Министерство науки и высшего образования РФ Федеральное государственное бюджетное образовательное учреждение высшего образования «Национальный исследовательский университет «МЭИ»

Направление подготовки/специальность: 09.04.01 Информатика и вычислительная техника

Наименование образовательной программы: Информационно-аналитические и диагностические

интеллектуальные технологии

Уровень образования: высшее образование - магистратура

Форма обучения: Очная

Оценочные материалы по дисциплине Обнаружение и обработка недетерминированных сигналов

Москва 2022

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ РАЗРАБОТАЛ:

Преподаватель (должность)

Подписано электронной подписью ФГБОУ ВО «НИУ «МЭИ»			
Сведения о владельце ЦЭП МЭИ			
Владелец Слесарев Д.А.			
Идентификатор R58ec799e-SlesarevDA-37858136			
(подпись)			

Д.А. Слесарев

(расшифровка подписи)

СОГЛАСОВАНО:

Руководитель образовательной программы

(должность, ученая степень, ученое звание)

Заведующий выпускающей кафедры (должность, ученая степень, ученое

звание)

INCOME TO SO	Подписано электронн	ой подписью ФГБОУ ВО «НИУ «МЭИ»		
Сведения о владельце ЦЭП МЭИ				
	Владелец	Барат В.А.		
» <u>МЭИ</u> «	Идентификатор	Rb173df8d-BaratVA-106e228a		
(полимет)				

NOSO NE	Подписано электронн	ой подписью ФГБОУ ВО «НИУ «МЭИ»				
THE STREET	Сведен	ия о владельце ЦЭП МЭИ				
	Владелец	Желбаков И.Н.				
МЭИ У Идентификатор R839a3a63-ZhelbakovlgN-f73624						
()						

(подпись)

В.А. Барат (расшифровка подписи)

И.Н. Желбаков

(расшифровка подписи)

ОБЩАЯ ЧАСТЬ

Оценочные материалы по дисциплине предназначены для оценки: достижения обучающимися запланированных результатов обучения по дисциплине, этапа формирования запланированных компетенций и уровня освоения дисциплины.

Оценочные материалы по дисциплине включают оценочные средства для проведения мероприятий текущего контроля успеваемости и промежуточной аттестации.

Формируемые у обучающегося компетенции:

1. ПК-1 Способен осуществлять руководство проектированием информационно-измерительных систем

ИД-10 Осуществляет разработку аппаратных и программных средств различного назначения в соответствии с техническим заданием

и включает:

для текущего контроля успеваемости:

Форма реализации: Выполнение задания

1. Расчёт оптимального фильтра (Реферат)

Форма реализации: Защита задания

- 1. защита л/р №1, №2 (Коллоквиум)
- 2. защита л/р №3, №4 (Коллоквиум)

Форма реализации: Письменная работа

- 1. Определение параметров марковской цепи (Контрольная работа)
- 2. Разложение произвольного сигнала на простые (Контрольная работа)
- 3. Расчет вероятности обнаружения сигнала (Контрольная работа)
- 4. Расчет параметров частотных фильтров (Контрольная работа)

БРС дисциплины

3 семестр

		Веса контрольных мероприятий, %						
Роспол нискуплики	Индекс	КМ-	КМ-	КМ-	КМ-	КМ-	КМ-	КМ-
Раздел дисциплины	KM:	1	2	3	4	5	6	7
	Срок КМ:	3	5	6	10	12	13	14
Основные задачи и понятия тес	рии							
сигналов								
Задачи анализа сигналов, моде.	ли сигналов,		_					
пространство сигналов		+	+					
Обобщенные характеристики сигналов		+	+					
Обработка сигналов в частотной области							+	
Обнаружение сигналов на фоне помех								
Основы теории случайных процессов		+	+					

Обнаружение сигналов на фоне помех			+				
Оптимальная фильтрация сигналов				+	+		
Методы обработки нестационарных							
сигналов							
Методы обработки нестационарных						+	
сигналов						'	
Использование вейвлет-преобразования							
для обнаружения сигналов							
Использование вейвлет-преобразования						1	
для обнаружения сигналов						+	
Скрытые марковские модели							
Случайные процессы с дискретным							
временем. Марковские цепи. Скрытые	+	+					+
марковские модели.							
Bec KM:	10	10	10	10	30	20	10

^{\$}Общая часть/Для промежуточной аттестации\$

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ТЕКУЩЕГО КОНТРОЛЯ

I. Оценочные средства для оценки запланированных результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций

Индекс	Индикатор	Запланированные	Контрольная точка
компетенции	_	результаты обучения по	
		дисциплине	
ПК-1	ИД-10пк-1 Осуществляет	Знать:	Разложение произвольного сигнала на простые (Контрольная работа)
	разработку аппаратных и	основные модели	Расчет параметров частотных фильтров (Контрольная работа)
	программных средств	сигналов, используемые в	защита л/р №1, №2 (Коллоквиум)
	различного назначения в	системах неразрушающего	Расчет вероятности обнаружения сигнала (Контрольная работа)
	соответствии с	контроля и технической	Расчёт оптимального фильтра (Реферат)
	техническим заданием	диагностики; основные	защита л/р №3, №4 (Коллоквиум)
		характеристики	Определение параметров марковской цепи (Контрольная работа)
		детерминированных и	
		случайных сигналов;	
		основы теории	
		обнаружения полезных	
		сигналов на фоне помех и	
		принципы синтеза	
		оптимальных алгоритмов	
		обнаружения;	
		методы обработки	
		стационарных и	
		нестационарных	
		диагностических сигналов	
		Уметь:	
		выбирать правильную	
		модель для описания	
		полезной составляющей	
		сигнала и оценивать	
		основные параметры этой	

T
модели
оценивать соотношение
полезной составляющей и
помехи в исследуемом
сигнале и выбирать тип и
параметры фильтра для
улучшения этого
соотношения
синтезировать
оптимальный фильтр для
обнаружения полезного
сигнала на фоне помех и
оценивать ожидаемую
достоверность
обнаружения

II. Содержание оценочных средств. Шкала и критерии оценивания

КМ-1. Разложение произвольного сигнала на простые

Формы реализации: Письменная работа

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 10

Процедура проведения контрольного мероприятия: тест на 45 минут

Краткое содержание задания:

Импульсный сигнал имеет длительность 5 мкс и амплитуду 15В. Начало отсчета совпадает с передним фронтом импульса. Записать аналитическое выражение для сигнала.

Контрольные вопросы/задания:

Koniponb	HDIC DOIL	Pocbi	эадан.	K1 /1 •
Знать:	основни	ые	моде	ЛИ
сигналов,	испо.	пьзуем	мые	В
системах	неј	разруг	пающе	го
контроля	И	тех	ническ	юй
диагности	ки;	(сновн	ые
характерис	стики			
детермини	рованны	IX		И
случайных	сигна	ілов;	осно	ВЫ
теории об	бнаруже	I RNF	полезн	ЫХ
сигналов	на фо	не п	юмех	И
принципы				ЫХ
алгоритмо	в обнару	жени	я;	

- 1. Что такое модель сигнала?
- 2. Как определяется погрешность кусочно-линейной аппроксимации сигнала?
- 3.Для представления каких сигналов используется разложение в гармонический ряд Фурье?
- 4.Импульсный сигнал имеет длительность 5 мкс и амплитуду 15В. Начало отсчета совпадает с передним фронтом импульса. Записать аналитическое выражение для сигнала.

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 85

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 65 Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто

Оценка: 3

Нижний порог выполнения задания в процентах: 50 Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

КМ-2. Расчет параметров частотных фильтров

Формы реализации: Письменная работа

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 10

Процедура проведения контрольного мероприятия: контрольная работа на 45 минут

Краткое содержание задания:

Полезный сигнал имеет вид треугольного импульса амплитудой 4 В и длительностью 5 мс. Помеха — белый шум со спектральной плотностью мощности N0=2,5*10-5 В2/Гц в диапазоне 0-5 кГц. Определить частоты среза НЧ фильтра (идеального) для улучшения отношения сигнал шум, который исказит спектр сигнала не более, чем на 5%. Рассчитать отношение сигнал/шум до и после фильтрации.

Контрольные вопросы/задания:

Знать: основные модели	1. Что такое частотное разрешение?
· ·	1 1
сигналов, используемые в	2. Как полоса пропускания фильтра влияет на форму
системах неразрушающего	сигнала во временной области?
контроля и технической	
диагностики; основные	
характеристики	
детерминированных и	
случайных сигналов; основы	
теории обнаружения полезных	
сигналов на фоне помех и	
принципы синтеза оптимальных	
алгоритмов обнаружения;	

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

КМ-3. защита л/р №1, №2

Формы реализации: Защита задания

Тип контрольного мероприятия: Коллоквиум **Вес контрольного мероприятия в БРС:** 10

Процедура проведения контрольного мероприятия: Проверка отчёта по лабораторной

работе

Краткое содержание задания:

Ответить на выбранные вопросы

Контрольные вопросы/задания:

Уметь: оценивать соотношение	1. Что такое спектральная плотность мощности
полезной составляющей и	сигнала и как ее рассчитывают.
помехи в исследуемом сигнале и	2. Что понимают под частотным разрешением.
выбирать тип и параметры	3.Для решения какой задачи используется

фильтра для улучшения этого	согласованный фильтр
соотношения	4.Оценить полосу пропускания использованного в л/р
	согласованного фильтра.

Описание шкалы оценивания:

Оценка: зачтено

Описание характеристики выполнения знания: Оценка "зачтено" выставляется если задание выполнено правильно или с незначительными недочетами

Оценка: не зачтено

Описание характеристики выполнения знания: Оценка "не зачтено" выставляется если задание не выполнено в отведенный срок или результат не соответствует заданию

КМ-4. Расчет вероятности обнаружения сигнала

Формы реализации: Письменная работа

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 10

Процедура проведения контрольного мероприятия: контрольная работа на 45 мин

Краткое содержание задания:

Полезный сигнал: радио-импульс длительностью 1,5 мс и несущей частотой f0 =10 кГц. Амплитуда импульса является нормально распределённой случайной величиной со средним значением 4 В и ско 1 В.

Помеха: гауссовский белый шум со спектральной плотностью мощности $2,2 \cdot 10$ -3 В2 /Гц. Ширина полосы приёмного тракта — 20 кГц.

Рассчитать значение порога, обеспечивающего вероятность обнаружения дефектов не ниже 90 %.

Контрольные вопросы/задания:

топтропыные вопросы, задания	
Уметь: синтезировать	1.Полезный сигнал: радио-импульс длительностью
оптимальный фильтр для	1,5 мс и несущей частотой $f0$ =10 кГц. Амплитуда
обнаружения полезного сигнала	импульса является нормально распределённой
на фоне помех и оценивать	случайной величиной со средним значением 4 В и
ожидаемую достоверность	ско 1 В.
обнаружения	Помеха: гауссовский белый шум со спектральной
	плотностью мощности 2,2 · 10-3 В2 /Гц. Ширина
	полосы приёмного тракта — 20 кГц.
	Рассчитать значение порога, обеспечивающего
	вероятность обнаружения дефектов не ниже 90 %.
	2. Какая при этом будет вероятность ложного
	обнаружения?

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 50 Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

КМ-5. Расчёт оптимального фильтра

Формы реализации: Выполнение задания Тип контрольного мероприятия: Реферат Вес контрольного мероприятия в БРС: 30

Процедура проведения контрольного мероприятия: Выполнение индивидуального

задания по расчёту параметров оптимального фильтра

Краткое содержание задания:

Рассчитать и построить передаточную характеристику фильтра по заданным параметрам полезного сигнала и помехи, построить спектры входного и выходного сигналов и провести их моделирование. Моделирование проводить в Matlab. Привести временную диаграмму входного и выходного сигналов, полученные путем численного моделирования.

Контрольные вопросы/задания:

Уметь: синтезировать	1.синтезировать оптимальный фильтр для
оптимальный фильтр для	обнаружения полезного сигнала на фоне помех и
обнаружения полезного сигнала	оценивать итоговое соотношение сигнал/шум
на фоне помех и оценивать	
ожидаемую достоверность	
обнаружения	

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 85

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оиенка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

КМ-6. защита л/р №3, №4

Формы реализации: Защита задания

Тип контрольного мероприятия: Коллоквиум **Вес контрольного мероприятия в БРС:** 20

Процедура проведения контрольного мероприятия: Проверка отчёта по лабораторной

работе

Краткое содержание задания:

Ответить на выбранные вопросы

Контрольные вопросы/задания:

Знать:	методы	обработки	1.Для анализа каких сигналов применяется Фурье-
стационарных и нестационарных		тационарных	спектрограмма?
диагностических сигналов		гналов	2.Каковы информационные параметры
			полигармонического сигнала?
			3. Какие типы нестационарных сигналов наиболее
			распространены в технической диагностике? Каковы
			их характерные свойства?

Описание шкалы оценивания:

Оценка: зачтено

Описание характеристики выполнения знания: Оценка "зачтено" выставляется если задание выполнено правильно или с незначительными недочетами

Оценка: не зачтено

Описание характеристики выполнения знания: Оценка "не зачтено" выставляется если задание не выполнено в отведенный срок или результат не соответствует заданию

КМ-7. Определение параметров марковской цепи

Формы реализации: Письменная работа

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 10

Процедура проведения контрольного мероприятия: контрольная работа на 45 минут

Краткое содержание задания:

После наладки оборудования по выпуску некоторой детали на предприятии вероятность выпуска бездефектной детали составляет 4/5, а дефектной — 1/5. В случае выпуска дефектной детали производится коррекция производственного процесса, в результате чего вероятность выпуска бездефектной детали на следующем цикле становится 3/5, дефектной — 2/5.

Контрольные вопросы/задания:

Уметь: выбирать правильную	1.Рассчитать вероятность выпуска бездефектной
модель для описания полезной	детали спустя 4 цикла после наладки оборудования?
составляющей сигнала и	2.Изобразить граф состояний производственного
оценивать основные параметры	процесса.
этой модели	

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 65

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

3 семестр

Форма промежуточной аттестации: Зачет с оценкой

Пример билета

Общая задача фильтрации. Оптимальные фильтры устройств обнаружения. Согласованные фильтры.

Процедура проведения

Устный зачет с предварительной подготовкой

I. Перечень компетенций/индикаторов и контрольных вопросов проверки результатов освоения дисциплины

1. Компетенция/Индикатор: ИД-10_{ПК-1} Осуществляет разработку аппаратных и программных средств различного назначения в соответствии с техническим заданием

Вопросы, задания

- 1. Частотный спектр, спектральное представление сигнала.
- 2.Общие понятия, классификация сигналов. Формы представления и модели сигналов.
- 3. Функция спектральной плотности мощности. Теорема Винера- Хинчина. Функция когерентности.
- 4. Согласованные фильтры. Согласованный фильтр и корреляционный приемник. Отношение сигнал/помеха.
- 5. Обработка сигналов во временной области. Пороговое детектирование сигнала. Временное разрешение сигнала.
- 6.Основные характеристики оптимальных фильтров. Синтез оптимальных фильтров. Реализация оптимального фильтра.
- 7. Задача обработки нестационарных сигналов. Фурье-спектрограмма, распределение Вигнера-Вилля.
- 8. Вейвлет-преобразование и его свойства. Непрерывное и дискретное вейвлет-преобразование. Вейвлет Хаара, Морле.
- 9. Разложение сигнала с использованием вейвлет-пакетов. Применение вейвлет-пакетов для фильтрации сигнала от шума.
- 10.Скрытые марковские модели. Задача оценки параметров модели.

Материалы для проверки остаточных знаний

- 1. Что такое спектральная плотность мощности сигнала?
 - Верный ответ: Привести формулу расчёта спектральной плотности мощности.
- 2. Как влияют параметры частотного фильтра на временное разрешение сигнала?
- 3. Что такое согласованный фильтр?
- 4.С помощью какого преобразования можно выполнить выделение огибающей амплитудно-модулированного сигнала?
- 5.В чём смысл соотношение Винера-Хинчина?
- 6.Для анализа каких сигналов применяется преобразование Вигнера-Вилля?
- 7. Что такое вейвлет-преобразование?

II. Описание шкалы оценивания

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: Работа выполнена в рамках "продвинутого" уровня. Ответы даны верно, четко сформулированные особенности практических решений

Оценка: 4

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Работа выполнена в рамках "базового" уровня. Большинство ответов даны верно. В части материала есть незначительные недостатки

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Работа выполнена в рамках "порогового" уровня. Основная часть задания выполнена верно. на вопросы углубленного уровня

III. Правила выставления итоговой оценки по курсу