Министерство науки и высшего образования РФ Федеральное государственное бюджетное образовательное учреждение высшего образования «Национальный исследовательский университет «МЭИ»

Направление подготовки/специальность: 09.04.01 Информатика и вычислительная техника

Наименование образовательной программы: Вычислительные машины, комплексы, системы и сети

Уровень образования: высшее образование - магистратура

Форма обучения: Очная

Оценочные материалы по дисциплине Структурный анализ и проектирование информационных систем

Москва 2023

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ РАЗРАБОТАЛ:

 Сведения о владельце ЦЭП МЭИ

 Владелец
 Гольцов А.Г.

 Идентификатор
 R64210572-GoltsovAG-cebbd3e8

СОГЛАСОВАНО:

Руководитель образовательной программы

MON A	Подписано электронной подписью ФГБОУ ВО «НИУ «МЭИ»			
	Сведения о владельце ЦЭП МЭИ			
	Владелец	Гольцов А.Г.		
	Идентификатор	R64210572-GoltsovAG-cebbd3e8		

Подписано электронной подписью ФГБОУ ВО «НИУ «МЭИ»

А.Г. Гольцов

А.Г. Гольцов

Заведующий выпускающей кафедрой

1930 M3M	Подписано электронн	ой подписью ФГБОУ ВО «НИУ «МЭИ»	
	Сведения о владельце ЦЭП МЭИ		
	Владелец	Вишняков С.В.	
	Идентификатор	R35b26072-VishniakovSV-02810d9	

С.В. Вишняков

ОБЩАЯ ЧАСТЬ

Оценочные материалы по дисциплине предназначены для оценки: достижения обучающимися запланированных результатов обучения по дисциплине, этапа формирования запланированных компетенций и уровня освоения дисциплины.

Оценочные материалы по дисциплине включают оценочные средства для проведения мероприятий текущего контроля успеваемости и промежуточной аттестации.

Формируемые у обучающегося компетенции:

1. ПК-1 Способен осуществлять проектирование вычислительных комплексов и систем, включая разработку аппаратного, программного обеспечения, системную интеграцию, ввод в эксплуатацию

ИД-1 Демонстрирует знание принципов проектирования ЭВМ, микропроцессорных систем и вычислительных систем

и включает:

для текущего контроля успеваемости:

Форма реализации: Компьютерное задание

- 1. «Генерация SQL-описания реляционной базы данных по диаграмме «сущность-связь»», «Постановка задачи проектирования ИС на основе реляционной базы данных и агрегации деловых процедур ранее построенной функциональной модели» (Лабораторная работа)
- 2. «Представление и спецификация процедур сети асинхронными автоматными компонентами. Спецификация процедур средствами структурированного языка», «Разработка ER-диаграммы для содержимого хранилищ данных построенной модели деятельности. Верификация построенной ER-диаграммы» (Лабораторная работа)
- 3. «Разработка иерархии диаграмм потока данных. Верификация построенной функциональной модели», «Построение фрагмента процедурной DF-сети для выделенных терминальных компонентов модели деятельности. Спецификация внешних сущностей, потоков и хранилищ процедурной сети» (Лабораторная работа)
- 4. «Разработка неформальной вербальной спецификации фрагмента системы управления и определение контекста выделенного фрагмента системы управления », «Разработка контекстной и подконтекстной DF-диаграмм модели деятельности, протекающей в выделенном фрагменте системы управления» (Лабораторная работа)

БРС дисциплины

3 семестр

	Веса контрольных мероприятий, %				
Рослед имерингини	Индекс	КМ-	КМ-	КМ-	КМ-
Раздел дисциплины	KM:	1	2	3	4
	Срок КМ:	4	8	12	16
Введение в структурный анализ (СА). Системы управления и					
информационные системы. Принципы CA, CASE-с	истемы				
Введение в структурный анализ (СА). Системы управления и					
информационные системы. Принципы CA, CASE-системы +					
Методы и средства функционального моделирования СУ.					
Нотации, используемые для моделирования СУ					

Методы и средства функционального моделирования СУ.				
Нотации, используемые для моделирования СУ	+			
Диаграммы потока данных и процедурные DF-схемы. Понятие				
деловой процедуры и схемы				
Диаграммы потока данных и процедурные DF-схемы. Понятие				
деловой процедуры и схемы		+		
Представление процедурных DF-схем асинхронными				
автоматными схемами				
Представление процедурных DF-схем асинхронными			+	
автоматными схемами				
Формализованное описание асинхронных автоматных схем.				
Агрегация деловых процедур в схемах				
Формализованное описание асинхронных автоматных схем.			+	
Агрегация деловых процедур в схемах				
Спецификация графических компонентов процедурных DF-				
схем. Постановка задачи проектирования информационных				
систем				
Спецификация графических компонентов процедурных DF-				
схем. Постановка задачи проектирования информационных				+
систем				
Методы и средства информационного моделирования СУ.				
Диаграммы «сущность-связь». Нотации ER-диаграмм				
Методы и средства информационного моделирования СУ.				+
Диаграммы «сущность-связь». Нотации ER-диаграмм				T
Использование информационных моделей для проектирования				
информационных систем				
Использование информационных моделей для проектирования]
информационных систем				+
Вес КМ:	25	25	25	25

\$Общая часть/Для промежуточной аттестации\$

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ТЕКУЩЕГО КОНТРОЛЯ

I. Оценочные средства для оценки запланированных результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций

Индекс	Индикатор	Запланированные	Контрольная точка
компетенции	-	результаты обучения по	•
		дисциплине	
ПК-1	ИД-1 _{ПК-1} Демонстрирует	Знать:	«Разработка неформальной вербальной спецификации фрагмента
	знание принципов	методы анализа	системы управления и определение контекста выделенного фрагмента
	проектирования ЭВМ,	информационного	системы управления », «Разработка контекстной и подконтекстной DF-
	микропроцессорных	пространства систем	диаграмм модели деятельности, протекающей в выделенном
	систем и вычислительных	управления сложных	фрагменте системы управления» (Лабораторная работа)
	систем	организационно-	«Разработка иерархии диаграмм потока данных. Верификация
		технических комплексов,	построенной функциональной модели», «Построение фрагмента
		методы постановки задач	процедурной DF-сети для выделенных терминальных компонентов
		проектирования баз	модели деятельности. Спецификация внешних сущностей, потоков и
		данных информационных	хранилищ процедурной сети» (Лабораторная работа)
		систем	«Представление и спецификация процедур сети асинхронными
		методологию структурного	автоматными компонентами. Спецификация процедур средствами
		анализа систем управления	структурированного языка», «Разработка ER-диаграммы для
		сложных организационно-	содержимого хранилищ данных построенной модели деятельности.
		технических комплексов,	Верификация построенной ER-диаграммы» (Лабораторная работа)
		включая постановку задач	«Генерация SQL-описания реляционной базы данных по диаграмме
		проектирования	«сущность-связь»», «Постановка задачи проектирования ИС на основе
		информационных систем	реляционной базы данных и агрегации деловых процедур ранее
		для этих комплексов	построенной функциональной модели» (Лабораторная работа)
		методы структурного	
		анализа систем управления	
		сложных организационно-	
		технических комплексов,	
		методы постановки задач	
		проектирования	

информационных систем основные методы проектирования и реализации информационных систем, основанные на применении структурных моделей, а также функциональные возможности и рабочие характеристики наиболее часто применяемых инструментальных CASEсистем Уметь: применять методы построения графических моделей управленческой деятельности с использованием CASEсистем применять методы построения графических моделей информационного пространства управленческой деятельности с использованием CASEсистем применять CASE-средства для построения структурных моделей, осуществлять переход к

объектноориентированным моделям, обеспечивающим постановку задач проектирования информационных систем при помощи существующих технологий быстрой разработки программного обеспечения применять освоенные в процессе обучения методы и инструментальные программные средства (CASE-средства) для решения типовых задач анализа систем управления и проектирования информационных систем

II. Содержание оценочных средств. Шкала и критерии оценивания

KM-1. «Разработка неформальной вербальной спецификации фрагмента системы управления и определение контекста выделенного фрагмента системы управления », «Разработка контекстной и подконтекстной DF-диаграмм модели деятельности, протекающей в выделенном фрагменте системы управления»

Формы реализации: Компьютерное задание

Тип контрольного мероприятия: Лабораторная работа

Вес контрольного мероприятия в БРС: 25

Процедура проведения контрольного мероприятия: Домашняя подготовка и выполнение лабораторной работы. Демонстрация отчета о выполненной работе и защита результатов в форме устных ответов на вопросы преподавателя

Краткое содержание задания:

Контрольное мероприятие направлено на проверку знаний возможного контекста управленческой деятельности и умения разработать DF-диаграммы модели деятельности, протекающей в выделенном фрагменте системы управления

Контрольные вопросы/задания:

топтрольные вопросы, задания.	
Знать: методологию	1. Какие методы структурного планирование и
структурного анализа систем	анализа используются при проектировании систем
управления сложных	управления сложных организационно-технических
организационно-технических	комплексов
комплексов, включая постановку	2. Что такое диаграммы функциональной
задач проектирования	декомпозиции (FD -диаграммы) и потоков данных
информационных систем для этих комплексов	(DF-диаграммы), диаграммы сущность-связь $(ER$ -диаграммы)
JIMA ROMINIERCOB	· · · · · · · · · · · · · · · · · · ·
	3. Определите понятие управленческой деятельности, как человеко-машинной деятельности, направленной
	на выполнение функций и решение задач управления.
	Перечислите свойства управленческой деятельности,
	основные функции и задачи управления
	4.Определите понятие информационной системы
	(ИС) как совокупности средств аппаратного,
	программного, информационного и методического
	обеспечения
Уметь: применять освоенные в	1.Продемонстрируйте способы верификации
процессе обучения методы и	диаграммных моделей в системе VA 2008
инструментальные программные	2.Построить <i>DF</i> -модель, отражающую деятельность
средства (CASE-средства) для	учебного центра по записи студентов на
решения типовых задач анализа	дополнительные лекционные курсы. При построении
систем управления и	DF-модели предложить структуру базы данных,
проектирования	включающей конкретные взаимосвязанные таблицы,
проектирования информационных систем	включающей конкретные взаимосвязанные гаолицы, необходимые данному учебному центру, и
информационных систем	использовать перечисленные таблицы, представив их
	в виде внешних хранилищ данных
	з.Построить <i>DF</i> -модель, отражающую деятельность
	5. Построить <i>DF</i> -модель, отражающую деятельность библиотеки по обслуживанию читателей. При
	ополиотски по оослуживанию читателеи. При

построении DF -модели предложить структуру базы
данных, включающей конкретные взаимосвязанные
таблицы, и использовать перечисленные таблицы,
представив их в виде внешних хранилищ данных.

Описание шкалы оценивания:

Оиенка: 5

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Оценка «ОТЛИЧНО» выставляется студенту, который показал, что владеет материалом изученного раздела, если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка «Хорошо» выставляется студенту, если большинство вопросов раскрыто, выбрано верное направление исследования, но при этом допущены непринципиальные ошибки

Оценка: 3

Нижний порог выполнения задания в процентах: 40

Описание характеристики выполнения знания: Оценка «Удовлетворительно» выставляется студенту, если задание выполнено преимущественно верно, однако были допущены существенные ошибки, исправленные затем самостоятельно студентом

Оценка: 2

Описание характеристики выполнения знания: Оценка «Неудовлетворительно» выставляется студенту, если задание выполнено неверно или преимущественно неверно, допущены принципиальные ошибки

KM-2. «Разработка иерархии диаграмм потока данных. Верификация построенной функциональной модели», «Построение фрагмента процедурной DF-сети для выделенных терминальных компонентов модели деятельности. Спецификация внешних сущностей, потоков и хранилищ процедурной сети»

Формы реализации: Компьютерное задание

Тип контрольного мероприятия: Лабораторная работа

Вес контрольного мероприятия в БРС: 25

Процедура проведения контрольного мероприятия: Домашняя подготовка и выполнение лабораторной работы. Демонстрация отчета о выполненной работе и защита результатов в форме устных ответов на вопросы преподавателя

Краткое содержание задания:

Контрольное мероприятие направлено на проверку знаний о необходимости иерархии диаграмм потока данных и умения построить фрагмент процедурной DF-сети для выделенных терминальных компонентов с описанием внешних сущностей, потоков и хранилищ процедурной сети

Контрольные вопросы/задания:

Знать:	методы	структурного	1. Уточните сущность основных принципов
анализа	систем	управления	структурного анализа – декомпозиция и
сложны	x op:	ганизационно-	иерархическая упорядоченность.
техниче	ских компл	ексов, методы	2. Какие принципы положены в основу
постано	вки	задач	функционального моделирования управленческой

проектирования информационных систем	деятельности, основанного на применении FD- и DF- диаграмм. Уточните общую структуру комплексной функциональной модели
Уметь: применять методы построения графических моделей управленческой деятельности с использованием CASE-систем	1. Укажите возможности графического моделирования управленческой деятельности при помощи иерархии DF -диаграмм на примере базовой диаграммной нотации для DF -диаграмм — графической нотации Гейна-Сарсона
	2.Продемонстрируйте правила композиции графических компонентов <i>DF</i> -диаграмм с использованием нотации Гейна-Сарсона

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Оценка «ОТЛИЧНО» выставляется студенту, который показал, что владеет материалом изученного раздела, если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка «Хорошо» выставляется студенту, если большинство вопросов раскрыто, выбрано верное направление исследования, но при этом допущены непринципиальные ошибки

Оценка: 3

Нижний порог выполнения задания в процентах: 40

Описание характеристики выполнения знания: Оценка «Удовлетворительно» выставляется студенту, если задание выполнено преимущественно верно, однако были допущены существенные ошибки, исправленные затем самостоятельно студентом

Оиенка: 2

Описание характеристики выполнения знания: Оценка «Неудовлетворительно» выставляется студенту, если задание выполнено неверно или преимущественно неверно, допущены принципиальные ошибки

КМ-3. «Представление и спецификация процедур сети асинхронными автоматными компонентами. Спецификация процедур средствами структурированного языка», «Разработка ER-диаграммы для содержимого хранилищ данных построенной модели деятельности. Верификация построенной ER-диаграммы»

Формы реализации: Компьютерное задание

Тип контрольного мероприятия: Лабораторная работа

Вес контрольного мероприятия в БРС: 25

Процедура проведения контрольного мероприятия: Домашняя подготовка и выполнение лабораторной работы. Демонстрация отчета о выполненной работе и защита результатов в форме устных ответов на вопросы преподавателя

Краткое содержание задания:

Контрольное мероприятие направлено на проверку знаний принципов построения асинхронных автоматных схем (AAC) и возможностей переход от процедурных DF-схем

к AAC, а также умения разработать ER-диаграммы для содержимого хранилищ данных построенной модели деятельности и провести верификацию построенной ER-диаграммы

Контрольные вопросы/задания:

Знать: методы анализа	1. Какие существуют способы построения
информационного пространства	процедурной DF -схемы по имеющейся модели
систем управления сложных	управленческой деятельности с учетом агрегации
организационно-технических	деловых процедур в DF -схемах
комплексов, методы постановки	2. Какие принципы положены в спецификацию
задач проектирования баз	процедурных DF -схем с использованием
данных информационных систем	структурированного языка, основанного на
	представлении DF -схем асинхронными автоматными
	схемами (ААС)
Уметь: применять методы	1.Продемонстрируйте на конкретном примере
построения графических	возможность перехода от процедурных DF -схем к
моделей информационного	ААС и целесообразность представления деловой
пространства управленческой	процедуры автоматным компонентом ААС,
деятельности с использованием	реагирующим на наличие/отсутствие сообщений и
CASE-систем	текущее время
	2.Определите общий синтаксис языка для
	спецификации внешних сущностей, хранилищ
	данных, деловых процедур и потоков данных.
	3.Продемонстрируйте элементы разработки ER-
	диаграммы для содержимого хранилищ данных
	построенной модели деятельности
	4.Построить <i>ER</i> -модель информационного
	пространства учебного центра, включающую ниже
	перечисленные сущности и необходимые связи
	между ними. Учащийся, Учебная группа,
	Дисциплина, Поток, Аудитория, Преподаватель,

Описание шкалы оценивания:

Оценка: 5

внешние ключи

Расписание занятий. Атрибуты каждой сущности определить самостоятельно. Назначить первичные и

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Оценка «ОТЛИЧНО» выставляется студенту, который показал, что владеет материалом изученного раздела, если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка «Хорошо» выставляется студенту, если большинство вопросов раскрыто, выбрано верное направление исследования, но при этом допущены непринципиальные ошибки

Оценка: 3

Нижний порог выполнения задания в процентах: 40

Описание характеристики выполнения знания: Оценка «Удовлетворительно» выставляется студенту, если задание выполнено преимущественно верно, однако были допущены существенные ошибки, исправленные затем самостоятельно студентом

Оценка: 2

Описание характеристики выполнения знания: Оценка «Неудовлетворительно» выставляется студенту, если задание выполнено неверно или преимущественно неверно, допущены принципиальные ошибки

KM-4. «Генерация SQL-описания реляционной базы данных по диаграмме «сущность-связь»», «Постановка задачи проектирования ИС на основе реляционной базы данных и агрегации деловых процедур ранее построенной функциональной модели»

Формы реализации: Компьютерное задание

Тип контрольного мероприятия: Лабораторная работа

Вес контрольного мероприятия в БРС: 25

Процедура проведения контрольного мероприятия: Домашняя подготовка и выполнение лабораторной работы. Демонстрация отчета о выполненной работе и защита результатов в форме устных ответов на вопросы преподавателя

Краткое содержание задания:

Контрольное мероприятие направлено на проверку знаний принципов генерации SQLописания реляционной базы данных по диаграмме «сущность-связь» и умения корректно сформулировать задачу проектирования ИС на основе реляционной базы данных и агрегации деловых процедур ранее построенной функциональной модели

Контрольные вопросы/задания:

Знать: основные методы проектирования и реализации информационных систем, основанные на применении структурных моделей, а также функциональные возможности и рабочие характеристики наиболее часто применяемых инструментальных САSE-систем	1. Сформулируйте принципы концептуального информационного моделирования. 2. Какие существуют способы реляционного описания и проектирования интегрированной базы данных предприятия
Уметь: применять CASE- средства для построения структурных моделей, осуществлять переход к объектно-ориентированным моделям, обеспечивающим постановку задач проектирования информационных систем при помощи существующих технологий быстрой разработки программного обеспечения	1.Продемонстрируйте на конкретном примере диаграммы сущность-связь в нотации Баркера и переход от <i>ER</i> -диаграмм в нотации Баркера к диаграммам в нотации Чена 2.Опишите процедуру перехода от <i>ER</i> -диаграмм к структуре реляционных баз данных

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 80 Описание характеристики выполнения знания: Оценка «ОТЛИЧНО» выставляется студенту, который показал, что владеет материалом изученного раздела, если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка «Хорошо» выставляется студенту, если большинство вопросов раскрыто, выбрано верное направление исследования, но при этом допущены непринципиальные ошибки

Оценка: 3

Нижний порог выполнения задания в процентах: 40

Описание характеристики выполнения знания: Оценка «Удовлетворительно» выставляется студенту, если задание выполнено преимущественно верно, однако были допущены существенные ошибки, исправленные затем самостоятельно студентом

Оценка: 2

Описание характеристики выполнения знания: Оценка «Неудовлетворительно» выставляется студенту, если задание выполнено неверно или преимущественно неверно, допущены принципиальные ошибки

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

3 семестр

Форма промежуточной аттестации: Экзамен

Пример билета

- 1. Система управления предприятием как объект автоматизации. Автоматизированная система управления (АСУ) предприятия.
- 2. Понятие атрибута в концептуальной информационной модели. Ключи. Первичные и альтернативные ключи. Примеры.
- 3. Задача.

Процедура проведения

Экзамен проводится по билетам в аудитории. Компьютерная техника не требуется. На подготовку ответа дается 60 минут. Запрещается использование любых вспомогательных материалов

I. Перечень компетенций/индикаторов и контрольных вопросов проверки результатов освоения дисциплины

1. Компетенция/Индикатор: ИД-1_{ПК-1} Демонстрирует знание принципов проектирования ЭВМ, микропроцессорных систем и вычислительных систем

Вопросы, задания

- 1.Система управления предприятием как объект автоматизации. Автоматизированная система управления (АСУ) предприятия.
- 2.Интегрированная информационная система в составе АСУ. Логическая структура интегрированной информационной системы.
- 3. Функциональные подсистемы интегрированной информационной системы. Стандарты интегрированных информационных систем.
- 4. Понятие структурного системного анализа. Принципы структурного анализа систем управления.
- 5. Применение CASE-средств для решения задач структурного анализа систем управления и проектирования интегрированных информационных систем.
- 6. Методология создания интегрированных информационных систем. Особенности фаз анализа требований и проектирования.
- 7. Методы и нотации, применяемые для построения моделей систем управления.
- 8. Метод и нотация Гейна-Сарсона для построения моделей деятельности систем управления.
- 9. Структура модели деятельности системы управления в нотации Гейна-Сарсона. Детализация процессов управления и разбиение потоков данных. Деловые процедуры и процедурные схемы.
- 10.Спецификация хранилищ и потоков данных в модели деятельности системы управления. Примеры.
- 11.Спецификация деловых процедур и внешних сущностей в модели деятельности системы управления. Условия активации деловых процедур и их выполнение. Примеры.
- 12. Цепочки (зоны) активации деловых процедур. Понятие задачи управления. Примеры.
- 13. Моделирование информационного пространства систем управления. Концептуальные информационные модели.

- 14. Методы и нотации, применяемые для построения концептуальных информационных моделей. Нотации Баркера и Чена.
- 15. Понятие сущности в концептуальной информационной модели. Конкретизация и обобщение сущностей. Примеры.
- 16.Понятие связи в концептуальной информационной модели. Кардинальность связей. Примеры.
- 17. Понятие атрибута в концептуальной информационной модели. Ключи. Первичные и альтернативные ключи. Примеры.
- 18. Использование составных сущностей в нотации Баркера. Примеры.
- 19. Принципы построения концептуальных информационных моделей. Понятие локального представления. Интеграция локальных представлений. Пример локального представления.
- 20.Построение локальных представлений концептуальной информационной модели на основе анализа документов.
- 21. Построение локальных представлений концептуальной информационной модели на основе анализа содержимого хранилищ модели системы управления.
- 22. Способы интеграции локальных представлений. Интегрированная модель информационного пространства системы управления.
- 23. Реляционная модель данных. Формализация отношений. Реляционные таблицы и базы данных.
- 24.Семантическая и ссылочная целостность реляционных баз данных. Функциональная зависимость атрибутов в реляционных таблицах. Ключи.
- 25. Первая и вторая нормальные формы. Недостатки реляционных таблиц, находящихся в первой и второй нормальных формах. Методы приведения реляционных таблиц ко второй нормальной форме.
- 26. Третья и третья усиленная нормальная форма (нормальная форма Бойса-Кодда) реляционных таблиц. Методы приведения реляционных таблиц к третьей усиленной нормальной форме.
- 27. Правила преобразования концептуальной информационной модели в реляционную модель данных.
- 28. Реинжиниринг системы управления, основанной на применении интегрированной информационной системы. Проблема устойчивости информационного пространства.
- 29. Проблема создания прикладного программного обеспечения для интегрированных информационных систем. Функциональные подсистемы и функциональные компоненты программного обеспечения ИС.
- 30.Построить DF-модель, отражающую деятельность учебного центра по записи студентов на дополнительные лекционные курсы.

Учебный центр располагает базой данных, включающей следующие взаимосвязанные таблицы: Учащиеся, Учебные группы, Дисциплины, Потоки, Аудитории, Преподаватели, Расписание занятий.

При построении DF-модели использовать перечисленные таблицы, представив их в виде внешних накопителей данных.

31.Построить DF-модель, отражающую деятельность горкиносправки по обслуживанию запросов кинолюбителей о прокате фильмов в кинотеатрах города.

Горкиносправка располагает базой данных, включающей следующие взаимосвязанные таблицы: Жанры, Фильмы, Режиссеры, Актеры, Кинотеатры, Залы кинотеатров, Сеансы. При построении DF-модели использовать перечисленные таблицы, представив их в виде внешних накопителей данных.

32.Построить DF-модель, отражающую деятельность библиотеки по обслуживанию читателей.

Библиотека располагает базой данных, включающей следующие взаимосвязанные таблицы: Литературные произведения, Авторы, Книги, Издательства, Экземпляры книг,

Читатели, Библиотечные формуляры.

При построении DF-модели использовать перечисленные таблицы, представив их в виде внешних накопителей данных.

Материалы для проверки остаточных знаний

- 1.Приведите примеры применения *CASE*-средств для решения задач структурного анализа систем управления и проектирования интегрированных информационных систем
- 2. Какие принципы положены в основу построения концептуальных информационных моделей. Приведите примеры их применения
- 3.Уточните понятия структурного системного анализа, принципы структурного анализа систем управления
- 4.Опишите спецификацию деловых процедур и внешних сущностей в модели деятельности системы управления .
- 5. Приведите примеры, характеризующие условия активации деловых процедур
- 6.В чем сущность метода и нотации Гейна-Сарсона для построения моделей деятельности систем управления
- 7. Приведите примеры использования составных сущностей в нотации Баркера
- 8.Покажите на примере условия взаимного преобразования моделей, заданных в нотациях Баркера и Чена
- 9. Какие методы и нотации применяются для построения концептуальных информационных моделей
- 10. Уточните понятие связи в концептуальной информационной модели. Кардинальность связей
- 11. Продемонстрируйте на примерах использование внешних ключей, синхронизацию внешних ключей и связей между сущностями, идентифицирующие и нормальные связи 12. Уточните фундаментальные, атрибутивные и ассоциативные сущности в нотации Чена. Примеры

II. Описание шкалы оценивания

Оценка: 5

Нижний порог выполнения задания в процентах: 90 Описание характеристики выполнения знания: Работа выполнена в рамках "продвинутого"

Описание характеристики выполнения знания: Раоота выполнена в рамках "продвинутого" уровня. Ответы даны верно, четко сформулированные особенности практических решений

Оценка: 4

Нижний порог выполнения задания в процентах: 75

Описание характеристики выполнения знания: Работа выполнена в рамках "базового" уровня. Большинство ответов даны верно. В части материала есть незначительные недостатки

Оценка: 3

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Работа выполнена в рамках "порогового" уровня. Основная часть задания выполнена верно. На вопросы углубленного уровня частично не даны ответы.

Оиенка: 2

Описание характеристики выполнения знания: Работа не выполнена или выполнена преимущественно неправильно

ІІІ. Правила выставления итоговой оценки по курсу

Оценка определяется в соответствии с Положением о балльно-рейтинговой системе для студентов НИУ «МЭИ» на основании семестровой и экзаменационной составляющих