСОВАНО:

Руководитель образовательной программы

MOM H	Подписано электронной подписью ФГБОУ ВО «НИУ «МЭИ»		
	Сведения о владельце ЦЭП МЭИ		
	Владелец	Хвостов А.А.	
	Идентификатор	Rd7c1e2e7-KhvostovAA-a55ec66d	

А.А. Хвостов

Заведующий выпускающей кафедрой

NOSO PER	Подписано электронн	ой подписью ФГБОУ ВО «НИУ «МЭИ»	
100	Сведения о владельце ЦЭП МЭИ		
NOM A	Владелец	Самокрутов А.А.	
	Идентификатор Р	145b9cc2-SamokrutovAA-7b5e7d	

А.А. Самокрутов

ОБЩАЯ ЧАСТЬ

Оценочные материалы по дисциплине предназначены для оценки достижения обучающимися запланированных результатов обучения по дисциплине, этапа формирования запланированных компетенций и уровня освоения дисциплины.

Оценочные материалы по дисциплине включают оценочные средства для проведения мероприятий текущего контроля успеваемости и промежуточной аттестации.

Формируемые у обучающегося компетенции:

- 1. ПК-1 Способен обосновывать принимаемые проектные решения, осуществлять постановку и выполнять эксперименты по проверке их корректности и эффективности ИД-3 Производит оценку влияния применяемых технических решений на общее функционирование системы
- 2. РПК-3 Способен анализировать состояние средств измерений в организации, внедрение в процессы производства необходимых средств измерений и стандартных образцов и методик измерений
 - ИД-2 Проводит калибровочные процедуры измерительных систем

и включает:

для текущего контроля успеваемости:

Форма реализации: Проверка задания

- 1. Измерительные преобразователи неэлектрических величин (Домашнее задание)
- 2. Измерительные преобразователи электрических сигналов в электрические (Контрольная работа)
- 3. Метрологические характеристики измерительных преобразователей (Контрольная работа)
- 4. Основные характеристики измерительных преобразователей (Домашнее задание)

БРС дисциплины

5 семестр

Перечень контрольных мероприятий <u>текущего контроля</u> успеваемости по дисциплине:

- КМ-1 Основные характеристики измерительных преобразователей (Домашнее задание)
- КМ-2 Метрологические характеристики измерительных преобразователей (Контрольная работа)
- КМ-3 Измерительные преобразователи электрических сигналов в электрические (Контрольная работа)
- КМ-4 Измерительные преобразователи неэлектрических величин (Домашнее задание)

Вид промежуточной аттестации – Зачет с оценкой.

	Веса контрольных мероприятий, %				
Возной музуууналууу	Индекс	КМ-	КМ-	КМ-	КМ-
Раздел дисциплины	KM:	1	2	3	4
	Срок КМ:	4	8	12	16

Основные характеристики измерительных преобразователей				
Измерительные преобразователи и вычислительно- измерительные системы	+	+	+	+
Метрологические характеристики измерительных преобразователей				
Функция преобразования измерительных преобразователей (ИП) Калибровочная функция и функция влияния. Переходные характеристики и передаточные функции ИП	+	+	+	+
Измерительные преобразователи электрических сигналов в электрические				
Преобразователи на пассивных элементах Операционные усилители в качестве ИП электрических величин			+	+
Измерительные преобразователи неэлектрических величин				
Параметрические преобразователи резистивного, емкостного и индуктивного типов. Акустические и оптические ИП параметрического типа			+	+
Преобразователи генераторного типа. Магнитоиндукционные, пьезоэлектрические, фотоэлектрические				+
Bec KM:	20	20	20	40

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ТЕКУЩЕГО КОНТРОЛЯ

I. Оценочные средства для оценки запланированных результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций

Индекс	Индикатор	Запланированные	Контрольная точка
компетенции		результаты обучения по	
		дисциплине	
ПК-1	ИД-3 _{ПК-1} Производит оценку влияния применяемых технических решений на общее функционирование системы	Знать: особенности применяемых технических решений теорию погрешностей средств измерений основы схемотехники измерительных преобразователей, принципы построения структурных, функциональных и принципиальных схем измерительных преобразователей Уметь: оценивать влияние применяемых технических решений на общее	КМ-1 Основные характеристики измерительных преобразователей (Домашнее задание) КМ-2 Метрологические характеристики измерительных преобразователей (Контрольная работа) КМ-3 Измерительные преобразователи электрических сигналов в электрические (Контрольная работа) КМ-4 Измерительные преобразователи неэлектрических величин (Домашнее задание)
		функционирование системы проводить калибровочные	
		процедуры измерительных систем	
РПК-3	ИД-2 _{РПК-3} Проводит		КМ-1 Основные характеристики измерительных преобразователей
	калибровочные процедуры	требования к эталонным	(Домашнее задание)

измерительных сист	ем средствам измерений	КМ-2 Метрологические характеристики измерительных
	содержание закона «Об	преобразователей (Контрольная работа)
	обеспечении единства	КМ-3 Измерительные преобразователи электрических сигналов в
	измерений»	электрические (Контрольная работа)
	Уметь:	
	выбирать эталонные	
	средства измерений,	
	соответствующие	
	техническому заданию	
	применять знания	
	содержания закона «Об	
	обеспечении единства	
	измерений» при	
	эксплуатации и разработке	
	средств измерений	

II. Содержание оценочных средств. Шкала и критерии оценивания

КМ-1. Основные характеристики измерительных преобразователей

Формы реализации: Проверка задания

Тип контрольного мероприятия: Домашнее задание

Вес контрольного мероприятия в БРС: 20

Процедура проведения контрольного мероприятия: Производится проверка правильности

решения задач и ответов на вопросы в задании.

Краткое содержание задания:

Технические характеристики измерительных преобразователей и их связь с характеристиками вычислительно-измерительных систем (ВИС). Метрологические характеристики вычислительно-измерительных систем.

Номинальная функция преобразования измерительного преобразователя (ИП).

Статические и динамические характеристики ИП.

Особенности нормирования метрологических характеристик ИП. Классы точности.

Расчет характеристик при последовательном соединении ИП. Отрицательная обратная связь.

Динамические характеристики ИП, нормирование и расчет.

Контрольные вопросы/задания:

Запланированные результаты обучения по	Вопросы/задания для проверки
	Вопросы/задания для проверки
дисциплине	
Знать: основы схемотехники	1.динамические характеристики ИП,
измерительных преобразователей,	нормирование и расчет
принципы построения структурных,	
функциональных и принципиальных схем	
измерительных преобразователей	
Знать: теорию погрешностей средств	1.вывод функции преобразования для
измерений	системы с последовательным соединением
	ИП и для ИП с отрицательной обратной
	связью
Знать: содержание закона «Об	1.общие принципы классификации
обеспечении единства измерений»	измерительных преобразователей
	2.что такое метрологические,
	эксплуатационные характеристики и
	характеристики надежности, связь
	метрологических характеристик ВИС с
	метрологическими характеристиками ИП
Уметь: проводить калибровочные	1.рассчитывать калибровочные функции по
процедуры измерительных систем	известным функциям преобразования

Описание шкалы оценивания:

Оценка: «зачтено»

Описание характеристики выполнения знания: Отсутствие в ответе принципиальных ошибок, допускаются незначительные ошибки в формулировках, не искажающие смысл понятий и результатов расчета

Оценка: «не зачтено»

Описание характеристики выполнения знания: Неправильные ответы, неправильные формулы, искажающие результаты расчетов.

КМ-2. Метрологические характеристики измерительных преобразователей

Формы реализации: Проверка задания

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 20

Процедура проведения контрольного мероприятия: Производится проверка правильности

решения задач и ответов на вопросы в задании.

Краткое содержание задания:

Что такое измерительный преобразователь (ИП)? Основное назначение функции преобразования и калибровочной функции ИП. Для известной функции преобразования, заданной аналитическим выражением, определить калибровочную функцию X = f(Y)

Контрольные вопросы/задания:

Запланированные результаты	Вопросы/задания для проверки
обучения по дисциплине	
Знать: теорию погрешностей	1.что такое номинальная ФП, кто и когда ee
средств измерений	определяет?
Знать: требования к эталонным	1.Чем измерительный преобразователь (ИП)
средствам измерений	отличается от измерительного прибора?
	2.назначение функции преобразования(ФП) и
	калибровочной функции ИП
	3.методы определения аналитического выражения для
	калибровочной функцию $X=f(Y)$ для заданной функции
	преобразования ИП.
Уметь: проводить	1. Функция преобразования для платинового
калибровочные процедуры	термопреобразователя сопротивления (ТПС) задана
измерительных систем	формулой $Rt = Ro(1+A t+B t^2)$, где Rt
	сопротивление ТП, Ro - его сопротивление при 0
	град.С, А=3.9690 е-3, В=-5.841 е-7. Найти выражение
	для калибровочной функции и определить значение
	температуры, если сопротивления Rt = 118,3 Ом,
	Ro=100.0 Ом
Уметь: выбирать эталонные	1. Для измерительного преобразователя температуры в
средства измерений,	цифровой код, который состоит из платинового
соответствующие	термопреобразователя сопротивления (ТПС),
техническому заданию	имеющего предельную погрешность по входу 0,15
	град.С и функцию преобразования $Rt = 100 (1 + A t + B$
	t^2), (A=3.9690 e-3, B=-5.841 e-7) и преобразователя
	сопротивления в цифровой код (АЦП) с
	относительной погрешностью преобразования R -
	0,1%, рассчитать предельное значение погрешности
	ИП по температуре
Уметь: применять знания	1.Найти калибровочную функцию для токового
содержания закона «Об	преобразователя 4-20 мА, имеющего следующую
обеспечении единства	$\Phi\Pi$: Івых =4 + 16 Хвх/Хт, где Івых - выходной ток,
измерений» при эксплуатации	мА; Хвх - входная величина; Хт – верхний предел
и разработке средств	преобразования ИП по входу

Запланированные результаты	Вопросы/задания для проверки
обучения по дисциплине	
измерений	

Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Правильные ответы на все вопросы и решение всех задач, допускаются неточности в определениях и вычислениях, не влияющие на основные выводы и результаты расчетов

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Правильные, в целом, ответы на все вопросы и решение всех задач в задании, но при ответе на уточняющие вопросы обнаруживается не полное понимание сущности решаемых задач. Допускаются незначительные ошибки в определениях и расчетах.

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Ошибочный ответ на один из теоретических вопросов. Ошибки в решении задачи, но при уточняющем вопросе, самостоятельно обнаруживает и исправляет ошибки.

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Неправильный ответ на теоретические вопросы. Грубые ошибки в решении задач

КМ-3. Измерительные преобразователи электрических сигналов в электрические

Формы реализации: Проверка задания

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 20

Процедура проведения контрольного мероприятия: Производится проверка правильности решения задач и ответов на вопросы в задании.

Краткое содержание задания:

Назначение, типы и характеристики измерительных усилителей (ИУ).

Требования к операционным усилителям и пассивным элементам, используемым в ИУ.

Принцип действия и назначения индуктивных и емкостных ИП.

Применение фазовых детекторов для преобразования информативных параметров индуктивных и емкостных преобразователей

Контрольные вопросы/задания:

Запланированные результаты	Вопросы/задания для проверки
обучения по дисциплине	
Уметь: оценивать влияние	1. рассчитать коэффициент усиления ИУ,
применяемых технических	выполненного на базе операционного усилителя,
решений на общее	охваченного параллельной отрицательной обратной
функционирование системы	связью: входное сопротивление R1=100 кОм,
	сопротивление обратной связи R2 = 1 МОм, и
	рассчитать отклонение коэффициента усиления от
	номинального при точности резисторов +-0,1%

Запланированные результаты	Вопросы/задания для проверки
обучения по дисциплине	
	2.Рассчитать коэффициенты преобразования для
	интегрирующего усилителя: входное сопротивление
	R1=10 кОм, С1=10 нФ
Уметь: применять знания	1.Рассчитывать смещение нуля измерительного
содержания закона «Об	усилителя на базе операционного усилителя (ОУ) с
обеспечении единства	параллельной и последовательной ООС, для заданных
измерений» при эксплуатации и	параметров ОУ и параметров пассивных элементов
разработке средств измерений	схемы.

Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: Правильные ответы на все вопросы и решение всех задач, допускаются неточности в определениях и вычислениях, не влияющие на основные выводы и результаты расчетов

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Правильные, в целом, ответы на все вопросы и решение всех задач в задании, но при ответе на уточняющие вопросы обнаруживается не полное понимание сущности решаемых задач. Допускаются незначительные ошибки в определениях и расчетах.

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Ошибочный ответ на один из теоретических вопросов. Ошибки в решении задачи, но при уточняющем вопросе, самостоятельно обнаруживает и исправляет ошибки.

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Неправильный ответ на теоретические вопросы. Грубые ошибки в решении задач

КМ-4. Измерительные преобразователи неэлектрических величин

Формы реализации: Проверка задания

Тип контрольного мероприятия: Домашнее задание

Вес контрольного мероприятия в БРС: 40

Процедура проведения контрольного мероприятия: Производится проверка правильности решения задач и ответов на вопросы в задании.

Краткое содержание задания:

Принцип действие и функции преобразования реостатных, емкостных и индуктивных датчиков перемещения и деформаций

Тензорезисторные ИП, принцип действия, устройство, функция преобразования, источники погрешности

Пьезоэлектрические и пьезорезонансные ИП, принцип действия и устройство Терморезистивные ИП, принцип действия и устройство функция преобразования,

Терморезистивные ИП, принцип действия и устройство функция преобразования, погрешности

Индукционные ИП, принцип действия и устройство. Индукционные датчики расхода.

Контрольные вопросы/задания:

Запланированные результаты	Вопросы/задания для проверки
обучения по дисциплине	
Знать: особенности применяемых	1. Принцип действие, устройство, функция
технических решений	преобразования и функция влияния для
	реостатных датчиков перемещения и деформаций
	2.Принцип действие, устройство, функция
	преобразования и функция влияния для
	емкостных датчиков перемещения и деформаций
	3. Принцип действие, устройство, функция
	преобразования и функция влияния индуктивных
	датчиков перемещения и деформаций
	4.Принцип действие, устройство, функции
	преобразования и функции влияния
	тензорезисторных ИП
	5.Принцип действие и устройство
	пьезоэлектрических и пьезорезонансных ИП, их
	назначение и область применения
	6. Принцип действие и устройство индукционных
	ИП, их назначение и область применения
Уметь: оценивать влияние	1.Исходя из требований к ИП температуры
применяемых технических решений	рассчитывать параметры основных элементов
на общее функционирование	конструкции и электрических схем
системы	терморезистивных ИП
Уметь: проводить калибровочные	1. Исходя из требований к ИП перемещений и
процедуры измерительных систем	деформаций рассчитывать параметры основных
	элементов конструкции и электрических схем
	емкостных ИП

Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Правильные ответы на все вопросы и решение всех задач, допускаются неточности в определениях и вычислениях, не влияющие на основные выводы и результаты расчетов

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Правильные, в целом, ответы на все вопросы и решение всех задач в задании, но при ответе на уточняющие вопросы обнаруживается не полное понимание сущности решаемых задач. Допускаются незначительные ошибки в определениях и расчетах.

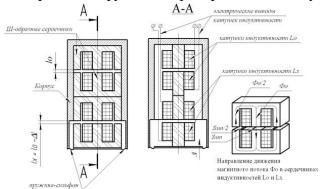
Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Ошибочный ответ на один из теоретических вопросов. Ошибки в решении задачи, но при уточняющем вопросе, самостоятельно обнаруживает и исправляет ошибки.

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Неправильный ответ на теоретические вопросы. Грубые ошибки в решении задач


СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

5 семестр

Форма промежуточной аттестации: Зачет с оценкой

Пример билета

1. Определить функцию преобразования индуктивного ИП, изображенного

на рисунке

- 2. Рассчитать количество витков катушек индуктивности, обеспечивающее для заданных в табл. 1 параметров МПР, требуемое значение индуктивности Lо.
- 3. Вывести формулу для выходного напряжения мостовой схемы, в нижнее плечо которой включена катушка индуктивности Lx индуктивного преобразователя.
- 4. Рассчитать погрешность нелинейности индуктивного ИП

Вариант	Площадь МПР Ѕмп, см2	Длина магнитной силовой линии в магнитопроводе , мм	Относительная магнитная проницаемость	Начальный зазор , мм	δн = ΔΚ /Κ , мм	Значение индуктивности L о, м Γ н
№ 1	1,0	100	2000	2	-0,2	10
№ 2	5,0	200	2000	4	-0,5	20
№ 3	2,0	150	4000	5	-0,25	15
№ 4	4,0	180	4000	3	-0,3	50

Процедура проведения

Студент получает задание за 4 недели до проведения зачета. Проводит анализ задания и производит необходимые расчеты элементов конструкции и метрологические характеристики, оформляет пояснительную записку к расчетам.

На зачете преподаватель проверяет правильность расчетов, при необходимости, задает дополнительные вопросы

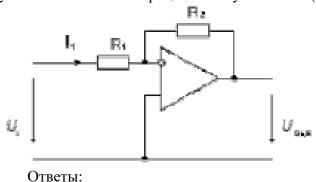
I. Перечень компетенций/индикаторов и контрольных вопросов проверки результатов освоения дисциплины

1. Компетенция/Индикатор: ИД-3_{ПК-1} Производит оценку влияния применяемых технических решений на общее функционирование системы

Вопросы, задания

- 1. функциональная схема измерительных преобразователей параметрического типа (резистивных, емкостных, индуктивных) при малых изменениях информативного параметра, обосновать применение мостовых схем и фазовых детекторов
- 2.Схемы преобразования информативного параметра резистивных ИП в интервал времени, анализ диапазона преобразования, точности и быстродействия
- 3.Полупроводниковые преобразователи температуры (терморезисторы, преобразователи на р-п переходах), достоинства и недостатки по сравнению термометрами сопротивления
- 4. Определить формулу для погрешности информационной системы, вычисляющей количество тепловой энергии -Q по формуле
- $Q = c^*(T1 T2)^*ro(T1)^*V1$, где c удельная теплоемкость теплоносителя, $\kappa Дж/(\kappa r$ град. C); T1, T2 температура воды, град, в подающем и обратном трубопроводах тепловой системы, измеряемая соответствующими термометрами, ro(T1) плотность теплоносителя, $\kappa r/m3$; V1 объем теплоносителя, m3. Учесть, что все входящие в формулу параметры измеряются и вычисляются c известными погрешностями.
- 5. Рассчитать требование к усилителю напряжения для термоэлектрического преобразователя с чувствительностью 30 мкВ/град, работающего в диапазоне температур (30 ... 1000) град.С, обеспечивающего на выходе напряжение 2,1 В для верхнего предела преобразования
- 6. Методы борьбы с электрическими помехами нормального и общего вида

Материалы для проверки остаточных знаний


1.Известно: ИП – это динамическая система 1-го порядка. Укажите правильные формулы для расчета времени установления результата с погрешностью не более <math>5%

Ответы:

- 1. $t_{\mathrm{y}}= au$, где au постоянная времени ИП
- 2. $t_v = 2\tau$
- 3. $t_{\rm y}=3/(2\pi f_0)$, где f_0 верхняя граничная частота полосы пропускания ИП по уровню 0,707
- 4. $t_{y} = 1/\omega_{0}$, где $\omega_{0} = 2\pi f_{0}$
- 5. $t_v = 3/\omega_0$

Верный ответ: 3, 5

2.Определить коэффициент усиления и входное сопротивление Rвх измерительного усилителя на базе операционного усилителя (см. рисунок), если R1=1 кОм; R2=100 кОм

- RBX = 100 κOM, Ky = 100
- Rex = 1 κOm, Ky = 1000
- Rex = 1 κOm, Ky = 100
- RBx > 1 MOM, Ky = 100
- RBx = 1 κOm, Ky = 101

Верный ответ: 3

2. Компетенция/Индикатор: ИД-2_{РПК-3} Проводит калибровочные процедуры измерительных систем

Вопросы, задания

- 1.Определить максимально допустимую погрешность меры сопротивления, используемую для калибровки измерительного преобразователя сопротивления в напряжения с основной погрешностью 0,1 %, найти абсолютное значение этой погрешности, если мера воспроизводит сопротивления в диапазоне от 100 до 200 Ом.
- 2. требования к точности эталонных средств измерений, используемых при калибровке и поверке индуктивных и емкостных ИП перемещений
- 3.Определить максимально допустимую погрешность меры сопротивления, используемую для калибровки измерительного преобразователя сопротивления в напряжения с основной погрешностью 0,1 %, найти абсолютное значение этой погрешности, если мера воспроизводит сопротивления в диапазоне от 100 до 200 Ом.
- 4. Основные требования к средствам измерений, установленные в законе «Об обеспечении единства измерений»

Материалы для проверки остаточных знаний

- 1. Функция преобразования измерительного преобразователя (ИП) определяет: Ответы:
- 1. Связь входной величины с выходной величиной ИП
- 2. Зависимость выходной величины от влияющих величин
- 3. Зависимость выходной величины (ИП) от входной величины и влияющих величин
- 4. Зависимость выходной величины от входной величины
- 5. Зависимость результата преобразования от влияющих величин Верный ответ: 3, 4
- 2.С какой целью нормируют метрологические характеристики ИП?
- 1. Чтобы уменьшить погрешность преобразования ИП
- 2. Чтобы уменьшить влияние неинформативных параметров входной величины на результат измерения
- 3. Для расчета неопределенности (погрешности) результата измерения при использовании данного ИП в измерительном приборе
- 4. Для расчета значений входной величины
- 5. Для расчета погрешностей вычислительно-измерительной системы, использующей данный Π

Верный ответ: 3, 4, 5

- 3. Какие из перечисленных ниже характеристик ИП являются метрологическими? Ответы:
- 1. Нижний и верхний пределы преобразования входной величины
- 2. Степень защиты ИП от проникновения пыли и влаги
- 3. Номинальная статическая функция преобразования ИП

- 4. Срок службы ИП
- 5. Предел допускаемой погрешности ИП по входу

Верный ответ: 1, 3, 5

- 4. Какие из указанных характеристик ИП определяют его динамическую погрешность? Ответы:
- 1. Масса ИП
- 2. Верхняя и нижняя граничные частоты полосы пропускания
- 3. Размеры ИП
- Постоянная времени ИП
- Время установления результата преобразования
- Предельно допускаемые частота и амплитуда вибраций Верный ответ: 2, 4, 5
- 5. На каких физических законах и явлениях основан принцип действия индукционных ИП

Ответы:

- 1. Закон электромагнитной индукции
- 2. Эффект Допплера
- 3. Сила Лоренца
- 4. Законы распространения звуковых и электромагнитных волн в движущихся средах
- 5. Эффект Холла

Верный ответ: 1, 3

6. Какими формулами определяется напряжение на выходе детектора среднеквадратического значения

Ответы:

- ОТВСТВІ.

 1. $U_{\max} = U_m$, где U_m амплитуда входного синусоидального напряжения 2. $U_{\max} = U_m/2$ 3. $U_{\max} = 2U_m/\pi$

- 4. $U_{\text{BLIX}} = U_m/\sqrt{2}$
- 5. $U_{\text{BMX}} = (U_m/\pi) \int_0^{\pi} \sin x \ dx$

Верный ответ: № 3 или № 5

7.С какой целью используются фазовые детекторы в индуктивных и емкостных дифференциальных ИП?

Ответы:

- 1. Для расширения пределов преобразования входной величины
- 2. Для повышения точности ИП
- Для преобразования входной величины с учетом знака ее отклонения от «0» значения.
- 4. Для повышения надежности работы.
- 5. Для уменьшения влияния помех на результат преобразования Верный ответ: № 3, № 5
- 8. Назовите основные области применения тензорезисторов

Ответы:

- 1. Измерение деформаций
- 2. Измерение давления, силы
- 3. Измерение температуры
- 4. Измерение массы
- 5. Измерение скорости движения
- 6. Измерение силы тока

Верный ответ: № 1, № 2, № 4

II. Описание шкалы оценивания

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Работа выполнена в рамках "продвинутого" уровня. Ответы даны верно, четко сформулированные особенности практических решений

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Работа выполнена в рамках "базового" уровня. Большинство ответов даны верно. В части материала есть незначительные недостатки

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Работа выполнена в рамках "порогового" уровня. Основная часть задания выполнена верно. на вопросы углубленного уровня не было получено правильных ответов

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Работа не выполнена или выполнена преимущественно неправильно

III. Правила выставления итоговой оценки по курсу

Итоговая оценка по совокупности результатов текущего контроля успеваемости и промежуточной аттестации. формула для оценки: ИТОГ=0,1КМ1+0,1КМ2+0,1КМ3+0,1КМ4+0,6ПА.