Министерство науки и высшего образования РФ Федеральное государственное бюджетное образовательное учреждение высшего образования «Национальный исследовательский университет «МЭИ»

Направление подготовки/специальность: 09.04.01 Информатика и вычислительная техника

Наименование образовательной программы: Вычислительные машины, комплексы, системы и сети

Уровень образования: высшее образование - магистратура

Форма обучения: Очная

Оценочные материалы по дисциплине Цифровые технологии обработки информации

Москва 2023

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ РАЗРАБОТАЛ:

MOM J	Подписано электронн	ой подписью ФГБОУ ВО «НИУ «МЭИ»	
	Сведения о владельце ЦЭП МЭИ		
	Владелец	Вишняков С.В.	
	Идентификатор	R35b26072-VishniakovSV-02810d9	

СОГЛАСОВАНО:

Руководитель образовательной программы

Разработчик

MON A	Подписано электрон	ной подписью ФГБОУ ВО «НИУ «МЭИ»	
	Сведения о владельце ЦЭП МЭИ		
	Владелец	Вишняков С.В.	
	Идентификатор	R35b26072-VishniakovSV-02810d9	

С.В. Вишняков

Вишняков

C.B.

Заведующий выпускающей кафедрой

CICCUS CONTRACTOR	Подписано электронной подписью ФГБОУ ВО «НИУ «МЭИ»			
	Сведения о владельце ЦЭП МЭИ			
NCM	Владелец	Вишняков С.В.	_	
	Идентификатор	R35b26072-VishniakovSV-02810d9	В	

С.В. Вишняков

ОБЩАЯ ЧАСТЬ

Оценочные материалы по дисциплине предназначены для оценки: достижения обучающимися запланированных результатов обучения по дисциплине, этапа формирования запланированных компетенций и уровня освоения дисциплины.

Оценочные материалы по дисциплине включают оценочные средства для проведения мероприятий текущего контроля успеваемости и промежуточной аттестации.

Формируемые у обучающегося компетенции:

- 1. ПК-1 Способен осуществлять проектирование вычислительных комплексов и систем, включая разработку аппаратного, программного обеспечения, системную интеграцию, ввод в эксплуатацию
 - ИД-3 Осуществляет разработку аппаратных и программных средств различного назначения в соответствии с техническим заданием

и включает:

для текущего контроля успеваемости:

Форма реализации: Проверка задания

- 1. Защита лабораторной работы №3 (Решение задач)
- 2. Защита лабораторных работ № 6, 7 (Решение задач)

Форма реализации: Устная форма

- 1. Защита лабораторной работы № 5 (Перекрестный опрос)
- 2. Защита лабораторной работы №4 (Перекрестный опрос)
- 3. Защита лабораторных работ № 1,2 (Перекрестный опрос)

БРС дисциплины

3 семестр

	Bec	Веса контрольных мероприятий, %				
Раздел дисциплины	Индекс	KM-1	KM-2	KM-3	KM-4	KM-5
газдел дисциплины	KM:					
	Срок КМ:	4	8	10	12	15
Одномерные непрерывные, дискретные	е и					
цифровые сигналы						
Одномерные непрерывные, дискретные	е и	+				
цифровые сигналы						
Многомерные непрерывные, дискретные и						
цифровые сигналы						
Многомерные непрерывные, дискретные и			+	+		
цифровые сигналы			Т	Т		
Системы цифровой обработки многомерных						
сигналов						
Системы цифровой обработки многомерных			+		+	
сигналов			T		Τ	
Нелинейные системы обработки многомерных						
сигналов						
Нелинейные системы обработки многомерных						
сигналов						Ŧ

Перспективные технологии обработки информации					
Перспективные технологии обработки информации					+
Bec KM:	20	20	20	20	20

\$Общая часть/Для промежуточной аттестации\$

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ТЕКУЩЕГО КОНТРОЛЯ

I. Оценочные средства для оценки запланированных результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций

Индекс	Индикатор	Запланированные	Контрольная точка
компетенции	-	результаты обучения по	
		дисциплине	
ПК-1	ИД-3пк-1 Осуществляет	Знать:	Защита лабораторных работ № 1,2 (Перекрестный опрос)
	разработку аппаратных и	терминологию, принятую в	Защита лабораторной работы №3 (Решение задач)
	программных средств	научно-технической	Защита лабораторной работы №4 (Перекрестный опрос)
	различного назначения в	литературе по цифровой	Защита лабораторной работы № 5 (Перекрестный опрос)
	соответствии с	обработке многомерных	Защита лабораторных работ № 6, 7 (Решение задач)
	техническим заданием	сигналов	
		основные принципы	
		представления	
		информации (аудио,	
		изображения,	
		видеосигналы) в цифровой	
		форме	
		основные методы	
		проектирования систем	
		цифровой обработки	
		многомерных сигналов	
		Уметь:	
		разрабатывать модели	
		многомерных цифровых	
		сигналов и систем их	
		обработки	
		выбирать и применять	
		адекватный	
		математический аппарат	
		для проектирования	

	систем обработки	
	многомерных сигналов	

II. Содержание оценочных средств. Шкала и критерии оценивания

КМ-1. Защита лабораторных работ № 1,2

Формы реализации: Устная форма

Тип контрольного мероприятия: Перекрестный опрос

Вес контрольного мероприятия в БРС: 20

Процедура проведения контрольного мероприятия: Выполняется индивидуальная защита выполненной лабораторной работы. В рамках защиты оценивается правильность выполнения экспериментальной части лабораторной работы студентом , полнота ответов на теоретические и практические вопросы. Защита проводится преподавателем. Время защиты составляет не более 15 минут на одного человека. На защиту представляется полностью оформленный протокол лабораторной работы

Краткое содержание задания:

Студентам необходимо ответить на вопросы по содержанию лабораторной работы

Контрольные вопросы/задания:

контрольные вопросы/задания:	
Знать: основные принципы	1.Сформулируйте теорему Котельникова.
представления информации	2. Какие параметры сигнала можно использовать для
(аудио, изображения,	классификации?
видеосигналы) в цифровой	3.Поясните, какую архитектуру ИНС вы
форме	использовали, какие параметры ИНС настраивали?
	4. Как размер и состав выборки повлияет на результат
	распознавания?
	5.Сравните, в чем разница в практическом
	применении ДПФ и ДКП?
	6.Сформулируйте условия синтеза банка фильтров
	для реализации многоскоростной системы
	7. Какие операции позволяют сформировать
	многоскоростную систему? Как классифицируются
	такие операции?

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-2. Защита лабораторной работы №3

Формы реализации: Проверка задания

Тип контрольного мероприятия: Решение задач **Вес контрольного мероприятия в БРС:** 20

Процедура проведения контрольного мероприятия: Выполняется индивидуальная защита выполненной лабораторной работы. В рамках защиты оценивается правильность выполнения экспериментальной части лабораторной работы студентом, полнота ответов на теоретические и практические вопросы. Студенту предлагается решить задачу. Защита проводится преподавателем. Время защиты составляет не более 30 минут на одного человека. На защиту представляется полностью оформленный протокол лабораторной работы

Краткое содержание задания:

Студентам необходимо ответить на вопросы по содержанию лабораторной работы и решить задачу

Контрольные вопросы/задания:

Контрольные вопросы/задания:	
Знать: терминологию, принятую	1. Каким образом может быть представлен цвет при
в научно-технической	обработке изображений?
литературе по цифровой	2. Какие цветовые пространства вы знаете? Линейны
обработке многомерных	ли преобразования цвета в них?
сигналов	3. Какие типовые операции проводятся для изменения
	цветного изображения?
Уметь: выбирать и применять	1.Напишите программный код для реализации
адекватный математический	трилинейной интерполяции на прямоугольной сетке
аппарат для проектирования	2.Предложите способ формирования сетки для
систем обработки многомерных	интерполяции сигнала в RGB с использованием
сигналов	целых чисел
	3. Напишите код для преобразования цветного
	изображения в градациях серого
	4.Напишите код для табличной реализации гамма-
	коррекции с использованием только целых чисел
	5. Напишите код для табличной реализации гамма-
	коррекции с использованием только сложения и
	умножения

Описание шкалы оценивания:

Оиенка: 5

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-3. Защита лабораторной работы №4

Формы реализации: Устная форма

Тип контрольного мероприятия: Перекрестный опрос

Вес контрольного мероприятия в БРС: 20

Процедура проведения контрольного мероприятия: Выполняется индивидуальная защита выполненной лабораторной работы. В рамках защиты оценивается правильность выполнения экспериментальной части лабораторной работы студентом , полнота ответов на теоретические и практические вопросы. Защита проводится преподавателем. Время защиты составляет не более 15 минут на одного человека. На защиту представляется полностью оформленный протокол лабораторной работы

Краткое содержание задания:

Студентам необходимо ответить на вопросы по содержанию лабораторной работы

Контрольные вопросы/задания:

1. Какие преобразования применяются для перехода в
частотную область при обработке многомерных
сигналов?
2. Что такое разделимость? Какие преобразования
разделимы, какие - нет?
3. Что такое носитель сигнала, сетка? Какие бывают
виды сеток?
4. Какие подходы могут быть использованы для
синтеза разделимых фильтров?
5. Какие фильтры являются каузальными, какие - нет?
6. Что такое опорная область фильтра?

Описание шкалы оценивания:

Оиенка: зачтено

Описание характеристики выполнения знания: Оценка "зачтено" выставляется если задание выполнено правильно или с незначительными недочетами

Оценка: не зачтено

Описание характеристики выполнения знания: Оценка "не зачтено" выставляется если задание не выполнено в отведенный срок или результат не соответствует заданию

КМ-4. Защита лабораторной работы № 5

Формы реализации: Устная форма

Тип контрольного мероприятия: Перекрестный опрос

Вес контрольного мероприятия в БРС: 20

Процедура проведения контрольного мероприятия: Выполняется индивидуальная защита выполненной лабораторной работы. В рамках защиты оценивается правильность выполнения экспериментальной части лабораторной работы студентом, полнота ответов на теоретические и практические вопросы. Защита проводится преподавателем. Время защиты

составляет не более 15 минут на одного человека. На защиту представляется полностью оформленный протокол лабораторной работы

Краткое содержание задания:

Студентам необходимо ответить на вопросы по содержанию лабораторной работы

Контрольные вопросы/задания:

Знать: основные	методы	1. Какие преобразования носителя сигнала (сетки) вы
проектирования	систем	знаете?
цифровой	обработки	2.В каком случае операции децимации и
многомерных сигнал	ОВ	интерполяции являются разделимыми?
		3. Как описываются интерполяция и децимация в
		области z-преобразования?
		4.Каким образом по описанию в z-области можно
		узнать коэффициент изменения битрейта сигнала?
		5.Каким образом с помощью z-преобразования
		описывается КИХ фильтр?
		6. Каким образом с помощью z-преобразования
		описывается БИХ фильтр?
		7.Имеет ли смысл формирование антикаузального
		БИХ фильтра? Почему?
		8. Сравните типовые характеристики, достигаемые
		КИХ и БИХ фильтрами
		9.Сопоставьте порядок фильтра с количеством
		операций для двух-, трех- и четырехмерного случаев

Описание шкалы оценивания:

Оценка: зачтено

Описание характеристики выполнения знания: Оценка "зачтено" выставляется если задание выполнено правильно или с незначительными недочетами

Оценка: не зачтено

Описание характеристики выполнения знания: Оценка "не зачтено" выставляется если задание не выполнено в отведенный срок или результат не соответствует заданию

КМ-5. Защита лабораторных работ № 6, 7

Формы реализации: Проверка задания

Тип контрольного мероприятия: Решение задач

Вес контрольного мероприятия в БРС: 20

Процедура проведения контрольного мероприятия: Выполняется индивидуальная защита выполненной лабораторной работы. В рамках защиты оценивается правильность выполнения экспериментальной части лабораторной работы студентом, полнота ответов на теоретические и практические вопросы. Студенту предлагается решить задачу. Защита проводится преподавателем. Время защиты составляет не более 30 минут на одного человека. На защиту представляется полностью оформленный протокол лабораторной работы

Краткое содержание задания:

Студентам необходимо ответить на вопросы по содержанию лабораторной работы и решить задачу

Контрольные вопросы/задания:

Знать: основные методы	1. Что такое сверточная нейронная сеть? Какие
проектирования систем	операции задействованы для ее реализации?
цифровой обработки	2.Перечислите типовые задачи, для решения которых
многомерных сигналов	рекомендуется применение сверточной нейронной
	сети
	3. Какие показатели качества изображения вы знаете?
	Как их можно классифицировать?
	4. Какие задачи обработки изображений решаются
	линейными методами?
Уметь: разрабатывать модели	1. Напишите код для вычисления двумерной свертки с
многомерных цифровых	опцией "valid"
сигналов и систем их обработки	2. Напишите код для вычисления двумерной свертки с
	опцией "same"
	3. Напишите код для построения КИХ фильтра с
	помощью вращения одномерной КИХ
	4. Напишите код для реализации пулинга по заданном
	критерию
	5.Напишите код для БИХ фильтрации

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 70 Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 60 Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 50 Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

3 семестр

Форма промежуточной аттестации: Экзамен

Пример билета

МЭИ	Экзаменационный билет № 1 Кафедра выячислительных машин, систем и сетей Цифровые Технологии Обработки Информации Институт ИВТ	Утверждаю Зав. кафедрой
		20 декабря 2021г.
Построить 2. Аналогов систем. Мн	IX фильтров <u>h</u> (z) = 0.5 + 0.25z ⁺ +0.1z ²	разование спектра

Процедура проведения

Экзамен проводится в письменной форме. Студент получает билет с одним практическим и одним теоретическим вопросом и готовится в течение 1 часа.

I. Перечень компетенций/индикаторов и контрольных вопросов проверки результатов освоения дисциплины

1. Компетенция/Индикатор: ИД-3_{ПК-1} Осуществляет разработку аппаратных и программных средств различного назначения в соответствии с техническим заданием

Вопросы, задания

- 1. Аналоговый, дискретный и цифровой сигнал. Способы описания линейных цифровых систем. Многоскоростная система. Децимация и интерполяция. Преобразование спектра при децимации, интерполяции. Структурная схема простейшей М-канальной системы. Свойство точного воспроизведения.
- 2.Вейвлет преобразование. Производящая (порождающая) функция материнский вейвлет. Дискретное вейвлет преобразование. Пример технической реализации ДВП на основе многоскоростной системы с фильтрами Хаара.
- 3. Искусственный нейрон. Искусственная нейронная сеть, персептрон, возможные модификации. Типы нелинейных функций активации. Сверточная нейронная сеть. Обучение сети.
- 4. Многомерный сигнал. Регулярные равномерные, регулярные неравномерные и нерегулярные носители. Примеры многомерных сигналов, особенности носителей. Преобразование Фурье.
- 5.Многомерные цифровые сигналы. Дискретное преобразование Фурье, z-преобразование. Дискретное косинусное преобразование. Особенности многомерных дискретных преобразований. Разделимые и неразделимые преобразования.
- 6.Передача цвета, цветовые пространства и преобразования. Цветовые схемы и стандарты.
- 7. Многомерные многоскоростные системы. Разделимая и неразделимая децимация. Многомерное вейвлет-преобразование.
- 8.Системы цифровой обработки многомерных сигналов. Линейные системы, способы и особенности их описания. Разделимые и неразделимые системы. Примеры задач, требующих применения линейных систем.

9. Нелинейные системы обработки многомерных сигналов. Сверточные нейронные сети. Некоторые типовые и перспективные задачи цифровой обработки многомерных сигналов: улучшение качества; сжатие; распознавание образов, объектов и сцен; отслеживание перемещения объектов; синтез композитных сигналов.

10. Многомерная интерполяция. Особенности и варианты реализации трилинейной интерполяции. Построение LUT. Критерии оценки качества обработки изображений.

Материалы для проверки остаточных знаний

```
1. Дана матрица децимации [1, 0; 0, 2]. Разделима ли она? Как меняется битрейт сигнала?
    Ответы:
да, 2 раза
нет, 2 раза
да, 4 раза
нет, 4 раза
    Верный ответ: да, 2 раза
2. Дана матрица децимации [2, 2; 3, 4]. Разделима ли она? Как меняется битрейт сигнала?
да, 2 раза
нет, 2 раза
да, 4 раза
нет, 4 раза
    Верный ответ: нет, 2 раза
3. Дана матрица децимации [3, 2; 2, 3]. Разделима ли она? Как меняется битрейт сигнала?
    Ответы:
да, 5 раз
нет, 5 раз
да, 4 раза
нет, 4 раза
    Верный ответ: нет, 5 раз
4.Выполняется ли условие реализуемости для фильтра с заданной ИХ? Выберите
правилные варианты.
    Ответы:
[1-21][1221][-122-1][12-1-2]
    Верный ответ: [ 1 -2 1 ] [1 2 -1 -2]
5.Дана пара ИХ фильтров Хаара [0.5 -0.5], [0.5 0.5]. Найти ИХ эквиваелтного фильтра
для третьего уровня ЦМС.
    Ответы:
0.125*[1-11-1]0.125*[11-1-1]0.125*[-1-11]
    Верный ответ: 0.125*[1 1 -1 -1]
6.Каков результат операции hue rotation на 0.3 для цвета с HSB координатами [0.5 0.5
0.5]
    Ответы:
[0.8 0.5 0.5]
[0.8 \ 0.8 \ 0.8]
[0.3\ 0.5\ 0.5]
[0.3\ 0.3\ 0.3]
    Верный ответ: [0.8 0.5 0.5]
7. Каков результат операции hue rotation на -0.3 для цвета с HSB координатами [0.2 0.2
0.21
    Ответы:
[0.9 0.2 0.2]
[-0.1 \ 0.2 \ 0.2]
```

[0.9 0.9 0.9]

операция недопустима

Верный ответ: [0.9 0.2 0.2]

8. Каков результат операции hue rotation на 0.3 для цвета с HSB координатами $[0.8\ 0.8]$

Ответы:

[0.1 0.8 0.8]

[1.1 0.8 0.8]

 $[0.1\ 0.1\ 0.1]$

операция недопустима

Верный ответ: [0.1 0.8 0.8]

9.Во сколько раз изменится трудоемкость вычисления ДКП 3D сигнала при одновременном уменьшении шага по всем координатам в два раза?

Ответы:

- в 2 раза
- в 4 раза
- в 8 раз
- в 16 раз
- в 32 раза
- в 64 раза

Верный ответ: в 64 раза

10.Во сколько раз изменится трудоемкость вычисления ДПФ 2D сигнала при одновременном уменьшении шага по всем координатам в два раза?

Ответы:

- в 2 раза
- в 4 раза
- в 8 раз
- в 16 раз
- в 32 раза
- в 64 раза

Верный ответ: в 16 раз

II. Описание шкалы оценивания

Оценка: 5

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Работа выполнена в рамках "продвинутого" уровня. Ответы даны верно, четко сформулированные особенности практических решений

Оценка: 4

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Работа выполнена в рамках "базового" уровня. Большинство ответов даны верно. В части материала есть незначительные недостатки

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Работа выполнена в рамках "порогового" уровня. Основная часть задания выполнена верно. на вопросы углубленного уровня

Оценка: 2

Описание характеристики выполнения знания: Работа не выполнена или выполнена преимущественно неправильно

ІІІ. Правила выставления итоговой оценки по курсу

Оценка определяется в соответствии с Положением о балльно-рейтинговой системе для студентов НИУ «МЭИ» на основании семестровой и экзаменационной составляющих.