Министерство науки и высшего образования РФ Федеральное государственное бюджетное образовательное учреждение высшего образования «Национальный исследовательский университет «МЭИ»

Направление подготовки/специальность: 27.03.04 Управление в технических системах

Наименование образовательной программы: Интеллектуальные технологии управления в технических

системах, обработка и анализ данных

Уровень образования: высшее образование - бакалавриат

Форма обучения: Очная

Оценочные материалы по дисциплине Идентификация объектов управления

Москва 2024

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ РАЗРАБОТАЛ:

СОГЛАСОВАНО:

Руководитель образовательной программы

Разработчик

MOM N	Подписано электронной подписью ФГБОУ ВО «НИУ «МЭИ»					
	Сведения о владельце ЦЭП МЭИ					
	Владелец	Сидорова Е.Ю.				
	Идентификатор	R0dee6ce9-SidorovaYY-923dc6a8				

Е.Ю. Сидорова

Косинский

М.Ю.

Заведующий выпускающей кафедрой

NCM NCM	Подписано электронной подписью ФГБОУ ВО «НИУ «МЭИ»					
	Сведения о владельце ЦЭП МЭИ					
	Владелец	Бобряков А.В.				
	Идентификатор	R2c90f415-BobriakovAV-70dec1fa				

А.В. Бобряков

ОБЩАЯ ЧАСТЬ

Оценочные материалы по дисциплине предназначены для оценки достижения обучающимися запланированных результатов обучения по дисциплине, этапа формирования запланированных компетенций и уровня освоения дисциплины.

Оценочные материалы по дисциплине включают оценочные средства для проведения мероприятий текущего контроля успеваемости и промежуточной аттестации.

Формируемые у обучающегося компетенции:

- 1. ПК-1 Способен разрабатывать и применять технологии сбора, обработки и анализа разнотипных данных для расчета и проектирования систем и средств автоматизации и управления
 - ИД-5 Осуществляет сбор и анализ исходных данных для расчета и проектирования систем и средств автоматизации и управления
- 2. РПК-1 Способен проводить натурные и вычислительные эксперименты с использованием стандартных программных средств с целью получения математических моделей процессов и объектов автоматизации и управления
 - ИД-4 Демонстрирует знание алгоритмов решения типовых задач моделирования процессов и объектов автоматизации и управления, областей и способов их применения

и включает:

для текущего контроля успеваемости:

Форма реализации: Защита задания

- 1. Защита лабораторной работы №1 (Интервью)
- 2. Защита лабораторной работы №2 (Интервью)
- 3. Защита лабораторной работы №3 (Интервью)

Форма реализации: Компьютерное задание

1. Выполнение лабораторной работы №1 (Лабораторная работа)

БРС дисциплины

8 семестр

Перечень контрольных мероприятий <u>текущего контроля</u> успеваемости по дисциплине:

- КМ-1 Выполнение лабораторной работы №1 (Лабораторная работа)
- КМ-2 Защита лабораторной работы №1 (Интервью)
- КМ-3 Защита лабораторной работы №2 (Интервью)
- КМ-4 Защита лабораторной работы №3 (Интервью)

Вид промежуточной аттестации – Экзамен.

	Веса контрольных мероприятий, %					
Ворион низучиниции	Индекс	КМ-	КМ-	КМ-	КМ-	
Раздел дисциплины	KM:	1	2	3	4	
	Срок КМ:	4	8	11	12	

		1	1	_
Место идентификации в управлении. Модели идентификации.				
Математические основы методов оценивания				
Динамический объект как предмет идентификации. Типы				
объектов с точки зрения идентификации. Основные понятия и	+			
определения. Основные этапы идентификации				
Детерминированные сигналы в задачах идентификации.				
Случайные сигналы в задачах идентификации. Традиционные	+			
методы идентификации, основанные на их использовании.				
Понятие постоянно возбуждающего сигнала				
Непрерывные модели и их взаимосвязь. Дискретные модели и				
их взаимосвязь. Авторегрессионная модель скользящего	+			
среднего (АРСС). Характеристики сигналов				
Математические основы методов оценивания параметров (метод				
наименьших квадратов, метод максимального правдоподобия)				
для статической модели. Методы параметрической	+			
идентификации: метод наименьших квадратов, обобщенный				
метод наименьших квадратов, расширенные матричные методы				
Методы оценивания параметров моделей в режимах off-line и				
on-line				
Методы оценивания параметров моделей в режиме off-line:				
метод наименьших квадратов анализ смещенности параметров,		+		
обобщенный метод анализ наименьших квадратов, метод				
инструментальной переменной, расширенный матричный метод				
Матричное тождество. Метод наименьших квадратов анализ				
смещенности параметров, обобщенный метод анализ				
наименьших квадратов, метод инструментальной переменной,		+		
расширенный матричный метод в on-line режиме.				
Сравнительные характеристики точности оценивания				
Методы определения порядка модели				
Методы определения порядка на основе анализа функции				
потерь. Метод определения порядка по некоррелированности				
остатков. Методы определения порядка на основе анализа			+	
поведения матрицы моментов.				
Метод определения порядка из анализа диаграммы полюсов и			+	
нулей дискретной передаточной функции модели.			T	
Методы $Z - S$ и $S - Z$ преобразований. Методы идентификации				
линейных многомерных объектов и систем				
Постановка задачи $Z - S$ преобразования. $Z - S$ переход,				
основанный на дискретном преобразовании Лапласа. Z – S				+
переход при неидеальном импульсном элементе (нулевого и				'
первого порядков). Алгоритм $Z - S$ и $S - Z$ переходов.				
Многомерные дискретные модели и их взаимосвязь (модели в				
пространстве состояний, матрица дискретных передаточных				+
функций, матрица весовых функций, дробно-матричные				'
модели). Характеристики моделей.				
Методы идентификации многомерных линейных динамических				+
объектов и систем.				
Вес КМ	: 10	30	30	30

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ТЕКУЩЕГО КОНТРОЛЯ

I. Оценочные средства для оценки запланированных результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций

Индекс	Индикатор	Запланированные	Контрольная точка
компетенции		результаты обучения по	
		дисциплине	
ПК-1	ИД-5пк-1 Осуществляет	Знать:	КМ-2 Защита лабораторной работы №1 (Интервью)
	сбор и анализ исходных	рекомендации по	КМ-4 Защита лабораторной работы №3 (Интервью)
	данных для расчета и	организации и проведению	
	проектирования систем и	эксперимента по сбору	
	средств автоматизации и	данных с объекта (входных	
	управления	и выходных сигналах	
		объекта)	
		Уметь:	
		использовать программные	
		разработки для	
		идентификации линейных	
		динамических объектов и	
		систем (как одномерных,	
		так и многомерных)	
РПК-1	ИД-4 _{РПК-1} Демонстрирует	Знать:	КМ-1 Выполнение лабораторной работы №1 (Лабораторная работа)
	знание алгоритмов	существующие подходы,	КМ-3 Защита лабораторной работы №2 (Интервью)
	решения типовых задач	используемые при	
	моделирования процессов	получении	
	и объектов автоматизации	математического описания	
	и управления, областей и	объектов и систем	
	способов их применения	управления	
		Уметь:	
		применять подходы к	
		обработке данных	
		идентификационного	

	Э	эксперимента,	
	Y.	используемые в	
	C	современных методах	
	Y	идентификации	

II. Содержание оценочных средств. Шкала и критерии оценивания

КМ-1. Выполнение лабораторной работы №1

Формы реализации: Компьютерное задание

Тип контрольного мероприятия: Лабораторная работа

Вес контрольного мероприятия в БРС: 10

Процедура проведения контрольного мероприятия: Выдача студентам индивидуальных контрольных заданий. Консультации по содержанию задания. Выполнение заданий студентами. Проверка результатов выполнения.

Краткое содержание задания:

Включает 5 пунктов. Для выполнения задания по пунктам студент предварительно должен рассчитать дискретные передаточные функции, соответствующие своему варианту. Исследовать способы параметрической идентификации для объектов, заданных в задании. Результаты в виде протоколов программы и графиков включаются в файл протокола по выполненному заданию

Контрольные вопросы/задания:

Запланированные	результаты	обучения	ПО	Вопросы/задания для проверки
дисциплине				
Знать: существую	щие подходы,	, используе	мые	1.Какие параметры модели
при получении	математичесь	сого опис	ания	определяются при параметрической
объектов и систем	управления			идентификации
				2.Исходя из чего определяется
				период дискретизации

Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: Возможны только несущественные погрешности в результатах выполнения. В документе с результатами выполнения должны быть зафиксированы протоколы программы и графики, иллюстрирующие процедуры обучения и проверки ИНС

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 75

Описание характеристики выполнения знания: В выполнении задания должно быть не более 1 ошибки. Документ с результатами может иметь только небольшие погрешности

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: В выполнении задания должно быть не более 2 ошибок. Документ с результатами может иметь некоторые погрешности

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: В результатах – более 2 ошибок. Документ имеет значительные погрешности в оформлении

КМ-2. Защита лабораторной работы №1

Формы реализации: Защита задания

Тип контрольного мероприятия: Интервью **Вес контрольного мероприятия в БРС:** 30

Процедура проведения контрольного мероприятия: Проверка отчётов по выполненной лабораторной работе и выдача студентам индивидуальных вопросов. Консультации по содержанию вопроса. Подготовка студентов к ответу на вопросы. Устные ответы на вопросы. Пояснение студентами содержимого отчёта по лабораторной работе.

Краткое содержание задания:

Необходимо представить на проверку отчёт по лабораторной работе с пояснениями и выводами. Также задание включает 1 вопрос для подготовки. Вопрос отражает один из изученных в теме лабораторной работы подразделов. Для выполнения задания по пункту студент должен подготовить развёрнутый ответ на поставленный вопрос

Контрольные вопросы/задания:

Запланированные результаты обучения по дисциплине	Вопросы/задания для проверки
Знать: рекомендации по организации и проведению	1.Чем отличается МНК от
эксперимента по сбору данных с объекта (входных и	ОМНК
выходных сигналах объекта)	2.Опишите процедуру метода
	инструментальной переменной

Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: Возможны только несущественные погрешности в результатах выполнения. Документ с результатами выполнения должен быть правильно оформлен (титульный лист, задание, отчет о выполнении, протокол программы)

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 75

Описание характеристики выполнения знания: В выполнении задания должно быть не более 1 ошибки. Документ с результатами может иметь только небольшие погрешности

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: В выполнении задания должно быть не более 2 ошибок. Документ с результатами может иметь некоторые погрешности

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: В результатах – более 2 ошибок. Документ имеет значительные погрешности в оформлении

КМ-3. Защита лабораторной работы №2

Формы реализации: Защита задания

Тип контрольного мероприятия: Интервью **Вес контрольного мероприятия в БРС:** 30

Процедура проведения контрольного мероприятия: Проверка отчётов по выполненной лабораторной работе и выдача студентам индивидуальных вопросов. Консультации по содержанию вопроса. Подготовка студентов к ответу на вопросы. Устные ответы на вопросы. Пояснение студентами содержимого отчёта по лабораторной работе.

Краткое содержание задания:

Необходимо представить на проверку отчёт по лабораторной работе с пояснениями и выводами. Также задание включает 1 вопрос для подготовки. Вопрос отражает один из изученных в теме лабораторной работы подразделов. Для выполнения задания по пункту студент должен подготовить развёрнутый ответ на поставленный вопрос

Контрольные вопросы/задания:

Запланированные	результаты	обучения	ПО	Вопросы/задания для проверки
дисциплине				
Уметь: применять	подходы к об	работке дан	ных	1.Опишите процедуру
идентификационно	го эксперимент	использования метода диаграммы		
в современных мет	одах идентифи	нулей и полюсов		
		2.Опишите процедуру		
				использования метода проверки на
				некоррелируемость остатков

Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: Возможны только несущественные погрешности в результатах выполнения. Документ с результатами выполнения должен быть правильно оформлен (титульный лист, задание, отчет о выполнении, протокол программы)

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 75

Описание характеристики выполнения знания: В выполнении задания должно быть не более 1 ошибки. Документ с результатами может иметь только небольшие погрешности

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: В выполнении задания должно быть не более 2 ошибок. Документ с результатами может иметь некоторые погрешности

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: В результатах – более 2 ошибок. Документ имеет значительные погрешности в оформлении

КМ-4. Защита лабораторной работы №3

Формы реализации: Защита задания

Тип контрольного мероприятия: Интервью **Вес контрольного мероприятия в БРС:** 30

Процедура проведения контрольного мероприятия: Проверка отчётов по выполненной лабораторной работе и выдача студентам индивидуальных вопросов. Консультации по содержанию вопроса. Подготовка студентов к ответу на вопросы. Устные ответы на вопросы. Пояснение студентами содержимого отчёта по лабораторной работе.

Краткое содержание задания:

Необходимо представить на проверку отчёт по лабораторной работе с пояснениями и выводами. Также задание включает 1 вопрос для подготовки. Вопрос отражает один из изученных в теме лабораторной работы подразделов. Для выполнения задания по пункту студент должен подготовить развёрнутый ответ на поставленный вопрос

Контрольные вопросы/задания:

Запланированные	результаты	обучения	ПО	Вопросы/задания для проверки
дисциплине				
Уметь: использоват	гь программны	е разработки	ДЛЯ	1.Приведите пример получение
идентификации лиг	нейных динамі	описания системы в пространстве		
и систем (как одном	мерных, так и м	состояний в канонической форме		
		2.Рассмотрите переход к		
		дискретной форме представления		
				системы в пространстве состояний

Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: Возможны только несущественные погрешности в результатах выполнения. Документ с результатами выполнения должен быть правильно оформлен (титульный лист, задание, отчет о выполнении, протокол программы)

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 75

Описание характеристики выполнения знания: В выполнении задания должно быть не более 1 ошибки. Документ с результатами может иметь только небольшие погрешности

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: В выполнении задания должно быть не более 2 ошибок. Документ с результатами может иметь некоторые погрешности

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: В результатах – более 2 ошибок. Документ имеет значительные погрешности в оформлении

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

8 семестр

Форма промежуточной аттестации: Экзамен

Пример билета

- 1. Место идентификации в управлении. Динамический процесс как объект идентификации. Основные понятия и определения.
- 2. Метод инструментальной переменной (off-line режим).

Процедура проведения

Экзамен относится к категории «устный».

- Экзамен проводится в аудитории.
- Студент получает билет.
- Время на подготовку 1 час.
- Результаты подготовки могут быть записаны на листе подготовки.
- Преподаватель устно опрашивает студента по вопросам билета, а также задаёт дополнительные вопросы.
- Экзаменационная оценка сообщается студенту сразу после его ответа

I. Перечень компетенций/индикаторов и контрольных вопросов проверки результатов освоения дисциплины

1. Компетенция/Индикатор: ИД-5_{ПК-1} Осуществляет сбор и анализ исходных данных для расчета и проектирования систем и средств автоматизации и управления

Вопросы, задания

- 1.Постановка задачи Z-Р преобразования. Z-Р переход, основанный на дискретном преобразовании Лапласа
- 2.Z P переход при неидеальном импульсном элементе, Z P преобразование, использующее формирователи импульсов нулевого порядка
- 3. Управляемость и наблюдаемость объектов и систем

Материалы для проверки остаточных знаний

1. Что такое «ошибка уравнения»

Ответы:

- это разность выходов модели и объекта
- это сигнал e[k], определяемый наличием нелинейности в объекте
- это сигнал e[k], определяемый погрешностью при описании объекта уравнениями более низкого порядка
- это сигнал e[k], определяемый наличием помех в объекте
- это величина ошибки при использовании модели более низкого порядка Верный ответ: это сигнал e[k], определяемый наличием нелинейности в объекте, это сигнал e[k], определяемый погрешностью при описании объекта уравнениями более низкого порядка, это сигнал e[k], определяемый наличием помех в объекте
- 2. Чему равна ошибка уравнения модели е $\overline{(kT)}$ при настроенной модели и правильно выбранном порядке модели

Ответы:

- 0
- ошибке уравнения

- разности выходов модели и объекта
- 1% от выхода модели

Верный ответ: ошибке уравнения

3. Что общего в моделях шума разного типа

Ответы:

- передаточные функции
- структура
- весовые функции
- разностные уравнения

Верный ответ: весовые функции

- 4. Какая матрица называется вырожденной? Требуется выбрать варианты ответа Ответы:
- один из столбцов является линейной комбинацией остальных
- одна из строк является линейной комбинацией остальных
- определитель матрицы не равен нулю
- определитель матрицы равен нулю

Верный ответ: один из столбцов является линейной комбинацией остальных, строка является линейной комбинацией остальных, определитель матрицы равен нулю

5. Типы объектов с точки зрения полноты математического описания

Верный ответ: объекты типа «прозрачный ящик», «серый ящик», «чёрный ящик» 6.Какая логическая функция лежит в основе генерирования псевдо-случайного троичного сигнала

7. Для чего нужна структурная идентификация

Ответы:

- для определения значений параметров уравнения модели
- для определения порядка уравнения модели

Верный ответ: для определения порядка уравнения модели

2. Компетенция/Индикатор: ИД-4_{РПК-1} Демонстрирует знание алгоритмов решения типовых задач моделирования процессов и объектов автоматизации и управления, областей и способов их применения

Вопросы, задания

- 1. Модели, используемые при идентификации линейных объектов. Взаимосвязь непрерывных моделей
- 2. Расширенный матричный метод (off-line режим)
- 3. Математические основы методов оценивания. Метод наименьших квадратов

Материалы для проверки остаточных знаний

1. Перечислите основные отличия моделирования и идентификации

Верный ответ: моделирование в отличие от идентификации использует законы физики, производится исходя из дифференциальных уравнений, описывающих объект, и производится на основе доопытной информации. Идентификация в отличие от моделирования проводится по записям сигналов, описывающих объект и использует послеопытную информацию

2.Почему ошибка уравнения чаще всего представляет собой «цветной шум»? Следует выбрать варианты ответов

Ответы:

- точка приложения ошибки отличается от принятой
- соседние отсчеты ошибки коррелированы между собой

- это определяется неучтенными в объекте нелинейностями
 - Верный ответ: точка приложения ошибки отличается от принятой, соседние отсчеты ошибки коррелированы между собой
- 3. Чем обеспечивается несмещенность МНК-оценок параметров объекта

Ответы:

- ошибка уравнения "цветной" шум
- правильно выбранным порядком модели
- ошибка уравнения "белый шум"
- правильно выбранный порядок модели, ошибка уравнения "белый шум" Верный ответ: правильно выбранный порядок модели, ошибка уравнения "белый шум"
- 4.Почему РММ не может быть реализован в режиме с накоплением информации, т.е. в off-line

Ответы:

- недоступны u(k) и z(k)
- недоступен сигнал ξ(k)
- -недоступен сигнал e(k)
- -может быть реализован

Верный ответ: недоступен сигнал $\xi(k)$

5. Что такое плохо обусловленная матрица

Ответы:

- определитель матрицы больше нуля
- определитель матрицы близок к нулю
- матрицу можно представить в виде

Верный ответ: определитель матрицы близок к нулю

6. Какая модель шума используется в ОМНК

Ответы:

- - АР-модель
- СС модель
- АРСС модель

Верный ответ: АР-модель

7. Что такое сокращающиеся нули и полюса 1-го рода

Верный ответ: нули и полюса, сокращение которых обусловлено присутствием шума в процессе

II. Описание шкалы оценивания

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: Оценка 5 «отлично» выставляется, если на вопросы билета и дополнительные вопросы получены ответы в полном объеме, или они имеют несущественные погрешности

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка 4 «хорошо» выставляется, если на вопросы билета и дополнительные вопросы получены ответы в полном объеме, но имеется не более 2 ошибок

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Описание характеристики выполнения задания: Оценка 3 «удовлетворительно» выставляется, если на вопросы билета и дополнительные вопросы получены ответы не менее, чем на 60% или имеется не более 4 ошибок

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка 2 «неудовлетворительно» выставляется, процент полноты ответа на вопросы билета менее, чем на 60%, или имеется более 4 ошибок

III. Правила выставления итоговой оценки по курсу

Оценка определяется в соответствии с Положением о балльно-рейтинговой системе для студентов НИУ «МЭИ» на основании семестровой и экзаменационной составляющих.