Министерство науки и высшего образования РФ Федеральное государственное бюджетное образовательное учреждение высшего образования «Национальный исследовательский университет «МЭИ»

Направление подготовки/специальность: 09.03.01 Информатика и вычислительная техника

Наименование образовательной программы: Вычислительно-измерительные системы

Уровень образования: высшее образование - бакалавриат

Форма обучения: Очная

Оценочные материалы по дисциплине Моделирование

Москва 2024

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ РАЗРАБОТАЛ:

 Подписано электронной подписью ФГБОУ ВО «НИУ «МЭИ»

 Сведения о владельце ЦЭП МЭИ

 Владелец
 Орлов Д.А.

 Идентификатор
 R486bblab-OrlovDmAl-31f8fd7e

Подписано электронной подписью ФГБОУ ВО «НИУ «МЭИ»

Разработчик

СОГЛАСОВАНО:

Руководитель образовательной программы

New	Сведения о владельце ЦЭП МЭИ			
	Владелец	Хвостов А.А.		
	Идентификатор	Rd7c1e2e7-KhvostovAA-a55ec66d		

А.А. Хвостов

Д.А. Орлов

Заведующий выпускающей кафедрой

1930 etg.	Подписано электронной подписью ФГБОУ ВО «НИУ «МЭИ»		
	Сведения о владельце ЦЭП МЭИ		
-	Владелец	Самокрутов А.А.	
» <u>МЭИ</u> »	Идентификатор Р	145b9cc2-SamokrutovAA-7b5e7do	

А.А. Самокрутов

ОБЩАЯ ЧАСТЬ

Оценочные материалы по дисциплине предназначены для оценки достижения обучающимися запланированных результатов обучения по дисциплине, этапа формирования запланированных компетенций и уровня освоения дисциплины.

Оценочные материалы по дисциплине включают оценочные средства для проведения мероприятий текущего контроля успеваемости и промежуточной аттестации.

Формируемые у обучающегося компетенции:

- 1. ПК-1 Способен обосновывать принимаемые проектные решения, осуществлять постановку и выполнять эксперименты по проверке их корректности и эффективности
 - ИД-1 Демонстрирует знание методов анализа и синтеза линейных и нелинейных электрических, электронных, цифровых систем
 - ИД-2 Демонстрирует знание принципов построения вычислительных машин, систем и сетей, методов оценки их функционирования
 - ИД-3 Производит оценку влияния применяемых технических решений на общее функционирование системы
 - ИД-4 Применяет методы моделирования и осуществляет анализ результатов для моделирования работы вычислительных систем и сетей ЭВМ

и включает:

для текущего контроля успеваемости:

Форма реализации: Допуск к лабораторной работе

1. Моделирование систем массового обслуживания. (Лабораторная работа)

Форма реализации: Компьютерное задание

1. Методы моделирование. Тестирование (Тестирование)

Форма реализации: Письменная работа

- 1. Разработка модели генератора случайных чисел с заданным законом распределения. (Проверочная работа)
- 2. Разработка модели генератора случайных чисел с равномерным законом распределения (Проверочная работа)

БРС дисциплины

5 семестр

Перечень контрольных мероприятий <u>текущего контроля</u> успеваемости по дисциплине:

- КМ-1 Методы моделирование. Тестирование (Тестирование)
- КМ-2 Разработка модели генератора случайных чисел с равномерным законом распределения (Проверочная работа)
- КМ-3 Разработка модели генератора случайных чисел с заданным законом распределения. (Проверочная работа)
- КМ-4 Моделирование систем массового обслуживания. (Лабораторная работа)

Вид промежуточной аттестации – Зачет с оценкой.

	Веса контрольных мероприятий, %				
Раздел дисциплины	Индекс	KM-1	KM-2	KM-3	KM-4
газдел дисциплины	KM:				
	Срок КМ:	4	8	12	16
Методы и этапы моделирования					
Моделирование и модели			+	+	
Модели систем массового обслуживания					
Моделирование систем массового обслуживания					+
Имитационное моделирование					
Имитационное моделирование систем массо обслуживания	ВОГО				+
Bec KM:		5	20	25	50

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ТЕКУЩЕГО КОНТРОЛЯ

I. Оценочные средства для оценки запланированных результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций

Индекс	Индикатор	Запланированные	Контрольная точка
компетенции		результаты обучения по	
		дисциплине	
ПК-1	ИД-1 _{ПК-1} Демонстрирует		
	знание методов анализа и		
	синтеза линейных и		
	нелинейных		
	электрических,		
	электронных, цифровых		
	систем		
ПК-1	$ИД-2_{\Pi K-1}$ Демонстрирует	Знать:	КМ-1 Методы моделирование. Тестирование (Тестирование)
	знание принципов	Порядок построения	КМ-2 Разработка модели генератора случайных чисел с равномерным
	построения	моделей на основе теории	законом распределения (Проверочная работа)
	вычислительных машин,	и применении	КМ-3 Разработка модели генератора случайных чисел с заданным
	систем и сетей, методов	программных средств	законом распределения. (Проверочная работа)
	оценки их	порядок разработки	
	функционирования	моделей компонентов	
		информационных систем	
ПК-1	$ИД-3_{\Pi K-1}$ Производит	Уметь:	КМ-4 Моделирование систем массового обслуживания. (Лабораторная
	оценку влияния	разрабатывать модели	работа)
	применяемых технических	компонентов	
	решений на общее	информационных систем	
	функционирование		
	системы		
ПК-1	$ИД-4_{\Pi K-1}$ Применяет	Уметь:	КМ-4 Моделирование систем массового обслуживания. (Лабораторная
	методы моделирования и	Разрабатывать	работа)
	осуществляет анализ	программные реализации	
	результатов для	математических и	

моделирования рабо	и имитационных моделей
вычислительных систем	И
сетей ЭВМ	

II. Содержание оценочных средств. Шкала и критерии оценивания

КМ-1. Методы моделирование. Тестирование

Формы реализации: Компьютерное задание Тип контрольного мероприятия: Тестирование Вес контрольного мероприятия в БРС: 5

Процедура проведения контрольного мероприятия: Выполняется тест по разделу "Методы моделирования". Способы организации контроля: - ОЧНЫЙ, путем раздачи студентам во время групповых занятий печатных вариантов теста или в компьютерном классе путем выдачи теста на экране компьютера; - ДИСТАНЦИОННЫЙ, путем рассылки электронных писем с тестом на электронный адрес студента в почте МЭИ и возвратом ответов на тест на электронный адрес преподавателя в почте МЭИ.

Краткое содержание задания:

Формирование и развитие базовых знаний по методам математического моделирования и основам теории систем массового обслуживания (СМО).

Контрольные вопросы/задания:	
Запланированные результаты	Вопросы/задания для проверки
обучения по дисциплине	
Знать: Порядок построения моделей	1. Моделирование – это:
на основе теории и применении	а) процесс замены реального объекта моделью,
программных средств	отражающей основные признаки объекта с
	точки зрения цели моделирования;
	б) процесс выявления основных свойств
	реального объекта;
	в) процесс демонстрации моделей одежды;
	г) процесс формализации конкретной задачи.
	Ответ а)
	2. Модель – это:
	а) описание объекта моделирования другими
	средствами;
	б) новый объект, отражающий основные
	свойства объекта моделирования;
	в) новый объект, отражающий основные
	свойства объекта моделирования с точки зрения
	цели моделирования;
	г) новый объект, отражающий все свойства
	объекта моделирования. Ответ в)
	3. Для реального объекта моделирования можно создать:
	а) одну модель, отражающую все свойства
	объекта;
	б) одну модель, являющуюся информационной
	копией объекта;
	в) несколько моделей, каждая из которых
	отражает отдельные свойства объекта;
	г) вопрос не точный. Ответ в)

Запланированные	результаты	Вопросы/задания для проверки
обучения по дисциплине		
		4. Укажите объекты, являющиеся
		математическими моделями:
		а) правила дорожного движения;
		б) уравнение второго закона Ньютона;
		в) инструкция по эксплуатации компьютера;
		г) инструкция по сборке мебели. Ответ б)

Описание шкалы оценивания:

Оценка: «зачтено»

Описание характеристики выполнения знания: Оценка "зачтено" выставляется если задание выполнено правильно или с незначительными недочетами

Оценка: «не зачтено»

Описание характеристики выполнения знания: Оценка "не зачтено" выставляется если задание не выполнено в отведенный срок или результат не соответствует заданию

КМ-2. Разработка модели генератора случайных чисел с равномерным законом распределения

Формы реализации: Письменная работа

Тип контрольного мероприятия: Проверочная работа

Вес контрольного мероприятия в БРС: 20

Процедура проведения контрольного мероприятия: При ОЧНОМ обучении проводится письменное тестирование. Допускается дополнительная проверка знаний при помощи устных вопросов. При ДИСТАНЦИОННОМ обучении проводится рассылка электронных писем с тестом на электронный адрес студента в почте МЭИ и возвратом ответов на тест на электронный адрес преподавателя в почте МЭИ.

Краткое содержание задания:

Проверяется знание теоретического материала по разделу "Разработка математической модели генератора случайных чисел с равномерным законом распределения"

Контрольные вопросы/задания:

контрольные вопросы/задания:				
Запланированные результаты	Вопросы/задания для проверки			
обучения по дисциплине				
Знать: порядок разработки	1. Нарисуйте функцию распределения вероятностей для			
моделей компонентов	равномерного распределения на отрезке [a, b]			
информационных систем	2.Нарисуйте вид гистограммы для числа			
	сгенерированных случайных чисел, попадающих в			
	каждый столбец гистограммы при проведении			
	численного моделирования			
	3. Нарисуйте вид гистограммы для теоретического числа			
	случайных чисел, попадающих в каждый столбец			
	гистограммы при проведении численного			
	моделирования			
	4.Приведите примеры источников строго случайных			
	чисел?			
	5. Расскажите свойства последовательности			
	псевдослучайных чисел. Что означает периодическая и			
	апериодическая части последовательности?			

Описание шкалы оценивания:

Оценка: «зачтено»

Описание характеристики выполнения знания: Оценка "зачтено" выставляется если задание выполнено правильно или с незначительными недочетами

Оценка: «не зачтено»

Описание характеристики выполнения знания: Оценка "не зачтено" выставляется если задание не выполнено в отведенный срок или результат не соответствует заданию

КМ-3. Разработка модели генератора случайных чисел с заданным законом распределения.

Формы реализации: Письменная работа

Тип контрольного мероприятия: Проверочная работа

Вес контрольного мероприятия в БРС: 25

Процедура проведения контрольного мероприятия: При ОЧНОМ обучении проводится письменное тестирование. Допускается дополнительная проверка знаний при помощи устных вопросов. При ДИСТАНЦИОННОМ обучении проводится рассылка электронных писем с тестом на электронный адрес студента в почте МЭИ и возвратом ответов на тест на электронный адрес преподавателя в почте МЭИ.

Краткое содержание задания:

Изучение методов "Обратной функции" и "Режекции" при реализации алгоритма получения последовательности случайных чисел с заданным законом распределения.

Контрольные вопросы/задания:

контрольные вопросы/задания.				
Запланированные	Вопросы/задания для проверки			
результаты обучения по				
дисциплине				
Знать: порядок разработки	1.Напишите формулы метода "Обратной функции" для			
моделей компонентов	получения последовательности случайных чисел с			
информационных систем	заданным законом распределения. Расскажите работу			
	этого метода.			
	2.Напишите алгоритм метода "Режекции" для получения			
	последовательности случайных чисел с заданным законом			
	распределения. Расскажите работу этого метода.			
	3. Нарисуйте заданную функцию распределения плотности			
	вероятностей на отрезке [a, b]. Определите высоту h для			
	этого варианта.			
	4. Нарисуйте гистограмму для теоретического числа			
	случайных чисел, которые должны попасть в каждый			
	отрезок разбиения отрезка [a, b] на n частей. Как			
	рассчитать высоту столбцов теоретической гистограммы?			
	5.Запишите алгоритм метода "Обратной функции" и			
	расскажите его работу.			

Описание шкалы оценивания:

Оценка: «зачтено»

Описание характеристики выполнения знания: Оценка "зачтено" выставляется если задание выполнено правильно или с незначительными недочетами

Оценка: «не зачтено»

Описание характеристики выполнения знания: Оценка "не зачтено" выставляется если задание не выполнено в отведенный срок или результат не соответствует заданию

КМ-4. Моделирование систем массового обслуживания.

Формы реализации: Допуск к лабораторной работе **Тип контрольного мероприятия:** Лабораторная работа

Вес контрольного мероприятия в БРС: 50

Процедура проведения контрольного мероприятия: При ОЧНОЙ форме проводится устный опрос студентов и выставление оценки: Допущен или Не допущен к выполнению лабораторной работы. При ДИСТАНЦИОННОЙ форме обучения проводится рассылка электронных писем с тестом на электронный адрес студента в почте МЭИ и возвратом ответов на тест на электронный адрес преподавателя в почте МЭИ.

Краткое содержание задания:

Для заданного варианта СМО записать список Состояний, нарисовать граф Состояний СМО и записать систему уравнений Колмогорова. Рассказать алгоритмы имитационного моделирования СМО по "Особым состояниям" и по "Матрице переходных интенсивностей".

Контрольные вопросы/задания:

Запланированные результаты	Вопросы/задания для проверки
обучения по дисциплине	
Уметь: разрабатывать модели	1. Расскажите методику проведения вычислительного
компонентов	эксперимента, позволяющую показать, что модель
информационных систем	генератора случайных чисел создает поток чисел с
	равномерным законом распределения вероятностей.
	2. Расскажите методику проведения вычислительного
	эксперимента, позволяющую оценить согласие между
	заданным и экспериментальным законами
	распределения потоков случайных чисел по критерию
	Пирсона.
Уметь: Разрабатывать	1.Изложите основные шаги алгоритма имитационного
программные реализации	моделирования "по событиям" на конкретном примере.
математических и	Как происходят переходы по ветвям алгоритма в
имитационных моделей	процессе моделирования?
	2. Расскажите методику проведения вычислительного
	эксперимента, позволяющую определить длину
	периода последовательности случайных чисел,
	создаваемой генератором

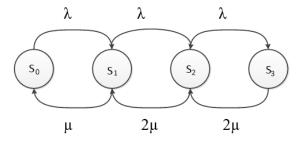
Описание шкалы оценивания:

Оценка: «зачтено»

Описание характеристики выполнения знания: Оценка "зачтено" выставляется если задание выполнено правильно или с незначительными недочетами

Оиенка: «не зачтено»

Описание характеристики выполнения знания: Оценка "не зачтено" выставляется если задание не выполнено в отведенный срок или результат не соответствует заданию


СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

5 семестр

Форма промежуточной аттестации: Зачет с оценкой

Пример билета

- 1. 1. Перечислите основные типы моделей реальных объектов
- 2. 2. Сколько каналов обслуживания и мест в очереди имеет СМО со следующим графом?
- 3.

1. 3. Как связано реальное и модельное время в процессе имитационного моделирования

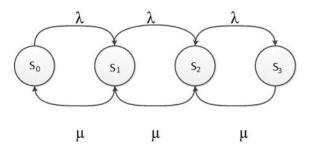
Процедура проведения

Зачет с оценкой проводится ОЧНОЙ форме для одной группы студентов в аудитории. Студент выбирает один из 20 билетов. Билет содержит 3 вопроса. Время на подготовку ответов - 30 мин. Студент отвечает на вопросы устно по подготовленному письменному материалу. Преподаватель оценивает правильность ответов и при необходимости задает дополнительные вопросы. По окончании ответа преподаватель выставляет оценку.

Возможно ДИСТАНЦИОННОЕ проведение зачета в письменной форме. Студент получает именной тест по электронной почте МЭИ на адрес студента в почте МЭИ. Ответ в письменной форме присылается на электронный адрес преподавателя в почте МЭИ. Контроль времени на ответ проводится по часам электронной почты МЭИ.

Возможна рукописная подготовка ответа студентом. Рукописные ответы сканируются или фотографируются с достаточным качеством и пересылаются преподавателю в стандартных растровых форматах.

I. Перечень компетенций/индикаторов и контрольных вопросов проверки результатов освоения дисциплины

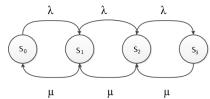

1. Компетенция/Индикатор: ИД- $2_{\Pi K-1}$ Демонстрирует знание принципов построения вычислительных машин, систем и сетей, методов оценки их функционирования

Вопросы, задания

- 1.Сформулируйте понятие "Моделирование" как метод изучения свойств реального объекта
- 2.Сформулируйте связь между понятием "Цель моделирования" и свойствами модели, выделенными из свойств реального объекта моделирования
- 3. Перечислите основные типы моделей реальных объектов
- 4. Приведите пример модели одноканальной Системы массового обслуживания (СМО) на основе списка состояний. Нарисуйте граф состояний СМО, соответствующий

выбранному примеру. Укажите состояния, соответствующие "Простою" и "Отказу в обслуживании".

5. Чему равно среднее число заявок, находящихся в СМО со следующим графом переходов:

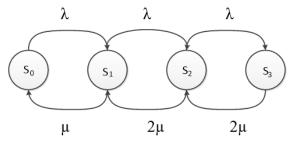


Материалы для проверки остаточных знаний

- 1.Сколько моделей можно построить для одного реального объекта моделирования. Ответы:
- 1). одну модель; 2). несколько моделей;

Верный ответ: 2

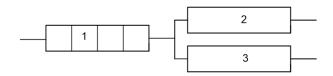
2. Будет ли работать СМО со следующим графом переходов


если $\lambda = 1$ 1/c, $\mu = 2$ 1/c.

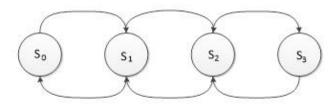
Ответы:

- 1). Будет работать; 2). Не будет работать4 Верный ответ: 1
- **2. Компетенция/Индикатор:** ИД-3_{ПК-1} Производит оценку влияния применяемых технических решений на общее функционирование системы

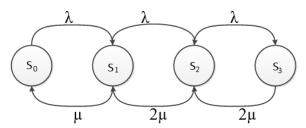
Вопросы, задания


- 1. Нарисуйте структурную схему Системы массового обслуживания (СМО). Объясните назначение и свойства блоков СМО. Сформулируйте понятие "Состояние" СМО.
- 2. Запишите матрицу интенсивностей переходов для Марковского процесса с непрерывным временем, заданным следующим графом переходов

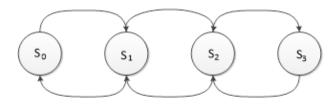
- 3. Можно ли различить факт прихода двух близких по времени заявок при продвижении модельного времени по особым состояниям
- 4. При каких условиях применяется моделирование с постоянным шагом продвижения модельного времени


Материалы для проверки остаточных знаний

1. Как называются устройства, входящие в состав Системы массового обслуживания, показанной на следующем рисунке


Ответы:

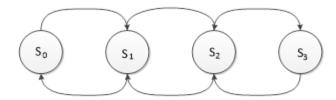
- 1). 1- Канал обслуживания; 2- Очередь; 3- Канал обслуживания;
- 2). 1- Очередь; 2- Канал обслуживания; 3- Канал обслуживания;
- 3). 1- Канал обслуживания; 2- Канал обслуживания; 3- Очередь; Верный ответ: 2
- 2.Укажите число уравнений системы уравнений Колмогорова, соответствующее приведенному графу состояний СМО


Ответы:

- 1). 3 уравнения; 2); 4 уравнения; 3); 5 уравнений; Верный ответ: 2
- 3. Сколько каналов обслуживания и мест в очереди имеет СМО со следующим графом?

Ответы:

- 1) 1 канал обслуживания, 2 места в очереди;
- 2) 2 канала обслуживания, 1 место в очереди;
- 3) 3 канала обслуживания, 0 мест в очереди. Верный ответ: 2
- 4. Вероятность какого состояния СМО соответствует вероятности отказа



Ответы:

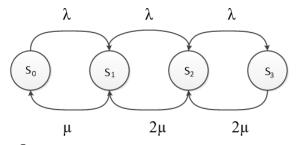
1). Состояния S0; 2). Состояния S1; 3). Состояния S2; 4). Состояния S3;

Верный ответ: 4

5.Вероятность какого состояния СМО соответствует вероятности простоя

Ответы:

1). Состояния S0; 2). Состояния S1; 3). Состояния S2; 4). Состояния S3; Верный ответ: 1

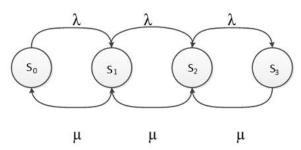

- 6.Какое событие является действительным при составлении списка будущих событий. Ответы:
- 1) наиболее вероятное состояние.
- 2) состояние, выбираемое в соответствии с алгоритмом работы.
- 3) ближайшее по времени состояние.

Верный ответ: 3

7. Как вычисляется оценка вероятности пребывания СМО в одном из состояний в процессе имитационного моделирования:

Ответы:

- 1) как относительная частота пребывания СМО в этом состоянии.
- 2) как относительное число заявок, попавших в это состояние.
- 3) как относительное время пребывания СМО в этом состоянии. Верный ответ: 3
- 8. Запишите матрицу интенсивностей переходов для Марковского процесса с непрерывным временем, заданным следующим графом переходов



Ответы:

$$1) \left(\begin{array}{cccc} 0 & -\lambda & 0 & 0 \\ \mu & 0 & \lambda & 0 \\ 0 & -2\mu & 0 & \lambda \\ 0 & 0 & 2\mu & 0 \end{array} \right) \quad 2) \left(\begin{array}{cccc} 0 & \lambda & 0 & 0 \\ \mu & 0 & \lambda & 0 \\ 0 & 2\mu & 0 & \lambda \\ 0 & 0 & 2\mu & 0 \end{array} \right) \quad 3) \left(\begin{array}{cccc} 0 & \lambda & 0 & \mu \\ \mu & \lambda & \lambda & 0 \\ 0 & \mu & 0 & \lambda \\ 0 & 0 & \mu & 0 \end{array} \right)$$

Верный ответ: 2

9. Чему равно среднее число заявок, находящихся в СМО со следующим графом переходов:

Ответы:

- 1) N = O P0 + 1P1 + 1P2 + 1P3;
- 2) N = O P0 + 1P1 + 2P2 + 3P3;
- 3) N = 1 P0 + 2 Pa + 3 P2 + 4 P3;

Верный ответ: 2

10. Как определяется оценка вероятности пребывания СМО в одном из состояний в процессе имитационного моделирования:

Ответы:

- 1) как относительная частота пребывания СМО в этом состоянии;
- 2) как относительное число заявок, попавших в это состояние;
- 3) как относительное время пребывания СМО в этом состоянии.
 - Верный ответ: 3
- **3. Компетенция/Индикатор:** ИД-4_{ПК-1} Применяет методы моделирования и осуществляет анализ результатов для моделирования работы вычислительных систем и сетей ЭВМ

Вопросы, задания

- 1. Как связано реальное и модельное время в процессе имитационного моделирования:
- 2. Какое событие является действительным при составлении списка будущих событий
- 3. Каким образом выбирается следующее по времени состояние СМО при имитационном моделировании на основе заданной матрицы переходных интенсивностей при помощи двух генераторов случайных чисел, моделирующих время прихода следующей заявки и время окончания обслуживания предыдущей заявки
- 4. Что является СОБЫТИЕМ в имитационном моделировании
- 5. Каким образом выбирается следующее по времени состояние СМО при имитационном моделировании «по Марковскому процессу»:

Материалы для проверки остаточных знаний

- 1. Моделирование с постоянным шагом продвижения времени применяется, если: Ответы:
- 1) заявки в СМО приходят с интервалом времени, превышающим шаг продвижения времени;
- 2) заявки в СМО приходят с интервалом времени, меньше шага продвижения времени;
- 3) выбор метода моделирования не зависит от соотношения шага продвижения времени и интервала времени между приходом заявок.

Верный ответ: 2

2. Моделирование с продвижением времени по особым состояниям применяется, если:

Ответы:

- 1) заявки в СМО приходят с интервалом времени, мало меняющимся в процессе моделирования;
- 2) заявки в СМО приходят с интервалом времени, сильно меняющимся в процессе моделирования;
- 3) выбор этого метода моделирования не зависит от соотношения шага продвижения времени и интервала времени между приходом заявок.

Верный ответ: 2, 3

II. Описание шкалы оценивания

Оценка: 5 («отлично») Нижний порог выполнения задания в процентах: 80 Описание характеристики выполнения знания: Работа выполнена в рамках "продвинутого" уровня. Ответы даны верно, четко сформулированные особенности практических решений

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Работа выполнена в рамках "базового" уровня. Большинство ответов даны верно. В части материала есть незначительные недостатки

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Работа выполнена в рамках "порогового" уровня. Основная часть задания выполнена верно, на вопросы углубленного уровня

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Работа не выполнена или выполнена преимущественно неправильно

III. Правила выставления итоговой оценки по курсу

Оценка определяется в соответствии с Положением о балльно-рейтинговой системе для студентов НИУ «МЭИ» на основании семестровой и аттестационной составляющих.