Министерство науки и высшего образования РФ Федеральное государственное бюджетное образовательное учреждение высшего образования «Национальный исследовательский университет «МЭИ»

Направление подготовки/специальность: 09.04.01 Информатика и вычислительная техника

Наименование образовательной программы: Вычислительные машины, комплексы, системы и сети

Уровень образования: высшее образование - магистратура

Форма обучения: Очная

Оценочные материалы по дисциплине Вычислительные системы

Москва 2023

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ РАЗРАБОТАЛ:

Разработчик

MOM N	Подписано электронн	ой подписью ФГБОУ ВО «НИУ «МЭИ»	
	Сведения о владельце ЦЭП МЭИ		
	Владелец	Филатов А.В.	
	Идентификатор	R48fdeb40-FilatovAV-93eea018	

А.В. Филатов

СОГЛАСОВАНО:

Руководитель образовательной программы

MoM N	Подписано электронн	ой подписью ФГБОУ ВО «НИУ «МЭИ»	
	Сведения о владельце ЦЭП МЭИ		
	Владелец	Гольцов А.Г.	
	Идентификатор	R64210572-GoltsovAG-cebbd3e8	

А.Г. Гольцов

Заведующий выпускающей кафедрой

MOM MEM	Подписано электронной подписью ФГБОУ ВО «НИУ «МЭИ»			
	Сведения о владельце ЦЭП МЭИ			
	Владелец	Вишняков С.В.		
	Идентификатор	R35b26072-VishniakovSV-02810d9		

С.В. Вишняков

ОБЩАЯ ЧАСТЬ

Оценочные материалы по дисциплине предназначены для оценки: достижения обучающимися запланированных результатов обучения по дисциплине, этапа формирования запланированных компетенций и уровня освоения дисциплины.

Оценочные материалы по дисциплине включают оценочные средства для проведения мероприятий текущего контроля успеваемости и промежуточной аттестации.

Формируемые у обучающегося компетенции:

- 1. ОПК-2 Способен разрабатывать оригинальные алгоритмы и программные средства, в том числе с использованием современных интеллектуальных технологий, для решения профессиональных задач
 - ИД-1 Демонстрирует знание современных информационно-коммуникационных и интеллектуальных технологий, инструментальных сред, программно-технических платформ для решения профессиональных задач
- 2. ОПК-5 Способен разрабатывать и модернизировать программное и аппаратное обеспечение информационных и автоматизированных систем
 - ИД-1 Демонстрирует знание современного программного и аппаратного обеспечения информационных и автоматизированных систем
- 3. ОПК-6 Способен разрабатывать компоненты программно-аппаратных комплексов обработки информации и автоматизированного проектирования
 - ИД-1 Демонстрирует знание аппаратных средств и платформ инфраструктуры информационных технологий, видов, назначения, архитектуры, методов разработки и администрирования программно-аппаратных комплексов объекта профессиональной деятельности

и включает:

для текущего контроля успеваемости:

Форма реализации: Защита задания

- 1. Защита ЛР №1 (Лабораторная работа)
- 2. Защита ЛР №2 (Лабораторная работа)
- 3. Защита ЛР №3 (Лабораторная работа)
- 4. Защита ЛР №4 (Лабораторная работа)

Форма реализации: Компьютерное задание

1. Вычислительные системы и основы их программирования (Тестирование)

БРС дисциплины

1 семестр

	Веса контрольных мероприятий, %					
Doorog groundstra	Индекс	КМ-	КМ-	КМ-	КМ-	КМ-
Раздел дисциплины	KM:	1	2	3	4	5
	Срок КМ:	4	8	12	14	15
Вычислительные системы, цели и области применения						
вычислительных систем, цели и способы повышения их						
производительности, основные законы и свойства ВС						
влияющие на их производительность						

Вычислительные системы, цели и области применения					
вычислительных систем, цели и способы повышения их	+				
производительности, основные законы и свойства ВС	'				
влияющие на их производительность					
Модели и технологии параллельного программирования					
систем высокой производительности					
Модели и технологии параллельного программирования					
систем высокой производительности	+	+			
Технология программирования стандарта MPI и её					
применение					
Технология программирования стандарта MPI и её					
применение	+	+	+	+	
Технология программирования стандарта ОрепМР и её					
применение					
Технология программирования стандарта ОрепМР и её		_			
применение		+	+	+	
Классификации вычислительных систем, особенности					
разработки применения систем разных классов					
Классификации вычислительных систем, особенности					
разработки применения систем разных классов			+	+	
Современные микропроцессоры, обзор с точки зрения их					
организации и особенностей применения в ВС					
Современные микропроцессоры, обзор с точки зрения их					
организации и особенностей применения в ВС				+	+
Современные высокопроизводительные серверы					
Современные высокопроизводительные серверы				+	+
Вычислительные системы кластерного типа					
Вышислительные системы упастерного типа					
Вычислительные системы кластерного типа				+	+
Вычислительные системы наивысшей					
производительности					
Вычислительные системы наивысшей				+	+
производительности					-
Реконфигурируемые вычислительные системы					
Реконфигурируемые вычислительные системы					+
Bec KM:	10	20	35	15	20
	- 0				_~

\$Общая часть/Для промежуточной аттестации\$

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ТЕКУЩЕГО КОНТРОЛЯ

I. Оценочные средства для оценки запланированных результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций

Индекс	Индикатор	Запланированные	Контрольная точка
компетенции	_	результаты обучения по	
		дисциплине	
ОПК-2	ИД-10ПК-2 Демонстрирует	Знать:	Вычислительные системы и основы их программирования
	знание современных	технологии параллельного	(Тестирование)
	информационно-	программирования	Защита ЛР №1 (Лабораторная работа)
	коммуникационных и	особенности разработки	Защита ЛР №2 (Лабораторная работа)
	интеллектуальных	параллельных программ	Защита ЛР №3 (Лабораторная работа)
	технологий,	для	Защита ЛР №4 (Лабораторная работа)
	инструментальных сред,	высокопроизводительных	
	программно-технических	систем	
	платформ для решения	способы и технологии	
	профессиональных задач	программирования систем	
		с общей и распределённой	
		памятью	
		Уметь:	
		разрабатывать	
		параллельные алгоритмы и	
		программы для систем с	
		общей памятью	
		разрабатывать	
		параллельные алгоритмы и	
		программы для систем с	
		распределённой памятью	
		разрабатывать алгоритмы	
		и программы для систем с	
		GPU	
ОПК-5	ИД-10ПК-5 Демонстрирует	Знать:	Защита ЛР №1 (Лабораторная работа)

	знание современного	устройство и принципы	Защита ЛР №2 (Лабораторная работа)
	программного и	работы вычислительных	Защита ЛР №3 (Лабораторная работа)
	аппаратного обеспечения	систем высокой	Защита ЛР №4 (Лабораторная работа)
	информационных и	производительности	
	автоматизированных	устройство и принципы	
	систем	работы современных	
	CHCICIVI	микропроцессоров и	
		вычислительных узлов	
		особенности структур и	
		1001	
		принципов	
		функционирования вычислительных систем и	
		компонентов для их	
		эффективного	
		использования Уметь:	
		разрабатывать и	
		отлаживать программы в	
		стандарте технологии	
		OpenMP	
		разрабатывать и	
		отлаживать программы в	
OTIL (тип и	стандарте технологии МРІ	D.
ОПК-6	ИД-10ПК-6 Демонстрирует	Знать:	Вычислительные системы и основы их программирования
	знание аппаратных	подходы к использованию	(Тестирование)
	средств и платформ	современных аппаратных	Защита ЛР №3 (Лабораторная работа)
	инфраструктуры	средства и платформ для	Защита ЛР №4 (Лабораторная работа)
	информационных	высокопроизводительных	
	технологий, видов,	вычислений	
	назначения, архитектуры,	цели и области	
	методов разработки и	применения	
	администрирования	высокопроизводительных	
	программно-аппаратных	вычислений	

компле	ксов объе	ста Уметь:	
профес	сиональной	разрабатывать и	
деятели	ности	отлаживать программы в	
		стандарте технологии	
		CUDA для систем с	
		ускорителями GPU	

II. Содержание оценочных средств. Шкала и критерии оценивания

КМ-1. Вычислительные системы и основы их программирования

Формы реализации: Компьютерное задание Тип контрольного мероприятия: Тестирование Вес контрольного мероприятия в БРС: 10

Процедура проведения контрольного мероприятия: Тестирование в системах Webex или

Прометей

Краткое содержание задания:

Ответить на вопросы теста

Контрольные вопросы/задания:	
Знать: технологии параллельного	 Укажите функцию MPI синхронной
программирования	неблокирующей посылки
	MPI_Send
	MPI_Ibsend
	MPI_Ssend
	MPI_Irsend
	*MPI_Issend
	2.Укажите локальные функции MPI:
	MPI_Send
	*MPI_Comm_rank
	MPI_Init
	MPI_Irecv
	MPI_Sendrecv
	3.В какой модели параллельного программирования в
	основном создаются МРІ-программы?
	SPSD
	*SPMD
	MPSD
	MPMD
	4. Например, если 3-й процесс посылает данные
	функцией MPI_Scatterv, то какой функцией эти
	данные должен принимать 1-й процесс?
	MPI_Scatter
	MPI_Recv
	MPI_Gather
	MPI_Sendrecv
	*MPI_Scatterv
	5.Функция MPI_Send блокирует вызвавший её
	процесс до тех пор пока посылаемые данные:
	не будут получены получателем
	для их приёма не будет вызвана функция MPI_Recv
	*не будут скопированы из памяти отправителя
	не будут проверены
	6.Укажите, какими функциями можно послать
	данные, если их принимает функция MPI_Irecv:
	*MPI_Send

	*MPI_Sendrecv
	*MPI_Isend
	*MPI_Bsend
	MPI_Bcast
	7.Укажите функции, которые можно вызывать в
	программе раньше чем MPI_Init:
	MPI_Comm_size
	*MPI_Initialized
	MPI_Comm_rank
	MPI_Finalize
	MPI_Wtime
	8.Какой функцией можно проверить, поступило ли
	процессу сообщение с данными?
	MPI Wait
	MPI_Test
	*MPI Probe
Знать: цели и области	1.Укажите, для каких целей применяются
применения	высокопроизводительные вычисления:
высокопроизводительных	*сокращение времени решения задач
вычислений	уменьшения объёма оборудования
	*увеличение объёма обрабатываемых данных
	*повышение точности:
	уменьшения сложности задач
	2. Что явилось одной из главных причин появления
	многопроцессорных вычислительных систем?
	• открытие закона Гроша
	• открытие закона Амдала
	• *нарушение закона Гроша
	• нарушение закона Амдала
	3. Что позволило преодолеть ограничение Гипотезы
	Минского?
	*изобретение мультизадачного режима
	изобретение векторных микропроцессоров
	изобретение локальных сетей
	появление новых технологий программирования

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 30 Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется

если задание преимущественно выполнено

Оценка: 2

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-2. Зашита ЛР №1

Формы реализации: Защита задания

Тип контрольного мероприятия: Лабораторная работа

Вес контрольного мероприятия в БРС: 20

Процедура проведения контрольного мероприятия: Выполнение задания лабораторной

работы на персональном компьютере

Краткое содержание задания:

Выполнить задание лабораторной работы и защитить его

Контрольные вопросы/задания:

контрольные вопросы/задания.	
Знать: особенности разработки	1. Какие коэффициенты ускорения у вас получились и
параллельных программ для	почему?
высокопроизводительных систем	2. Каким образом коэффициент ускорения зависит от
	размера массива и почему?
	3. Что вы сделали в программе, чтобы увеличить
	коэффициенты ускорения?
	4. Какие варианты выполнения (среди
	использованных вами) вашей программы на
	вычислительной системе для каждого значения N вы
	считаете лучшим и почему?
Знать: технологии параллельного	1.Что такое MPI?
программирования	2.Что такое модель SPMD как взаимодействуют
	процессы в этой модели?
	3.Какова структура МРІ-программы?
	4. Что такое двухточечные передачи данных в MPI,
	как и какими средствами их организуют?
Уметь: разрабатывать	1.Выполните задание лабораторной работы №1
параллельные алгоритмы и	
программы для систем с	
распределённой памятью	
Уметь: разрабатывать и	1.Защитите лабораторную работу №1 и ответе на
отлаживать программы в	дополнительные вопросы преподавателя
стандарте технологии МРІ	2. Объясните алгоритм распределения данных по
	процессам реализованный в вашей программе

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-3. Защита ЛР №2

Формы реализации: Защита задания

Тип контрольного мероприятия: Лабораторная работа

Вес контрольного мероприятия в БРС: 35

Процедура проведения контрольного мероприятия: Выполнение задания лабораторной

работы на персональном компьютере

Краткое содержание задания:

Выполнить задание лабораторной работы и защитить его

Контрольные вопросы/задания:

топтроприе вопросы, задания.	
Знать: особенности разработки	1.За счёт чего вы получили (не получили) ускорение
параллельных программ для	выполнения вашей программы использующей
высокопроизводительных систем	отложенные неблокирующие передачи данных?
Знать: способы и технологии	1.Чем отличаются блокирующие и неблокирующие
программирования систем с	передачи данных?
общей и распределённой	2. Как происходит двухточечная отложенная
памятью	неблокирующая передача данных?
	3. Как по-вашему будет различаться выполнение
	вашей программы на системах разных классов? Что,
	возможно, вам в вашей программе придётся
	поменять?
Уметь: разрабатывать	1.Выполните задание лабораторной работы №2
параллельные алгоритмы и	
программы для систем с	
распределённой памятью	
Уметь: разрабатывать и	1.Защитите лабораторную работу №2 и ответе на
отлаживать программы в	дополнительные вопросы преподавателя
стандарте технологии MPI	2.Поясните ЯПФ-граф алгоритма обработки данных и
	покажите на нём возможные варианты ускорения за
	счёт фоновых передач
	3. Как вы оптимизировали вычисления в вашей
	программе?
	4. Как вы обосновали начало посылки/приёма данных
	данных и использование (позиционирование)
	функций ожидания окончания?
	5.Почему вы использовали для хранения
	промежуточных данных именно эти массивы (по программе)?
	6.Есть ли возможность улучшить вашу программу и
	почему? Как можно улучшить?
	notemy: Itak mowno ynytimito:

Описание шкалы оценивания:

Оценка: 5

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-4. Зашита ЛР №3

Формы реализации: Защита задания

Тип контрольного мероприятия: Лабораторная работа

Вес контрольного мероприятия в БРС: 15

Процедура проведения контрольного мероприятия: Выполнение задания лабораторной

работы на персональном компьютере

Краткое содержание задания:

Выполнить задание лабораторной работы и защитить его

Контрольные вопросы/задания:

контрольные вопросы/задания.	
Знать: особенности разработки	1. Какие значения коэффициентов ускорения у вас
параллельных программ для	получились и почему?
высокопроизводительных систем	
Знать: способы и технологии	1.Что такое OpenMP?
программирования систем с	2.Чем OpenMP отличается от MPI?
общей и распределённой	3. Какие директивы OpenMP вы знаете?
памятью	4. Что делает клауза schedule, чем отличается характер
	вычислений при параметрах static и dynamic?
	5.Для систем каких классов подходит
	программирование на OpenMP?
Знать: устройство и принципы	1. Что такое системы с общей памятью и какие они
работы современных	бывают?
микропроцессоров и	
вычислительных узлов	
Знать: подходы к использованию	1.Как изменился коэффициент ускорения, когда
современных аппаратных	число потоков стало больше числа ядер и почему?
средства и платформ для	
высокопроизводительных	
вычислений	
Уметь: разрабатывать	1.Выполните задание лабораторной работы №3
параллельные алгоритмы и	
программы для систем с общей	
памятью	
Уметь: разрабатывать и	1.Защитите лабораторную работу №3 и ответе на
отлаживать программы в	дополнительные вопросы преподавателя
· · · · · · · · · · · · · · · · · · ·	

стандарте технологии OpenMP	2. Расскажите о реализованных у вас алгоритмах выполнения параллельных областей программы 3. Постарайтесь определить лучший вариант
	исполнения программы для значения N, указанного преподавателем

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-5. Зашита ЛР №4

Формы реализации: Защита задания

Тип контрольного мероприятия: Лабораторная работа

Вес контрольного мероприятия в БРС: 20

Процедура проведения контрольного мероприятия: Выполнение задания лабораторной

работы на персональном компьютере

Краткое содержание задания:

Выполнить задание лабораторной работы и защитить его

Контрольные вопросы/задания:

контрольные вопросы/заданил.	
Знать: особенности структур и	1.Что такое CUDA?
принципов функционирования	2. Какие отличия GPU от CPU? Что такое host и
вычислительных систем и	device?
компонентов для их	3. Какова структура и состав GPU?
эффективного использования	4.Какие виды памяти имеются у GPU и их
	назначение?
	5. Что такое ядро? Описание и вызов ядра?
	6. Что такое grid, варп? Как выполняются потоки на
	GPU?
	7.Как идентифицируются потоки, что такое блок?
	8. Какая по вашему реализация программы на GPU
	является наиболее эффективной и почему?
Знать: устройство и принципы	1. Расскажите, где (в каких системах) и как
работы вычислительных систем	применяются средства ускорения вычислений и в
высокой производительности	каких системах какие.
	2.Расскажите, где (в каких системах) и как

	применяются ускорители. В каких системах и как применяются GPU-ускорители?
Уметь: разрабатывать алгоритмы	1.Выполните задание лабораторной работы №4
и программы для систем с GPU	
Уметь: разрабатывать и	1.Защитите лабораторную работу №4 и ответе на
отлаживать программы в	дополнительные вопросы преподавателя
стандарте технологии CUDA для	2.Поясните алгоритм подготовки и вызова функции-
систем с ускорителями GPU	ядра
	3.Поясните алгоритм обработки данных в функции-
	ядре и расположение данных в памяти
	4.Проведите сравнение по времени выполнения
	реализации программ на CPU и GPU, объясните
	результат сравнения

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

1 семестр

Форма промежуточной аттестации: Экзамен

Пример билета

- 1. Подсистема управления файловой системой. Монтирование Φ С и каталогов. Файловая система *FFS*. Структура файловой системы *FFS*. Структура каталога *FFS*. Взаимодействие процессов с файлами разных Φ С.
- 2. Подсистема управления памятью. Функции подсистемы управления памятью. Стратегии подсистемы управления памятью. Стратегии загрузки разделов. Стратегии размещения разделов, достоинства и недостатки. Методы трансляции адресов.
- 3. Задача. Создайте два процесса потомок и предок. Предок забирает информацию из файла и передает ее потомку, который выводит записи на экран. Окончание работы по концу файла. Для передачи данных используйте разделяемую память.

Процедура проведения

На подготовку 60 минут, далее ответ в устном виде.

I. Перечень компетенций/индикаторов и контрольных вопросов проверки результатов освоения дисциплины

1. Компетенция/Индикатор: ИД-1_{ОПК-2} Демонстрирует знание современных информационно-коммуникационных и интеллектуальных технологий, инструментальных сред, программно-технических платформ для решения профессиональных задач

Вопросы, задания

- 1. Модели программирования систем Класса *MIMD*. Стандарт *MPI*. Операции поддерживаемые и неподдерживаемые в *MPI*. Базовые реализации *MPI*. Содержимое реализации стандарта *MPI*. Структура *MPI*-программы
- 2. Стандарт MPI. Идентификация в MPI. Цели разработчиков MPI. Классификация функций MPI. Структура MPI программы. Пример программы
- 3. Стандарт *MPI*. Операции поддерживаемые и неподдерживаемые в *MPI*. Идентификации в *MPI*. Двухточечные передачи в *MPI* (виды передач и функции для посылок и приёмов сообщений). Примеры организации передач
- 4. Группы процессов и области связи в *MPI*. Операции с группами процессов. Добавление и удаление групп, логические операции, функции и примеры
- 5. Стандарт *OpenMP*. Идентификация в *OpenMP*. Схема выполнения *OpenMP* программы. Задание параллельных областей программы. Определение и задание числа потоков. Частные и общие данные в параллельной области

Материалы для проверки остаточных знаний

1. Что такое МРІ?

Ответы:

Дать (сформулировать) определение МРІ

Beрный ответ: MPI (Message Passing Interface) – это стандарт на программный инструментарий для обеспечения связи между ветвями параллельной программы 2. Что такое OpenMP?

Ответы:

Дать (сформулировать) определение ОрепМР

Beрный ответ: OpenMP (Open MultiProcessing) - стандарт для программирования на масштабируемых мультипроцессорных системах с общей памятью

3. Что такое CUDA?

Ответы:

Дать (сформулировать) определение CUDA

Верный ответ: CUDA (Compute Unified Device Architecture) - аппаратнопрограммный комплекс для использования графических процессоров в качестве сопроцессоров к центральному процессору (для ускорения вычислений или обработки данных)

2. Компетенция/Индикатор: ИД-1_{ОПК-5} Демонстрирует знание современного программного и аппаратного обеспечения информационных и автоматизированных систем

Вопросы, задания

- 1. Двухточечные передачи в *MPI*. Организация блокирующих и неблокирующих посылок/приёмов сообщений. Функции (основные и вспомогательные), используемые при неблокирующих посылках и приёмах. Примеры
- 2. Двухточечные передачи в *MPI*. Организация отложенных посылок/приёмов сообщений. Функции (основные и вспомогательные), используемые при отложенных посылках и приёмах. Примеры использования
- 3. Типы данных в *MPI* программе. Структурированные данные, виды и способы их передачи. Передача структурированных данных с сосредоточенными и распределёнными элементами. Примеры
- 4. Коллективные передачи данных в *MPI*. Виды коллективных операций. Барьерная синхронизация, распределение и сбор данных. Примеры
- 5. Группы процессов и области связи в *MPI*. Виды областей связи. Операции с интракоммуникаторами (функции и примеры). Интеркоммуникаторы
- 6.Стандарт *OpenMP*. Частные и общие данные в параллельной области. Клаузы управления содержимым частных переменных. Способы распределения вычислений по потокам в *OpenMP*. Примеры
- 7. Стандарт *OpenMP*. Способы распределения вычислений по потокам в *OpenMP*. Директивы распределения вычислений, примеры их использования. Директива *for* и её применение
- 8. Стандарт *OpenMP*. Параллельные области программы. Директива *for* и её применение. Способы и средства синхронизации в *OpenMP*
- 9. Многоядерные микропроцессоры. Пути и способы повышения производительности современных микропроцессоров. Классификация многоядерных микропроцессоров 10. Многоядерные микропроцессоры. Классификация многоядерных микропроцессоров.
- Многоядерные микропроцессоры фирм *IBM*, *Intel* и *AMD*, сравнение их архитектур, способов и топологий соединения
- 11.Многоядерные микропроцессоры. Способы повышения производительности современных микропроцессоров. Процессоры фирм *Intel*, *SUN* и альянса *STI*
- 12.Многоядерные микропроцессоры. Классификация многоядерных микропроцессоров. Использование графических ускорителей *NVIDIA*. Концепция *CUDA*
- 13.Ультрапортовая (*UPA*) архитектура. Серверы *SUN* с *UPA*-архитектурой. Конфигурация сервера *SUN Fire 15K*. Назначение доменов в сервере *SUN Fire 15K* 14.Кластерные вычислительные системы (КВС). Сравнение КВС с другими системами. Обобщённая структура кластерных вычислительных систем. Суперкомпьютер *IBM Summit*

15.Массивно-параллельные (MPP) вычислительные системы, их сравнение с системами других классов. Вычислительные системы семейства IBM Blue Gene. Параметры систем IBM Blue Gene/L, IBM Blue Gene/P и IBM Blue Gene/Q. Узел системы IBM Blue Gene/P 16.Вычислительные системы семейства IBM Blue Gene. Параметры системы IBM Blue Gene/L. Узлы (виды узлов) системы IBM Blue Gene/L. Структурная схема BLC ASIC. Структурные компоненты системы IBM Blue Gene/L. Коллективные передачи в IBM Blue Gene/L. Внешние сети и их подключение. Link Card и Service Card 17.Параметры системы IBM Blue Gene/L. Узлы (виды узлов) системы IBM Blue Gene/L. Сети и структуры сетей системы IBM Blue Gene/L. Структура схемы BLL ASIC и схема коммутации портов в ней. Конфигурация торовых колец. Домены в IBM Blue Gene

Материалы для проверки остаточных знаний

1. Напишите как функциями MPI описать посылку из третьего процесса пяти целочисленных элементов с начала второй строки массива A и приём этих элементов в одномерный массив B в первом процессе

Ответы:

Необходимо написать на языке Си две функции MPI (посылки и приёма) сообщения Верный ответ: MPI_Send(&A[2][0],5,MPI_INT,1,...) MPI_Recv(B,5,MPI_INT,3,...)

2. Напишите директиву обозначения параллельной области в OpenMP программе с частной переменной X

Ответы:

Правильно написанная директива (#pragma omp parallel) - +40% верного ответа, правильно написанная клауза (private(X)) - $em\ddot{e}$ +60% верного ответа

Верный ответ: #pragma omp parallel private(X)

3. Какая технология более предпочтительная при создании программ для многоядерных микропроцессоров: MPI, OpenMP или CUDA?

Ответы:

Выбрать правильный ответ из:

- 1. 1. MPI
- 2. 2. OpenMP
- 3. 3. CUDA

Верный ответ: ОрепМР

3. Компетенция/Индикатор: ИД- $1_{O\Pi K-6}$ Демонстрирует знание аппаратных средств и платформ инфраструктуры информационных технологий, видов, назначения, архитектуры, методов разработки и администрирования программно-аппаратных комплексов объекта профессиональной деятельности

Вопросы, задания

- 1. Высокопроизводительные вычислительные системы (ВВС). Цели и области применения ВВС. Проблемы развития многопроцессорных вычислительных систем. Закон Гроша. Гипотеза Минского. Законы Амдала
- 2. Коллективные передачи данных в *MPI*. Виды коллективных операций. Рассылки данных и их редукция. Примеры
- 3. Классификации вычислительных систем. Классификации Флина, Хокни, по доступу к памяти. Достоинства и недостатки систем с различной организацией доступа к памяти
- 4.Высокопроизводительные мультипроцессорные серверы. Требования, предъявляемые к серверам. Ультрапортовая (*UPA*) архитектура. Пример реализации *UPA*-архитектуры
- 5.Кластерные вычислительные системы (КВС). Обобщённая структура КВС. Схемы обеспечения отказоустойчивости в КВС. Кластер МЭИ. Структура узла кластера МЭИ 6.Массивно-параллельные (*МРР*) вычислительные системы, их сравнение с системами других классов. Суперкомпьютер *IBM Summit*

7. Классификации вычислительных систем (Флина, Хокни, по доступу к памяти). Реконфигурируемые вычислительные системы (РВС) на ПЛИС. Концепция, архитектура базового модуля РВС, структуры компонентов и системы в целом. Требования к элементной базе

Материалы для проверки остаточных знаний

1.Сформулируйте второй закон Амдала

Ответы:

Надо сформулировать второй закон Амдала формулой и пояснить его словами Верный ответ: K=s/(sB+-(1-B)); где К -коэффициент ускорения, s - число одинаковых исполнительных устройств, B - доля последовательных вычислений. B=n/N =(число последовательных операций)/(общее число операций)

2. Дайте определение кластерной системы

Ответы:

Надо сформулировать определение. Каждое верное утверждение (помечены цифрами в скобках) даёт 33,(3)% верного ответа

Верный ответ: Кластерная вычислительная система — это много-процессорная ВС с распределённой памятью (1), в которой, процессорные модули представляют собой законченные вычислительные узлы (2) со своей памятью, а в качестве коммуникационной системы используется локальная сеть (3)

3.В вычислительном узле имеются два одноядерных процессора: Intel Pentium 4 и AMD Atlon, имеющие доступ к физически общей памяти. Это какая организация памяти?

Ответы:

Выбрать правильный вариант:

- 1. 1. UMA(SMP)
 - 2. UMA(ASMP)
 - 3. cc-NUMA
 - 4. ncc-NUMA
 - 5. NORMA

Верный ответ: UMA(ASMP)

4. Если в системе несколько процессоров, у каждого процессора имеется свой собственный банк памяти, при этом он предоставляет доступ к нему других процессоров, и банки памяти всех процессоров включены в единое сквозное адресное пространство. Это какая организация памяти?

Ответы:

Выбрать правильный вариант:

- 1. UMA(SMP)
- 2. UMA(ASMP)
- 3. cc-NUMA
- 4. ncc-NUMA
- 5. NORMA

Верный ответ: ncc-NUMA

II. Описание шкалы оценивания

Оценка: 5

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Работа выполнена в рамках "продвинутого" уровня. Ответы даны верно, четко сформулированные особенности практических решений

Оценка: 4

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Работа выполнена в рамках "базового" уровня. Большинство ответов даны верно. В части материала есть незначительные недостатки

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Работа выполнена в рамках "порогового" уровня. Основная часть задания выполнена верно. на вопросы углубленного уровня

Оценка: 2

Описание характеристики выполнения знания: Работа не выполнена или выполнена преимущественно неправильно

III. Правила выставления итоговой оценки по курсу

Оценка определяется в соответствии с Положением о балльно-рейтинговой системе для студентов НИУ «МЭИ» на основании семестровой и экзаменационной составляющих