Министерство науки и высшего образования РФ Федеральное государственное бюджетное образовательное учреждение высшего образования «Национальный исследовательский университет «МЭИ»

Направление подготовки/специальность: 09.04.01 Информатика и вычислительная техника

Наименование образовательной программы: Вычислительные машины, комплексы, системы и сети

Уровень образования: высшее образование - магистратура

Форма обучения: Очная

Оценочные материалы по дисциплине Проблемы организации вычислений

Москва 2023

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ РАЗРАБОТАЛ:

Разработчик

Ш.А. Оцоков

СОГЛАСОВАНО:

Руководитель образовательной программы

MOM N	Подписано электронн	ой подписью ФГБОУ ВО «НИУ «МЭИ»		
	Сведения о владельце ЦЭП МЭИ			
	Владелец	Гольцов А.Г.		
	Идентификатор	R64210572-GoltsovAG-cebbd3e8		

А.Г. Гольцов

Заведующий выпускающей кафедрой

1930 MCM	Подписано электронн	ой подписью ФГБОУ ВО «НИУ «МЭИ»			
	Сведения о владельце ЦЭП МЭИ				
	Владелец	Вишняков С.В.			
	Идентификатор	R35b26072-VishniakovSV-02810d9			

С.В. Вишняков

ОБЩАЯ ЧАСТЬ

Оценочные материалы по дисциплине предназначены для оценки: достижения обучающимися запланированных результатов обучения по дисциплине, этапа формирования запланированных компетенций и уровня освоения дисциплины.

Оценочные материалы по дисциплине включают оценочные средства для проведения мероприятий текущего контроля успеваемости и промежуточной аттестации.

Формируемые у обучающегося компетенции:

- 1. ПК-1 Способен осуществлять проектирование вычислительных комплексов и систем, включая разработку аппаратного, программного обеспечения, системную интеграцию, ввод в эксплуатацию
 - ИД-1 Демонстрирует знание принципов проектирования ЭВМ, микропроцессорных систем и вычислительных систем

и включает:

для текущего контроля успеваемости:

Форма реализации: Защита задания

- 1. Защита лабораторной работы по теме высокоточных вычислений (Лабораторная работа)
- 2. Защита лабораторной работы по теме вычислительные аномалии в алгоритмах вычислительной геометрии (Лабораторная работа)
- 3. Защита лабораторной работы по теме исследование принципов построения распределенной системы виртуальной реальности (Лабораторная работа)
- 4. Защита лабораторной работы по теме модулярной арифметики (Лабораторная работа)
- 5. Разработать программу для реализации высокоточных вычислений (Расчетнографическая работа)

БРС дисциплины

2 семестр

	Веса контрольных мероприятий, %					
Dooron wysywynyny	Индекс	КМ-	КМ-	КМ-	КМ-	КМ-
Раздел дисциплины	KM:	1	2	3	4	5
	Срок КМ:	3	7	11	14	16
Достижения в развитии современных комп	тьютерных					
средств						
Достижения в развитии современных комп	тьютерных	+		+		
средств				1		
Новые области возможных приложений						
Новые области возможных приложений						
Проблема исключения ошибок округления и подходы						
к её решению						
Проблема исключения ошибок округления и подходы			+	+		
к её решению			Г	Г		

Задачи синтеза трехмерных изображений с					
исключением аномалий					
Задачи синтеза трехмерных изображений с					
исключением аномалий		+	+		
Проблема создания распределенных систем					
виртуальной реальности					
Проблема создания распределенных систем				+	ı
виртуальной реальности				Η	T
Машинное обучение как перспективное направление					
организации вычислений					
Машинное обучение как перспективное направление				+	ı
организации вычислений				+	+
Bec KM:	20	20	30	20	10

\$Общая часть/Для промежуточной аттестации\$

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ТЕКУЩЕГО КОНТРОЛЯ

I. Оценочные средства для оценки запланированных результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций

Индекс	Индикатор	Запланированные	Контрольная точка
компетенции	-	результаты обучения по	-
		дисциплине	
ПК-1	ИД-1 _{ПК-1} Демонстрирует	Знать:	Защита лабораторной работы по теме высокоточных вычислений
	знание принципов	методов оптимизации и	(Лабораторная работа)
	проектирования ЭВМ,	умение применять их при	Защита лабораторной работы по теме вычислительные аномалии в
	микропроцессорных	решении задач	алгоритмах вычислительной геометрии (Лабораторная работа)
	систем и вычислительных	профессиональной	Защита лабораторной работы по теме модулярной арифметики
	систем	деятельности	(Лабораторная работа)
		возможности	Защита лабораторной работы по теме исследование принципов
		нетрадиционных систем	построения распределенной системы виртуальной реальности
		счисления для реализации	(Лабораторная работа)
		высокоточных вычислений	Разработать программу для реализации высокоточных вычислений
		существующие методы	(Расчетно-графическая работа)
		анализа накопления	
		ошибок округления	
		Уметь:	
		разрабатывать	
		распределенные	
		информационные системы	
		применять библиотеки	
		высокоточных вычислений	
		обнаруживать ситуации	
		катастрофической потери	
		точности при вычислениях	
		с плавающей точкой	

II. Содержание оценочных средств. Шкала и критерии оценивания

КМ-1. Защита лабораторной работы по теме высокоточных вычислений

Формы реализации: Защита задания

Тип контрольного мероприятия: Лабораторная работа

Вес контрольного мероприятия в БРС: 20

Процедура проведения контрольного мероприятия: Проводится в компьютерном классе,

время 45 мин

Краткое содержание задания:

Написать программы в среде программирования Delphi для вычисления скалярного произведения двух заданных векторов с использованием стандартных арифметических операций, а также, с применением функций библиотеки модулярной арифметики. Исследовать зависимости погрешности вычисления значения заданной функции от переменных α и β при использовании переменных типа single и extended языка программирования Object Pascal, а также, при вычислениях с использованием функций и типов библиотеки MPArith package, реализующей высокоточные вычисления с применением модулярной арифметики

Контрольные вопросы/задания:

Знать: возможно	ти 1.Чем объясняется потеря точности при вычислении
нетрадиционных сист	м скалярного произведения векторов при различных
счисления для реализат	ии альфа и бета ?
высокоточных вычислений	2.В каких ситуациях происходит резкая потеря
	точности компьютерных вычислений с плавающей
	точкой?
Уметь: обнаруживать ситуал	и 1.Приведите пример потери точности при
катастрофической поте	вычислениях с числами с плавающей точкой сильно
точности при вычислениях	с отличающиеся друг от друга по величине?
плавающей точкой	

Описание шкалы оценивания:

Оиенка: 5

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-2. Защита лабораторной работы по теме вычислительные аномалии в алгоритмах вычислительной геометрии

Формы реализации: Защита задания

Тип контрольного мероприятия: Лабораторная работа

Вес контрольного мероприятия в БРС: 20

Процедура проведения контрольного мероприятия: Проводится в компьютерном классе,

время 45 мин

Краткое содержание задания:

В данной работе бригадам будет предложено исследовать следующие алгоритмы: 1) алгоритм построения выпуклой оболочки – алгоритм «упаковки подарка»; 2) «быстрый» алгоритм построения выпуклой оболочки («quick hull»); 3) алгоритм пересечения двух выпуклых многоугольников; 4) инкрементальный алгоритм построения триангуляции Делоне.

Варианты задания приведены ниже в формате:

Вариант Имя файла проекта Имя файла, содержащего алгоритм

- 1 v1_Convex_giftwrap.vcproj convex_giftwrap.h
- 2 v2_Convex_qhull.vcproj convex_qhull.h
- 3 v3_PolygonCross.vcproj polygoncross.h
- 4 v4_Delaunay_incr.vcproj delaunay.h

Задание состоит из следующих пунктов:

- 1) Выбрать алгоритм в соответствии с вариантом задание состоит из следующих пунктов:
- 1) Выбрать алгоритм в соответствии с вариантом задания.
- 2) Изучить заданный алгоритм.
- 3) Скомпилировать имеющийся алгоритм с параметром типа double.
- 4) Запустить алгоритм на наборе данных, результат для которого известен, убедиться в правильности работы алгоритма.
- 5) Подобрать набор исходных данных, для которых заданный алгоритм даёт неверный результат (при использовании типа данных float или double).
- Обратите внимание на то, что исходные данные должны быть точно представимы в формате double (или float, если аномалия генерируется для функции, использующей этот тип данных).
- 6) Скомпилировать алгоритм с типом Rational. Запустить его с обоими наборами входных данных.

Сравнить полученные результаты с результатами, полученными при использовании вычислений с плавающей запятой (пункты 4 и 5 задания).

7) Скомпилировать алгоритм с типом ErrorControlled. Запустить его с обоими наборами входных данных.

Сравнить полученные результаты с результатами, полученными при использовании вычислений с плавающей запятой (пункты 4 и 5 задания).

8) Сгенерировать набор данных (порядка 1000 точек), запустить для него все реализации алгоритма (использующие типы float, double, Rational, ErrorControlled) Измерить время их выполнения

Контрольные вопросы/задания:

Знать: методов оптимизации и	1.Чем отличается тип ErrorControlled от типа
умение применять их при	Rational?
решении задач	
профессиональной деятельности	

Уметь: применять библиотеки	1. Сравните по скорости вычислений на примере
высокоточных вычислений	исследуемого алгоритма какой из типов быстрее
	определяется конечный результат

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 50 Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется

если задание преимущественно выполнено

Оценка: 2

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-3. Защита лабораторной работы по теме модулярной арифметики

Формы реализации: Защита задания

Тип контрольного мероприятия: Лабораторная работа

Вес контрольного мероприятия в БРС: 30

Процедура проведения контрольного мероприятия: Проводится в компьютерном классе,

время 45 мин

Краткое содержание задания:

Задание 1.

- 1. Разработать программу для реализации вычислений с исключением ошибок округления по нескольким модулям по схеме приведенной в теоретической части, с 3 арифметическими операциями. Реализовать прямое и обратное преобразование чисел вида (1) в позиционную систему счисления внутри класса. Проверить работу этой программы на примере выполнения арифметических операций с числами вида (1) Залание 2.
- 2. Решить задачу последовательно на одном компьютере по нескольким модулям. Вариант 1.

Найти сумму N случайных положительных дробей у которых степень знаменателя изменяется в некотором диапазоне и числитель случайное число, принадлежащее некоторому диапазону. Для этой задачи определить какой максимально возможный по величине числитель и знаменатель дроби возможен и исходя из этой дроби и выбрать модули

Вариант 2.

Найти скалярное произведение двух векторов с N координатами, каждая из которых положительная случайная дробь у которых степень знаменателя изменяется в некотором диапазоне и числитель случайное число, принадлежащее некоторому диапазону. Для этой задачи определить какой максимально возможный по величине числитель и знаменатель дроби возможен и исходя из этой дроби и выбрать модули

Контрольные вопросы/задания:

Знать:	возможности	1.Опишите этапы процесса высокоточных
нетрадиционных	систем	вычислений в модулярной арифметике.
счисления для	реализации	
высокоточных вычислений		
Знать: методов оптимизации и		1. Какие достоинства и недостатки модулярной
умение применя	гь их при	арифметики вы знаете?
решении	задач	2.За счет чего достигается ускорение в модулярной
профессиональной деятельности		арифметике?

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-4. Защита лабораторной работы по теме исследование принципов построения распределенной системы виртуальной реальности

Формы реализации: Защита задания

Тип контрольного мероприятия: Лабораторная работа

Вес контрольного мероприятия в БРС: 20

Процедура проведения контрольного мероприятия: Проводится в компьютерном классе, время 45 мин

Краткое содержание задания:

- 1) Получить задание у преподавателя.
- 2) Разработать клиентское приложение с использованием языка C++ и библиотеки Terrain:
- Создать свой класс клиентского приложения, унаследовав его от абстрактного класса
 ТА Application.
- Реализовать метод приложения Init(),создав и проинициализировав в нем основные компоненты приложения с помощью менеджера ресурсов TA_ResourceManager: окно графического вывода TA_Window, подсистему визуализации TA_Renderer, виртуальную камеру TA Camera, таймер TA Timer.
- Реализовать метод Run(), организовав в нем основной цикл приложения по следующему шаблону:

```
while (!m_renderer->Done())
{ double curTime = m_timer->GetTime();
    m_renderer->Prepare();
```

m_world->Simulate(curTime);
m_renderer->RenderFrame(); }

- Реализовать метод Finalize(), завершающий работу приложения.
- Указать в настройках разработанного приложения IP адрес сервера PCBP, к которому производиться подключение (получить у преподавателя).
- 3) Запустить созданное приложение и убедиться, что оно корректно подключилось к серверу.
- 4) Моделирование ВР.

В метод Init() приложения добавить необходимые действия для создания указанной в задании части виртуального мира.

Полученный исходный код должен содержать следующие действия:

- создание объектов BP, задание атрибутов их состояний, написание контроллеров движения.
 - загрузка трехмерных моделей из файла и назначение их объектам.
 - построение подграфа сцены, содержащего созданные объекты.
 - добавление подграфа сцены к общему графу сцены.
- 5) Запустить модифицированное приложение.

Проверить, что созданный подграф сцены стал доступен другим пользователям. Варианты заданий Варианты заданий будут представлять собой создание различных виртуальных объектов, назначение им различных контроллеров движения и установление между ними иерархических взаимосвязей

Контрольные вопросы/задания:

Знать: существу	ющие методы	1. Что такое распределенная система виртуальной
анализа накопл	іения ошибок	реальности?
округления		2. Какие виды архитектур взаимодействия процессов
		вы знаете?
		3. Как происходит предсказание состояний объектов?
Уметь:	разрабатывать	1.Опишите механизм синхронизации времени в
распределенные		распределенной системе виртуальной реальности
информационные системы		

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-5. Разработать программу для реализации высокоточных вычислений

Формы реализации: Защита задания

Тип контрольного мероприятия: Расчетно-графическая работа

Вес контрольного мероприятия в БРС: 10

Процедура проведения контрольного мероприятия: Ориентирована на несколько недель.

Краткое содержание задания:

Вариант №1.

- 1.1. Разработать программу для реализации высокоточных вычислений на основе рациональных приближений иррациональных чисел.
- 1.2. Выявление нежелательных условий возникновения вычислительных аномалий при решении типовых задач геометрического моделирования.
- 1.3. Крупномасштабные PCBP (large-scale DVE, CVE). Взять какую-нибудь существующую систему и разобраться в ее архитектуре
- 1.4.Интеграция информационных источников с использованием кластер- анализа («обучение» без учителя)

Вариант №2.

- 2.1.Исследование эффекта исчезновения целых чисел в формате с плавающей точкой.
- 2.2.Вычислительные аномалии. Их проявление в результатах алгоритмов вычислительной геометрии.
- 2.3. Привести примеры и провести анализ способов организации распределенных вычислений с динамической конфигурацией
- 2.4.Изучить аналитическую платформу DEDUCTOR

Вариант №3.

- 3.1.Программно реализовать вычисления в модулярном формате «с перемещаемой точкой».
- 3.2.Изучить особенности алгоритмов вычислительной геометрии
- 3.3.Изучить и провести анализ методов компенсации сетевых ограничений в PCBP (deadreckoning, relevance filtering, data compression)
- 3.4. Изучить возможности автоматической классификации текстовых документов

Контрольные вопросы/задания:

Знать: существующие	методы	1. Что такое вычислительные аномалии?
анализа накопления	ошибок	
округления		

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 50 Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

2 семестр

Форма промежуточной аттестации: Экзамен

Пример билета

- 1. Планирование территориально-распределенных вычислений в режиме многозадачности.
- 2. Преимущества модулярной системы счисления и отличие от позиционной. Возможности точного оперирования с рациональными числами..
- 3. Выводы по типовому расчёту

Процедура проведения

Время, условия допуска, порядок пересдачи

- I. Перечень компетенций/индикаторов и контрольных вопросов проверки результатов освоения дисциплины
- **1. Компетенция/Индикатор:** ИД- $1_{\Pi K-1}$ Демонстрирует знание принципов проектирования ЭВМ, микропроцессорных систем и вычислительных систем

Вопросы, задания

- 1.Планирование территориально-распределенных вычислений в режиме многозадачности
- 2. Преимущества модулярной системы, счисления в отличие от позиционной.

Возможности точного оперирования с рациональными числами

- 3.Проблема формирования виртуальных организаций в обеспечении эффективного управления сетью кластеров GRID
- 4.Вычислительные аномалии. Вычисления с исключением ошибок округления
- 5. Высокоточные вычисления и их возможное применение
- 6.Особенности организации и типизация многопроцессорных систем. Многоядерные ЭВМ и перспективы наращивания вычислительной мощности.
- 7. Неравномерное распределение чисел с плавающей точкой. Примеры потери точности компьютерных вычислений

Материалы для проверки остаточных знаний

в) 2^-p

Верный ответ: б)

3.5 С чем связана потеря точности в арифметике с плавающей точкой при вычислениях с сильно отличающимися друг от друга величинами?

Ответы:

- а) с неравномерным распределением чисел с плавающей точкой
- б) с большими ошибками представления малых чисел
- в) с большими ошибками представления больших чисел

Верный ответ: а) с неравномерным распределением чисел с плавающей точкой

4.8 Всегда ли выполняются законы алгебры для машинных арифметических операций с плавающей точкой, выберите верный вариант ответа.

Ответы:

- а) Не всегда из-за ограниченной памяти компьютера, неспособного представлять вещественные числа абсолютно точно в формате с плавающей точкой
- б) Не всегда из-за того что используется формат с плавающей точкой двойной точности а не тройной
- в) Законы алгебры всегда справедливы для операций с числами с плавающей точкой внутри допустимого диапазона представления, но они не выполняются для чисел выходящих за пределы этого диапазона

Верный ответ: а) Не всегда из-за ограниченной памяти компьютера, неспособного представлять вещественные числа абсолютно точно в формате с плавающей точкой

5.9 Что происходит при делении на ноль в формате с плавающей точкой?

Ответы:

- а) возникает ошибка деления на ноль
- б) ошибок нет
- в) результат равен максимальному представимому числу в формате с плавающей точкой Верный ответ: б) ошибок нет
- 6.10 В чём недостатки модулярной системы счисления?

Ответы:

- а) нет недостатков
- б) сложность выполнения немодульных операций
- в) сложность выполнения модульных операций

Верный ответ: б)

7.11 За счет возникаю ошибки в задачах вычислительной геометрии?

Ответы

- а) за счёт особенностей формата с плавающей точкой
- б) за счет недостаточной точности вычислений
- в) они не возникают

Верный ответ: а) и б)

8.12 Требуется ли синхронизация времени в распределенной системе виртуальной реальности?

Ответы:

- а) да требуется для согласованной работы объектов виртуальной реальности
- б) нет не требуется

Верный ответ: б)

II. Описание шкалы оценивания

Оценка: 5

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Работа выполнена в рамках "продвинутого" уровня. Ответы даны верно, четко сформулированные особенности практических решений

Оценка: 4

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Работа выполнена в рамках "базового" уровня. Большинство ответов даны верно. В части материала есть незначительные недостатки

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Работа выполнена в рамках "порогового" уровня. Основная часть задания выполнена верно. на вопросы углубленного уровня

Оценка: 2

Описание характеристики выполнения знания: Работа не выполнена или выполнена преимущественно неправильно

III. Правила выставления итоговой оценки по курсу