Министерство науки и высшего образования РФ Федеральное государственное бюджетное образовательное учреждение высшего образования «Национальный исследовательский университет «МЭИ»

Направление подготовки/специальность: 09.03.01 Информатика и вычислительная техника

Наименование образовательной программы: Вычислительно-измерительные системы

Уровень образования: высшее образование - бакалавриат

Форма обучения: Очная

Оценочные материалы по дисциплине Методы и средства защиты информации

Москва 2024

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ РАЗРАБОТАЛ:

 Подписано электронной подписью ФГБОУ ВО «НИУ «МЭИ»

 Сведения о владельце ЦЭП МЭИ

 Владелец
 Пайков А.С.

 Идентификатор
 R02d5e50d-PaikovAS-2468ee70

Разработчик

А.С. Пайков

СОГЛАСОВАНО:

Руководитель образовательной программы

O NOSO	Подписано электронной подписью ФГБОУ ВО «НИУ «МЭИ»					
	Сведен	ия о владельце ЦЭП МЭИ				
	Владелец	Хвостов А.А.				
NOM &	Идентификатор	Rd7c1e2e7-KhvostovAA-a55ec66d				

А.А. Хвостов

Заведующий выпускающей кафедрой

NGO NGO	Подписано электронн	ой подписью ФГБОУ ВО «НИУ «МЭИ»			
San International Res	Сведения о владельце ЦЭП МЭИ				
	Владелец	Самокрутов А.А.			
<u> M⊙M</u> ₹	Идентификатор Р	145b9cc2-SamokrutovAA-7b5e7do			

А.А. Самокрутов

ОБЩАЯ ЧАСТЬ

Оценочные материалы по дисциплине предназначены для оценки достижения обучающимися запланированных результатов обучения по дисциплине, этапа формирования запланированных компетенций и уровня освоения дисциплины.

Оценочные материалы по дисциплине включают оценочные средства для проведения мероприятий текущего контроля успеваемости и промежуточной аттестации.

Формируемые у обучающегося компетенции:

- 1. ПК-1 Способен обосновывать принимаемые проектные решения, осуществлять постановку и выполнять эксперименты по проверке их корректности и эффективности ИД-1 Демонстрирует знание методов анализа и синтеза линейных и нелинейных электрических, электронных, цифровых систем
- 2. ПК-2 Способен решать вопросы управления безопасностью сетевых устройств и программного обеспечения при их проектировании
 - ИД-1 Демонстрирует знание нормативной базы, методов описания, анализа и проектирования в области обеспечения безопасности информационных систем и компьютерной криптографии
 - ИД-2 Демонстрирует знание методов и средств обеспечения защиты носителей информации, ЭВМ и компьютерных сетей от несанкционированного доступа ИД-4 Осуществляет разработку аппаратных и программных средств, необходимых для обеспечения безопасности компьютерных систем

и включает:

для текущего контроля успеваемости:

Форма реализации: Соблюдение графика выполнения задания

- 1. Контроль посещения лекций №1-2 по курсу МСЗИ; Контроль выполнения лабораторной работы №1 по курсу МСЗИ (25%) (Лабораторная работа)
- 2. Контроль посещения лекций №3-4 по курсу МСЗИ; Контроль выполнения лабораторной работы №2 по курсу МСЗИ (25%) (Лабораторная работа)
- 3. Контроль посещения лекций №5-6 по курсу МСЗИ; Контроль выполнения лабораторной работы №3 по курсу МСЗИ (25%) (Лабораторная работа)
- 4. Контроль посещения лекций №7-8 по курсу МСЗИ; Контроль выполнения лабораторной работы №4 по курсу МСЗИ (25%) (Лабораторная работа)

БРС дисциплины

7 семестр

Перечень контрольных мероприятий <u>текущего контроля</u> успеваемости по дисциплине:

- КМ-1 Контроль посещения лекций №1-2 по курсу МСЗИ; Контроль выполнения лабораторной работы №1 по курсу МСЗИ (25%) (Лабораторная работа)
- КМ-2 Контроль посещения лекций №3-4 по курсу МСЗИ; Контроль выполнения лабораторной работы №2 по курсу МСЗИ (25%) (Лабораторная работа)
- КМ-3 Контроль посещения лекций №5-6 по курсу МСЗИ; Контроль выполнения лабораторной работы №3 по курсу МСЗИ (25%) (Лабораторная работа)

КМ-4 Контроль посещения лекций №7-8 по курсу МСЗИ; Контроль выполнения лабораторной работы №4 по курсу МСЗИ (25%) (Лабораторная работа)

Вид промежуточной аттестации – Зачет с оценкой.

	Веса контрольных мероприятий, %				
Deputed the survey of	Индекс	KM-1	KM-2	KM-3	KM-4
Раздел дисциплины	KM:				
	Срок КМ:	4	8	12	16
Основы информационной безопасности: нормат	ивные и				
технические аспекты					
Основы информационной безопасности: нормат	ивные и	+			
технические аспекты					
Криптография и защита данных					
Криптография и защита данных		+			
Практические аспекты и современные угрозы					
Практические аспекты и современные угрозы				+	
Аудит и управление информационной безопасностью					
Аудит и управление информационной безопасно				+	
	Bec KM:	25	25	25	25

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ТЕКУЩЕГО КОНТРОЛЯ

I. Оценочные средства для оценки запланированных результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций

Индекс	Индикатор	Запланированные	Контрольная точка
компетенции		результаты обучения по	
		дисциплине	
ПК-1	ИД-1 _{ПК-1} Демонстрирует знание методов анализа и синтеза линейных и нелинейных электрических, электронных, цифровых систем	Знать: способы и технологии применения криптографии в решении задач идентификации и аутентификации, частотные характеристики языков и их использование при построении систем парольной защиты Уметь: использовать современные информационные технологии при решении задач защиты информации; формализовать задачу по защите информации; применять стандарты по оценке защищенности АСОИ при анализе и проектировании систем защиты информации в АСОИ	КМ-1 Контроль посещения лекций №1-2 по курсу МСЗИ; Контроль выполнения лабораторной работы №1 по курсу МСЗИ (25%) (Лабораторная работа) КМ-2 Контроль посещения лекций №3-4 по курсу МСЗИ; Контроль выполнения лабораторной работы №2 по курсу МСЗИ (25%) (Лабораторная работа)
ПК-2	ИД-1пк-2 Демонстрирует	Знать:	КМ-1 Контроль посещения лекций №1-2 по курсу МСЗИ; Контроль
	знание нормативной базы,	методологические и	выполнения лабораторной работы №1 по курсу МСЗИ (25%)

	методов описания, анализа	технологические основы	(Лабораторная работа)
		обеспечения безопасности	(Лаоораторная раоота) КМ-2 Контроль посещения лекций №3-4 по курсу МСЗИ; Контроль
	и проектирования в области обеспечения		
			выполнения лабораторной работы №2 по курсу МСЗИ (25%)
	безопасности	нарушения безопасности	(Лабораторная работа)
	информационных систем и	АСОИ; стандарты по	
	компьютерной	оценке защищенных	
	криптографии	систем	
		Уметь:	
		обосновывать	
		принимаемые проектные	
		решения; применять	
		математический аппарат, в	
		том числе с	
		использованием	
		вычислительной техники,	
		для решения	
		профессиональных задач,	
		разрабатывать модели	
		открытого текста	
		различного уровня	
		сложности; проводить	
		обработку открытого	
		текста для подготовки к	
		операциям шифрования	
ПК-2	ИД-2 _{ПК-2} Демонстрирует	Знать:	КМ-1 Контроль посещения лекций №1-2 по курсу МСЗИ; Контроль
	знание методов и средств	показатели эффективности	выполнения лабораторной работы №1 по курсу МСЗИ (25%)
	обеспечения защиты	1 1	(Лабораторная работа)
	носителей информации,	решения; понятия группы,	КМ-3 Контроль посещения лекций №5-6 по курсу МСЗИ; Контроль
	ЭВМ и компьютерных	кольца, поля;	выполнения лабораторной работы №3 по курсу МСЗИ (25%)
	сетей от	качественные и	(Лабораторная работа)
	несанкционированного	количественные свойства	(1 1 1 ·/
	доступа	информации;	
	4001711111	статистические модели	
		статистические модели	

ПК-2	ИД-4 _{ПК-2} Осуществляет разработку аппаратных и программных средств, необходимых для обеспечения безопасности компьютерных систем	АИС; методы и средства	КМ-2 Контроль посещения лекций №3-4 по курсу МСЗИ; Контроль выполнения лабораторной работы №2 по курсу МСЗИ (25%) (Лабораторная работа) КМ-4 Контроль посещения лекций №7-8 по курсу МСЗИ; Контроль выполнения лабораторной работы №4 по курсу МСЗИ (25%) (Лабораторная работа)
	обеспечения безопасности	обеспечения защиты носителей информации; методы и алгоритмы уничтожения	выполнения лабораторной работы №4 по курсу МСЗИ (25%)

II. Содержание оценочных средств. Шкала и критерии оценивания

КМ-1. Контроль посещения лекций №1-2 по курсу МСЗИ; Контроль выполнения лабораторной работы №1 по курсу МСЗИ (25%)

Формы реализации: Соблюдение графика выполнения задания

Тип контрольного мероприятия: Лабораторная работа

Вес контрольного мероприятия в БРС: 25

Процедура проведения контрольного мероприятия: При очной форме обучения - заполнение ведомости присутствия в течение лекции. При дистанционной форме обучения - регистрация участников мероприятия в Webex.

Краткое содержание задания:

Проставить в ведомости свою фамилию и подпись. Зарегистрироваться в Webex и присутствовать на лекции.

Пример выполнения (не выполнения) задания:

	A-07-17		Лекции 10					2
		Nº1	Nº2					
1	Андиев Олег Казбекович	1	1				2	10
2	Артюх Владислава Владимировна (В)	1					1	5
3	Белова Ирина Михайловна	1	1				2	10
4	Бирман Александр Александрович						0	0
5	Блаженова Светлана Дмитриевна	1	1				2	10
6	Журавлёв Антон Александрович	1	1				2	10
7	Иванов Глеб Александрович (В)	1	1				2	10
8	Игнатова Анастасия Ильинична	1	1				2	10
9	Кон Алёна Юрьевна	1	1				2	10
10	Кузнецова Анастасия Леонидовна	1	1				2	10

Контрольные вопросы/задания:

контрольные вопросы/задания.	
Запланированные результаты обучения по дисциплине	Вопросы/задания для
	проверки
Знать: способы и технологии применения криптографии в	1.Рекомендуемая
решении задач идентификации и аутентификации, частотные	литература для изучения
характеристики языков и их использование при построении	курса
систем парольной защиты	
Знать: методологические и технологические основы	1.Типы секретных
обеспечения безопасности АСОИ; угрозы и методы	систем
нарушения безопасности АСОИ; стандарты по оценке	2. Уровни секретности
защищенных систем	информации
Знать: показатели эффективности принимаемого проектного	1.Как найти CAS
решения; понятия группы, кольца, поля ; качественные и	Mathematica
количественные свойства информации; статистические	
модели открытого текста	

Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: Максимальное число набранных баллов при при посещении всех 2 лекций модуля 1 равно 10. Оценка 5 находится в диапазоне 9-10 баллов.

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Максимальное число набранных баллов при при посещении всех 2 лекций модуля 1 равно 10. Оценка 4 находится в диапазоне 7-8 баллов.

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 40

Описание характеристики выполнения знания: Максимальное число набранных баллов при при посещении всех 2 лекций модуля 1 равно 10. Оценка 3 находится в диапазоне 4-6 баллов.

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка 2 находится е диапазоне 0 - 3 баллов. При отсутствии на всех лекциях по неуважительным причинам проставляется 0.

КМ-2. Контроль посещения лекций №3-4 по курсу МСЗИ; Контроль выполнения лабораторной работы №2 по курсу МСЗИ (25%)

Формы реализации: Соблюдение графика выполнения задания

Тип контрольного мероприятия: Лабораторная работа

Вес контрольного мероприятия в БРС: 25

Процедура проведения контрольного мероприятия: При очной форме обучения лабораторные работы выполняются в компьютерном классе, в котором доступна сетевая версия Wolfram Mathematica 9. Одна лабораторная работа длится 2 академических часа. Отчет формируется в бумажном варианте. При дистанционной форме обучения лабораторные работы выполняются в Wolfram Cloud | Open Access system. Контроль и консультации в течение лабораторной работы в системе Webex. Рабочее задание и необходимые методические материалы размещаются в системе Moodle. Отчет по выполненной лабораторной работе загружается в систему Moodle, где производится контроль выполнения и выставляется суммарное число баллов по правильно выполненным пунктам рабочего задания.

Краткое содержание задания:

Пример рабочего задания лабораторной работы №1 максимальный балл 28 Лабораторная работа №1

"Элементы множеств. Простые типы данных в системе Mathematica" по курсу " Методы и средства защиты информации"

1.Создать три списка: listf, listn, listp, являющиеся отображением Вашей фамилии, имени и отчества, с использованием соответствия между русским алфавитом и множеством целых

$$= \{0,2,3,...,31\}.$$

Буква	Число	Буква	Число	Буква	Число	Буква	Число
a	0	И	8	p	16	Ш	24
б	1	й	9	c	17	Щ	25
В	2	К	10	T	18	Ь	26
Γ	3	Л	11	y	19	Ы	27
Д	4	M	12	ф	20	ъ	28
e	5	Н	13	X	21	Э	29
ж	6	0	14	Ц	22	Ю	30
3	7	П	15	Ч	23	Я	31

Например: Иванов → listf ={8,2,0,13,14,2}; Евгений → listn ={5,2,3,5,13,8,9};

Петрович \rightarrow listp={15,5,18,16,14,2,8,}.

- 2. Преобразовать списки в целые числа: numf=AlgebraicNumber[32, listf], numn=AlgebraicNumber[32, listn], nump=AlgebraicNumber[32, listp].
- 3. Перевести число-фамилию в двоичную, восьмеричную и шестнадцатеричную формы. Использовать функцию BaseForm[expr,n], она возвращает выражение expr в форме числа с основанием n, которое указывается как подстрочный индекс.
- 4. Получить списки цифр (символов), составляющих число-имя в десятичной, двоичной, и шестнадцатеричной формах. Использовать функцию IntegerDigits[n,b]: n- число, b- основание.
- 5. Провести операцию деления большего из "числа-фамилии" и "числа-имени" на меньшее. Результат целочисленного деления перевести в вещественную форму с помощью функции N[expr].
- 6. Найти целую и дробную часть полученного в п.5 вещественного числа. Использовать соответственно функции IntegerPart[x], FractionalPart[x].
- 7. Провести приведение вещественного числа (см. п.5) к ближайшим целым с помощью следующих функций: Floor[x]- возвращает наибольшее целое число, не превышающее данного x; Ceiling[x]- возвращает значение наименьшего целого числа, большего или равного x.
- 8. Определить значения максимально и минимально возможных значений чисел, с которыми оперирует система Mathematica 9. Использовать функции \$MaxMachineNumber и \$MinMachineNumber.
- 9Π олучить три простых числа, номера которых определяются числами numf, numn, nump .

Использовать функцию Prime[n] – возвращает n – ое простое число.

- 10. Найти простые числа с номерами 99;100;101.
- 11. Относительно числа 539 найти предыдущее и два последующих простых числа. Использовать функцию NextPrime[x,k]- возвращает следующее за заданным числом простое число; параметр «k» может быть отрицательным.
- 12. Найти количество простых чисел, не превышающих 539.

Использовать функцию PrimePi[x].

- 13. Относительно "числа-имени" найти 1-ое, 10-ое, 100-ое последующие простые числа.
- 14. Определить максимальное простое число ("maxPrime") в системе Mathematica 9.
- 15. Найти число разрядов, составляющих "maxPrime" в десятичном, двоичном и шестнадцатеричном преставлении. Использовать функцию IntegerLength[n,b].
- 16. Получить три случайных целых числа в диапазоне (range) от imin = 0 до imax = 255, применяя функцию RandomInteger[range,n].
- 17. Установить генератор псевдослучайных чисел в начальное состояние, которое определяется "числом-фамилией". Использовать функцию SeedRandom[n]- переводит генератор псевдослучайных чисел в начальное состояние, определяемое параметром n.
- 18. Получить три случайных целых числа в диапазоне от 0 до imax = 1000.
- 19. Повторно получить такую же последовательность из трех чисел п.18.
- 20. Найти случайное число, которое находится в диапазоне "число-имя" \pm 10'N, где N номер по списку в группе. Использовать функцию RandomInteger[{imin,imax}].
- 21. Сформировать последовательность из 40-N случайных чисел, находящихся в диапазоне от 0 до 128. Использовать функцию RandomInteger[range, n].
- 22. Получить три простых случайных целых числа в диапазоне от 2 до imax = 512. Использовать функцию RandomPrime[range,n].
- 23. Повторно получить последовательность из трех простых чисел п.22.
- 24. Найти простое случайное число, которое находится в диапазоне "число-имя" \pm 10'N, где N номер по списку в группе. Использовать функцию RandomPrime[{imin,imax}].
- 25. Сформировать последовательность из 40-N простых случайных чисел, находящихся в диапазоне от 0 до 1024.

Использовать функцию RandomPrime [range, n]

Лабораторная работа №2

"Элементы множеств. Сложные типы данных и их функции в системе Mathematica", максимальный балл 26.

Лабораторная работа №3.

"Методы автоматизированной подготовки открытого текста (plaintext) к операциям шифрования. Работа со строками и массивами", максимальный балл 52.

Контрольные вопросы/задания:

Контрольные вопросы/задания:	
Запланированные результаты обучения по	Вопросы/задания для проверки
дисциплине	
Знать: угрозы и методы нарушения	1.Функция Эйлера
безопасности АИС; методы и средства	2.Понятие списка в Mathematica
обеспечения защиты носителей информации;	3.Основные операции со списками
методы и алгоритмы уничтожения	
конфиденциальной информации	
Уметь: использовать современные	1.Определить значения максимально
информационные технологии при решении	и минимально возможных значений
задач защиты информации; формализовать	чисел, с которыми оперирует система
задачу по защите информации; применять	Mathematica 9
стандарты по оценке защищенности АСОИ при	2.Получить список прописных букв
анализе и проектировании систем защиты	русского алфавита, объединить их в
информации в АСОИ	строку и получить список кодов,
	соответствующих прописным буквам
	3. Разработать функцию
	пользователя для замены прописных
	букв на строчные русского алфавита
	4.Программным способом найти
	элемент массива, расположенный в
	столбце на одну позицию ниже
	буквы, соответствующей номеру по
	списку в алфавите
Уметь: обосновывать принимаемые проектные	1. Получить три случайных целых
решения; применять математический аппарат, в	числа в диапазоне от 0 до imax =
том числе с использованием вычислительной	1000.
техники, для решения профессиональных задач,	2. Установить генератор
разрабатывать модели открытого текста	псевдослучайных чисел в начальное
различного уровня сложности; проводить	состояние
обработку открытого текста для подготовки к	3.Сформировать список, состоящий
операциям шифрования	из квадратов целых чисел от 1 до 20
	4.Подготовить список из 200
	случайных целых чисел из диапазона
	1,100.
	5.Провести операцию объединения
	множеств

Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: Максимальное число набранных баллов при успешном выполнении всех 3-х лабораторных работ модуля 1 равно 106. Оценка 5 находится в диапазоне 95 -106 балла.

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Максимальное число набранных баллов при успешном выполнении всех 3-х лабораторных работ модуля 1 равно 106. Оценка 4 находится в диапазоне 74 -94 балла.

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 40

Описание характеристики выполнения знания: Максимальное число набранных баллов при успешном выполнении всех 3-х лабораторных работ модуля 1 равно 106. Оценка 3 находится в диапазоне 42 -73 балла.

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка 2 находится в диапазоне 0 - 41 балл. При отсутствии отчета по лабораторной работе по неуважительным причинам проставляется 0 баллов, и, в соответствии с настройками системы Moodle, студент не допускается к КЗЗ, пока не погасит задолженность.

КМ-3. Контроль посещения лекций №5-6 по курсу МСЗИ; Контроль выполнения лабораторной работы №3 по курсу МСЗИ (25%)

Формы реализации: Соблюдение графика выполнения задания

Тип контрольного мероприятия: Лабораторная работа

Вес контрольного мероприятия в БРС: 25

Процедура проведения контрольного мероприятия: При очной форме обучения контрольно-зачетное занятие проводится в компьютерном классе, оснащенном сетевой версией Mathematica. Длительность контрольной 2 академических часа. К занятию допускаются студенты, выполнившие цикл лабораторных работ модуля 1 и представившие отчеты по лабораторным работам. При дистанционной форме обучения контроль за участниками ведется в Webex, тестирование проводится в системе Moodle. К тестированию допускаются студенты, загрузившие в Moodle электронные отчеты и получившие по ним положительную оценку. Загрузка отчетов должна быть завершена за 24 часа до начала контрольной.

Краткое содержание задания:

Пример задания КЗЗ1

Вопрос 1 Ответ сохранен	Найти	два простых числа, ближайших к 1044 с	права и слева. Определить сумму этих чисел по модулю 135
Балл: 3,00	Ответ:	63	

Контрольные вопросы/задания:

_ itom pour libre bompoe by ougumny	
Запланированные результаты обучения по дисциплине	Вопросы/задания для проверки
Уметь: – инсталлировать, тестировать, испытывать и	1.КЗЗ1 Пересечение целых и
использовать программно-аппаратные средства	простых Уровень 5 Число
вычислительных и информационных систем и	вариантов 500
подсистем их защиты	2.К331 символы 2017
	Уровень 5 Число
	вариантов 250

Запланированные результаты обучения по дисциплине	Вопросы/задания для проверки	
	3.КЗЗ1 Списки Уровень 7	
	Число вариантов 200	
	4.КЗЗ1 Правило замены	
	Уровень 7 Число	
	вариантов 250	

Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: Максимальное число набранных баллов при правильном решении 8 заданий равно 38. Оценка 5 находится в диапазоне 34 - 38 баллов.

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Максимальное число набранных баллов при правильном решении 8 заданий равно 38. Оценка 4 находится в диапазоне 26 - 33 баллов.

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 40

Описание характеристики выполнения знания: Максимальное число набранных баллов при правильном решении 8 заданий равно 38. Оценка 3 находится в диапазоне 15 - 25 баллов.

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка 2 находится в диапазоне 0 - 14 баллов. Оценка 2 проставляется при участии в контрольной, при отсутствии по неуважительным причинам проставляется 0.

КМ-4. Контроль посещения лекций №7-8 по курсу МСЗИ; Контроль выполнения лабораторной работы №4 по курсу МСЗИ (25%)

Формы реализации: Соблюдение графика выполнения задания

Тип контрольного мероприятия: Лабораторная работа

Вес контрольного мероприятия в БРС: 25

Процедура проведения контрольного мероприятия: При очной форме обучения - заполнение ведомости присутствия в течение лекции. При дистанционной форме обучения - регистрация участников мероприятия в Webex.

Краткое содержание задания:

Проставить в ведомости свою фамилию и подпись. Зарегистрироваться в Webex и присутствовать на лекции.

Контрольные вопросы/залания:

контрольные вопросы/задания.		
Запланированные результаты обучения по	Вопросы/задания для проверки	
дисциплине		
Уметь: использовать современные	1. определить вычет по заданному модулю	
инструментальные средства и технологии	2.Оценить число необходимых	
программирования	вычислений для обнаружения коллизии с	
	заданной вероятностью	
	3.Провести анализ возможных угроз	
	безопасности компьютерной системы	
	4.Провести анализ класса защищенности	
	АСОИ	

Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: Максимальное число набранных баллов при посещении всех 3 лекций модуля 1 равно 10. Оценка 5 находится в диапазоне 9-10 баллов.

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Максимальное число набранных баллов при посещении всех 3 лекций модуля 1 равно 10. Оценка 4 находится в диапазоне 7-8 баллов.

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 40

Описание характеристики выполнения знания: Максимальное число набранных баллов при посещении всех 3 лекций модуля 1 равно 10. Оценка 3 находится в диапазоне 4-6 баллов.

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка 2 находится в диапазоне 0 - 3 баллов. При отсутствии на всех лекциях по неуважительным причинам проставляется 0.

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

7 семестр

Форма промежуточной аттестации: Зачет с оценкой

Пример билета

МЭИ	ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 5 МСЗИ	Утверждаю Зав.кафедрой ВМСС
	ИВТИ	

Теоретические вопросы к экзамену по курсу МСЗИ

- 1.Основные этапы процесса построения системы защиты АСОИ.
- 2. Вариант реализации одноразовых паролей по схеме S-Key.

Задание №2 Задания уровня 3

Определить ожидаемое время раскрытия пароля длиной 6 символов и содержащего следующие наборы: {цифры, строчные русские, прописные латинские} ,если скорость перебора пароля (пароль в секунду) равна обратному элементу числа 2916 по модулю 661. Ответ вводить как целое число суток.

Задание №3 Задания уровня 5

Установить генератор случайных чисел в начальное состояние с параметром равным 2^15(mod293). Получить список из 10000 случайных простых чисел в диапазоне от 47000 до 79000.Найти произведение двух простых чисел, которые встречаются в списке с максимальной(применять функцию Max[]) и минимальной(применять функцию Min[]) частотой. В случае наличия чисел с одинаковыми частотами выбирать первые в списке.

Задание №4 Задания уровня 7

Определить энтропию сектора с номером 877 виртуального флоппи-диска flptest.flp с точностью 5 знаков после запятой. Для округления результата применить функцию N[,]. Пример ввода 5.55555

Процедура проведения

При очной форме обучения экзамен проводится в комбинированной форме по билетам. Два теоретических вопроса выполняются письменно и оцениваются в диапазоне 0 - 10 баллов преподавателем. Три практических задания выполняются в рамках системы Moodle : максимальная оценка 15 баллов. Результирующая оценка за экзамен определяется как сумма баллов, набранных по теории и практике и пересчитывается к пятибалльной системе (Традиционные оценки РФ) по представленной во вкладке "билет" шкале.

В дистанционном режиме экзамен проводится в системе Moodle и Webex (идентификация и контроль, в том числе визуальный) и

состоит из двух тестов (вопросы или задания выполняются строго последовательно):

Первый тест содержит 20 вопросов по теоретической части курса.

Общая продолжительность теста 15 минут. Максимальное число баллов по теоретической части - 40.

Второй тест содержит 6 практических заданий (2 задания уровня 3, 2 задания уровня 5, 2 задания уровня 7), аналогичных заданиям КЗЗ. Среднее время на выполнение задания 10 минут.

Общая продолжительность теста 60 минут. Максимальное число баллов второго теста - 60.

Результирующая оценка за экзамен определяется как сумма баллов, набранных в первом и втором тестах и

пересчитывается к пятибалльной системе (Традиционные оценки $P\Phi$) по представленной во вкладке "билет" шкале.

- I. Перечень компетенций/индикаторов и контрольных вопросов проверки результатов освоения дисциплины
- **1. Компетенция/Индикатор:** ИД- $1_{\Pi K-1}$ Демонстрирует знание методов анализа и синтеза линейных и нелинейных электрических, электронных, цифровых систем

Вопросы, задания

- 1.Тесты-задания уровня 3-1 Число вариантов 1786
- 2.Тесты-задания уровня 5-1 Число вариантов 950
- 3. Тесты-задания уровня 5-2 Число вариантов 1580

Материалы для проверки остаточных знаний

1. Группа называется абелевой (или коммутативной), если для любых $a,b \in G$ выполняется следующее соотношение:

```
Ответы:
```

```
a*(b*c)=(a*b)*c
a \cdot (b*c)=a \cdot b*a \cdot c
(a*b) \cdot c=a \cdot c*b \cdot c
(a*b) \cdot a=a
a*b=b*a
Верный ответ: a*b=b*a
2.Известно, что значения чи
```

2.Известно, что значения числового ключа лежат в интервале от 9000 до 819000. Сколько случайных попыток (с вероятностью 0.5)

могут привести к вскрытию шифра?

Ответы: ввести число

Верный ответ: 900

2. Компетенция/Индикатор: ИД- $1_{\Pi K-2}$ Демонстрирует знание нормативной базы, методов описания, анализа и проектирования в области обеспечения безопасности информационных систем и компьютерной криптографии

Вопросы, задания

- 1.Тесты-задания уровня 3-2 Число вариантов 2100
- 2. Тесты-задания уровня 7-1 Число вариантов 750
- 3.Тесты-задания уровня 7-2 Число вариантов 650

- 4.Основные угрозы безопасности АСОИ
- 5.Схема защиты парольной системы от несанкционированного воспроизведения
- 6.Схема защиты парольной системы от пассивного мониторинга
- 7. Длина пароля и ожидаемое время раскрытия пароля

Материалы для проверки остаточных знаний

1. Какова минимальная длина ключа для совершенного шифра при шифровании сообщения, состоящего из N символов.

Ответы:

0

 ∞

N

2*N*

2^*N*

Верный ответ: N

2. Какие подсистемы входят в систему безопасности АСОИ?

Ответы:

Подсистема управления доступом

Подсистема регистрации и учета

Подсистема криптографической защиты

Подсистема обеспечения целостности

Подсистема организационного обеспечения

Подсистема правового обеспечения

Подсистема технического обеспечения

Подсистема математического обеспечения

Подсистема лингвистического обеспечения

Верный ответ: Подсистема регистрации и учета Подсистема управления доступом Подсистема криптографической защиты Подсистема обеспечения целостности

3. Какие параметры системы одноразовых паролей S-key передаются по аутентичному каналу

связи на этапе формирования системных параметров?

Ответы:

id - идентификатор

W0 - финальное значение

n - число итераций

h(x) - хэш - функция

r - случайное число

Wi - пароль

никакие

Верный ответ: id - идентификатор W0 - финальное значение n - число итераций

3. Компетенция/Индикатор: ИД- $2_{\Pi K-2}$ Демонстрирует знание методов и средств обеспечения защиты носителей информации, ЭВМ и компьютерных сетей от несанкционированного доступа

Вопросы, задания

- 1. Требования к выбору пароля
- 2. Угрозы безопасности парольных систем
- 3. Алгоритм непосредственной аутентификации
- 4. Методы аутентификации.

- 5. Способы уничтожения информации на магнитных носителях
- 6.Основные положения защиты информации, хранимой на НЖМД
- 7. Классы защищенности АСОИ.
- 8.Структура системы безопасности АСОИ. Основные функции подсистем безопасности
- 9. Меры обеспечения безопасности компьютерных систем.
- 10. Основные этапы процесса построения системы защиты АСОИ.
- 11. Несанкционированный доступ (НСД). Основные каналы несанкционированного доступа.
- 12. Схема аутентификации по методу "запрос-ответ".
- 13. Вариант реализации одноразовых паролей по схеме S-Key

Материалы для проверки остаточных знаний

1. При каких условиях число a является простым числом? Ответы:

OI

a > 0a > 1

 $a \ge 0$

 $a \ge 1$

а - нечетное

делитель а равен 1

делитель а равен а

делитель $a \neq a$

Верный ответ: a>1 делитель а равен 1 делитель а равен а 2.Как зависит число возможных паролей от длины пароля при заданной мощности алфавита.

Ответы:

экспоненциально

суперполиномиально

линейно

нормально

квадратично

не зависит

Верный ответ: экспоненциально

3.В каких единицах будет определена энтропия языка при расчете по формуле

$$r = -\sum_{i} p_{i} Log_{e} p_{i}$$

Ответы:

в дитах

в битах

в натах

Верный ответ: в натах

4. Компетенция/Индикатор: ИД-4_{ПК-2} Осуществляет разработку аппаратных и программных средств, необходимых для обеспечения безопасности компьютерных систем

Вопросы, задания

- 1. Стойкость криптосистем. Расстояние единственности.
- 2. Энтропия и неопределенность. Количество информации в сообщении.
- 3. Определение информации. Классификация защищаемой информации.
- 4.Типы секретных систем.
- 5. Расширенный алгоритм Евклида.
- 6.Позначная модель открытого текста.
- 7.Классы сложности
- 8. Классификация алгоритмов в соответствии с их сложностью
- 9.Полная и приведенная система вычетов, функция Эйлера
- 10.Поле, основные операции в бинарном поле GF(2)
- 11. Обратный элемент, методы его определения.
- 12. Определение алгебраической группы.
- 13. Свойства бинарных операций.
- 14. Взаимно однозначное отображение.
- 15. Совершенный и идеальный шифры.

Материалы для проверки остаточных знаний

1. Какой из приведенных алгоритмов уничтожения данных имеет максимальное

число циклов?

Ответы:

Руководство по защите информации МО США (NISPOM)

DoD 5220.22-M

ΓΟCT P50739-95

Алгоритм Питера Гутмана (Peter Gutman)

Алгоритм Брюса Шнайера (Bruce Schneir)

Стандарт VISR

Верный ответ: Алгоритм Питера Гутмана (Peter Gutman)

2.К какой из групп классов защищенности относится

автоматизированная система обработки информации в которой:

работает один пользователь,

допущенный ко всей информации АС,

размещенной на носителях одного уровня конфиденциальности.

Ответы:

Первая группа - 1А-1Д

Вторая группа - 2А,2Б

Третья группа - 3А,3Б

Верный ответ: Третья группа - 3А,3Б

II. Описание шкалы оценивания

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: Максимальное число баллов, набранных в двух тестах равно 100 (или с умножением на 4 при очной форме). Оценка 5 находится в интервале от 90 до 100 баллов.

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Максимальное число баллов, набранных в двух тестах равно 100 (или с умножением на 4 при очной форме). Оценка 4 находится в интервале от 70 до 89 баллов.

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Максимальное число баллов, набранных в двух тестах равно 100 (или с умножением на 4 при очной форме). Оценка 3 находится в интервале от 60 до 69 баллов.

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Максимальное число баллов, набранных в двух тестах равно 100 (или с умножением на 4 при очной форме). Оценка 2 находится в интервале от 0 до 59 баллов.

ІІІ. Правила выставления итоговой оценки по курсу

Итоговая оценка по курсу может быть рассчитана как среднее от текущей успеваемости и итогов промежуточной аттестации по 100 балльной шкале. Текущая успеваемость также рассчитывается как среднее по трем модулям по 100 бальной шкале. Только после этого можно переходить к 5-и балльной шкале. Промежуточное округление оценок в 5-и балльной системе и нелинейная шкала оценок в БАРС приводят к существенному завышению результирующих оценок.