Министерство науки и высшего образования РФ Федеральное государственное бюджетное образовательное учреждение высшего образования «Национальный исследовательский университет «МЭИ»

Направление подготовки/специальность: 27.03.04 Управление в технических системах

Наименование образовательной программы: Интеллектуальные технологии управления в технических

системах, обработка и анализ данных

Уровень образования: высшее образование - бакалавриат

Форма обучения: Очная

Оценочные материалы по дисциплине Интеллектуальные системы

Москва 2023

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ РАЗРАБОТАЛ:

Разработчик

| Подписано электронной подписью ФГБОУ ВО «НИУ «МЭИ»

| Сведения о владельце ЦЭП МЭИ

| Владелец | Елисеев В.Л.
| Идентификатор | R37a37292-YeliseevVL-9b2e3978

СОГЛАСОВАНО:

Руководитель образовательной программы

NCM NCM	Подписано электронн	ой подписью ФГБОУ ВО «НИУ «МЭИ»		
	Сведения о владельце ЦЭП МЭИ			
	Владелец	Сидорова Е.Ю.		
	Идентификатор	R0dee6ce9-SidorovaYY-923dc6a8		

Е.Ю. Сидорова

В.Л. Елисеев

Заведующий выпускающей кафедрой

1930 NOM MANAGEMENT	Подписано электронной подписью ФГБОУ ВО «НИУ «МЭИ»			
	Сведения о владельце ЦЭП МЭИ			
	Владелец	Бобряков А.В.		
	Идентификатор	R2c90f415-BobriakovAV-70dec1fa		

А.В. Бобряков

ОБЩАЯ ЧАСТЬ

Оценочные материалы по дисциплине предназначены для оценки: достижения обучающимися запланированных результатов обучения по дисциплине, этапа формирования запланированных компетенций и уровня освоения дисциплины.

Оценочные материалы по дисциплине включают оценочные средства для проведения мероприятий текущего контроля успеваемости и промежуточной аттестации.

Формируемые у обучающегося компетенции:

- 1. ПК-1 Способен разрабатывать и применять технологии сбора, обработки и анализа разнотипных данных для расчета и проектирования систем и средств автоматизации и управления
 - ИД-3 Демонстрирует знание различных способов машинного обучения и способность применять их на практике
 - ИД-4 Использует стандартное программное обеспечение и специализированные библиотеки для обработки и анализа данных

и включает:

для текущего контроля успеваемости:

Форма реализации: Билеты (письменный опрос)

- 1. Тест № 1 (Тестирование)
- 2. Тест № 2 (Тестирование)
- 3. Тест № 3 (Тестирование)

Форма реализации: Компьютерное задание

- 1. Лабораторная работа №1 (Лабораторная работа)
- 2. Лабораторная работа №2 (Лабораторная работа)
- 3. Лабораторная работа №3 (Лабораторная работа)
- 4. Лабораторная работа №4 (Лабораторная работа)

БРС дисциплины

7 семестр

		Веса контрольных мероприятий, %							
Doo но и имоминия и и	Индекс	КМ-	КМ-	КМ-	КМ-	КМ-	КМ-	КМ-	
Раздел дисциплины	KM:	1	2	3	4	5	6	7	
	Срок КМ:	3	4	6	8	10	12	14	
Теоретические основы глубоких									
нейронных сетей									
Введение в машинное обучение.						+	+		
Вероятностные подходы к машинному обучению.						+	+		
Формализация цели машинного обучения на примере регрессии.						+	+		
Формализация цели машинного обучения на примере классификации.						+	+		
Введение в искусственные нейронные сети.						+	+		

Обучение многослойных искусственных				+			
нейронных сетей.				'			
Практические соображения при обучении нейросетей.	+						+
Архитектура глубоких нейронных сетей.					+	+	
Моделирование и обучение глубоких нейронных сетей							
Моделирование и обучение глубоких нейронных сетей				+			
Ускорение вычислений глубоких нейронных сетей.				+			
Структура глубокой нейронной сети.					+	+	
Особенности ГНС.		+	+				
Граф вычислений и дифференцирование на нем.		+	+				
Представление ГНС в виде графа вычислений		+	+				
Программные и аппаратные средства для реализации ГНС.		+	+				
Подготовка и обработка данных в глубоких нейронных сетях							
Методы представления данных в форме, пригодной для обработки ГНС.	+	+	+		+	+	+
Показатели качества методов машинного обучения.	+	+	+				+
Наборы данных для обучения ГНС.	+				+	+	+
Современные архитектуры глубоких нейронные сетей							
Сверточные нейросети и распознавание изображений.					+	+	
Рекуррентные нейронные сети и предсказание последовательностей.				+			
Специализированные архитектуры LSTM, GRU.				+			
Атаки на нейросетевые классификаторы.				+			
Автокодировщики и обнаружение аномалий.				+			
Bec KM:	10	15	10	15	20	10	20

\$Общая часть/Для промежуточной аттестации\$

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ТЕКУЩЕГО КОНТРОЛЯ

I. Оценочные средства для оценки запланированных результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций

Индекс	Индикатор	Запланированные	Контрольная точка
компетенции		результаты обучения по	
		дисциплине	
ПК-1	ИД-3 _{ПК-1} Демонстрирует	Знать:	Тест № 1 (Тестирование)
	знание различных	методы нейросетевого	Лабораторная работа №3 (Лабораторная работа)
	способов машинного	анализа изображений,	Тест № 3 (Тестирование)
	обучения и способность	сигналов и данных иных	Лабораторная работа №4 (Лабораторная работа)
	применять их на практике	видов	
		Уметь:	
		формировать выборки	
		изображений, сигналов и	
		данных иных видов и	
		приводить их к	
		математическому виду	
ПК-1	$ИД-4_{\Pi K-1}$ Использует	Знать:	Лабораторная работа №1 (Лабораторная работа)
	стандартное программное	современные библиотеки и	Тест № 2 (Тестирование)
	обеспечение и	программные средства	Лабораторная работа №2 (Лабораторная работа)
	специализированные	обучения глубоких	
	библиотеки для обработки	нейронных сетей	
	и анализа данных	Уметь:	
		использовать современные	
		библиотеки и	
		программные средства для	
		обучения глубоких	
		нейронных сетей	

II. Содержание оценочных средств. Шкала и критерии оценивания

КМ-1. Тест № 1

Формы реализации: Билеты (письменный опрос) Тип контрольного мероприятия: Тестирование Вес контрольного мероприятия в БРС: 10

Процедура проведения контрольного мероприятия: прохождение тестирования путем выдача студентам бланков с вопросами для тестирования, либо прохождение тестирования с помощью средств дистанционного обучения. Проверка результатов выполнения.

Краткое содержание задания:

тест включает 13 вопросов по теме «Основы архитектуры и обучения глубоких нейронных сетей». Каждый вопрос требует выбора одного из правильных ответов, установления соответствия понятий, упорядочения последовательности действий или решения примера с вводом ответа. На ответы выделяется ограниченное время — 45 минут.

Контрольные вопросы/задания:

Уметь: формировать выборки	1.Выведите формулу Байеса на основе расчета
изображений, сигналов и данных	условной вероятности.
иных видов и приводить их к	2.Разработайте архитектуру нейронной сети для
математическому виду	реализации функции XOR и аргументируйте её.

Описание шкалы оценивания:

Оиенка: 5

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 30

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-2. Лабораторная работа №1

Формы реализации: Компьютерное задание

Тип контрольного мероприятия: Лабораторная работа

Вес контрольного мероприятия в БРС: 15

Процедура проведения контрольного мероприятия: выдача студентам индивидуальных контрольных заданий. Консультации по содержанию задания. Выполнение заданий студентами. Проверка результатов выполнения.

Краткое содержание задания:

лабораторная работа по теме "Архитектура и обучение глубоких нейронных сетей" Цель - Получить практические навыки создания, обучения и применения искусственных нейронных сетей на примере решения задачи распознавания рукописных цифр. Научиться загружать данные и проводить их предварительную обработку. Научиться оценивать качество работы обученной нейронной сети. Исследовать влияние архитектуры нейронной сети на качество решения задач

Контрольные вопросы/задания:

Знать: современные библиотеки	1.Постановка задач классификации объектов и
и программные средства	распознавания образов
обучения глубоких нейронных	2.Опишите модель искусственного нейрона. Что
сетей	такое веса, функция активации?

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 30

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-3. Тест № 2

Формы реализации: Билеты (письменный опрос) Тип контрольного мероприятия: Тестирование Вес контрольного мероприятия в БРС: 10

Процедура проведения контрольного мероприятия: прохождение тестирования путем выдача студентам бланков с вопросами для тестирования, либо прохождение тестирования с помощью средств дистанционного обучения. Проверка результатов выполнения.

Краткое содержание задания:

тест включает 21 вопрос по теме «Архитектура и возможности библиотек для обучения глубоких нейронных сетей». Каждый вопрос требует выбора одного из правильных ответов, установления соответствия понятий, упорядочения последовательности действий или решения примера с вводом ответа. На ответы выделяется ограниченное время — 45 минут.

Контрольные вопросы/задания:

Знать: современные библиотеки	1.Перечислите основные функции активации,
и программные средства	применяемые в ГНС.
обучения глубоких нейронных	2. Какие вычислительные архитектуры используются
сетей	для реализации ГНС?

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 80 Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 50 Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 30 Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-4. Лабораторная работа №2

Формы реализации: Компьютерное задание

Тип контрольного мероприятия: Лабораторная работа

Вес контрольного мероприятия в БРС: 15

Процедура проведения контрольного мероприятия: выдача студентам индивидуальных контрольных заданий. Консультации по содержанию задания. Выполнение заданий студентами. Проверка результатов выполнения.

Краткое содержание задания:

Лабораторная работа по теме "Обнаружение аномалий". Цель - Получить практические навыки создания, обучения и применения искусственных нейронных сетей типа автокодировщик. Научиться загружать данные и проводить их предварительную обработку. Исследовать влияние архитектуры автокодировщика и количества эпох обучения на области в пространстве признаков, распознаваемые автокодировщиком после обучения. Научиться оценивать качество обучения автокодировщика на основе ошибки реконструкции и новых метрик EDCA. Научиться решать актуальную задачу обнаружения аномалий в данных с помощью автокодировщика как одноклассового классификатора.

Контрольные вопросы/задания:

Уметь: использовать	1.Как влияет архитектура автокодировщика на
современные библиотеки и	качество обнаружений аномалий?
программные средства для	2.Как влияет порог ошибки реконструкции на
обучения глубоких нейронных	качество обнаружений аномалий?
сетей	

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 30

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оиенка: 2

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-5. Лабораторная работа №3

Формы реализации: Компьютерное задание

Тип контрольного мероприятия: Лабораторная работа

Вес контрольного мероприятия в БРС: 20

Процедура проведения контрольного мероприятия: выдача студентам индивидуальных контрольных заданий. Консультации по содержанию задания. Выполнение заданий студентами. Проверка результатов выполнения.

Краткое содержание задания:

Лабораторная работа по теме "Распознавание изображений". Цель - Получить практические навыки создания, обучения и применения сверточных нейронных сетей для распознавания изображений. Познакомиться с классическими показателями качества классификации

Контрольные вопросы/задания:

Знать: методы нейросетевого	1.Области применения сверточных нейронных сетей
анализа изображений, сигналов и	и задачи, решаемые с их помощью
данных иных видов	2.В чем заключаются особенности и преимущества
	сверточных нейронных сетей при распознавании
	изображений по сравнению с полносвязными
	нейронными сетями?

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оиенка: 4

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 30

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-6. Тест № 3

Формы реализации: Билеты (письменный опрос) Тип контрольного мероприятия: Тестирование Вес контрольного мероприятия в БРС: 10

Процедура проведения контрольного мероприятия: прохождение тестирования путем выдача студентам бланков с вопросами для тестирования, либо прохождение тестирования с помощью средств дистанционного обучения. Проверка результатов выполнения.

Краткое содержание задания:

тест включает 19 вопросов по теме «Современные архитектуры глубоких нейронных сетей». Каждый вопрос требует выбора одного из правильных ответов, установления соответствия понятий, упорядочения последовательности действий или решения примера с вводом ответа. На ответы выделяется ограниченное время — 45 минут.

Контрольные вопросы/задания:

Знать: методы нейросетевого	1.Приведите методы предобработки графических
анализа изображений, сигналов и	данных для ГНС.
данных иных видов	2.Перечислите основные метрики качества
	классификации.

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 30

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-7. Лабораторная работа №4

Формы реализации: Компьютерное задание

Тип контрольного мероприятия: Лабораторная работа

Вес контрольного мероприятия в БРС: 20

Процедура проведения контрольного мероприятия: выдача студентам индивидуальных контрольных заданий. Консультации по содержанию задания. Выполнение заданий студентами. Проверка результатов выполнения.

Краткое содержание задания:

Лабораторная работа по теме "Распознавание последовательностей". Цель - Получить практические навыки обработки текстовой информации с помощью рекуррентных искусственных нейронных сетей при решении задачи определения тональности текста.

Контрольные вопросы/задания:

Уметь: формировать выборки	1.Опишите структуру простого рекуррентного
изображений, сигналов и данных	нейрона
иных видов и приводить их к	2.Опишите структуру рекуррентной LSTM-ячейки
математическому виду	

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оиенка: 4

Нижний порог выполнения задания в процентах: 50 Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 30 Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

7 семестр

Форма промежуточной аттестации: Зачет с оценкой

Пример билета

- 1) Слабый и сильный искусственный интеллект. Типичные задачи.
- 2) Машинное обучение. Виды обучения. Разметка данных.

Процедура проведения

Процедура проведения зачета определяется текущим положением об экзаменах и зачетах НИУ «МЭИ». Студент получает билет с 2 вопросами по лекционному курсу. Время на подготовку ответа — 60 мин. Далее он отвечает на поставленные вопросы, а также на дополнительные вопросы преподавателя, принимающего зачет. По результатам ответов выставляется оценка за зачет, которая сообщается студенту.

I. Перечень компетенций/индикаторов и контрольных вопросов проверки результатов освоения дисциплины

1. Компетенция/Индикатор: ИД- $3_{\Pi K-1}$ Демонстрирует знание различных способов машинного обучения и способность применять их на практике

Вопросы, задания

- 1. Перечислите основные метрики качества классификации.
- 2. Какие вычислительные архитектуры используются для реализации ГНС?
- 3. Дайте определение атаки на классификатор и приведите примеры возможных атак на систему управления беспилотного автомобиля.

Материалы для проверки остаточных знаний

- 1.Для глубокого машинного обучения (Deep Learning) больше подходит фреймворк Ответы:
- 1. TensorFlow
- 2. Matlab
- 3. Statistica Neural Network

Верный ответ: 1

2. Укажите функцию ошибки для задачи классификации:

Ответы:

- 1. Сумма квадратов отклонений
- 2. Расстояние Кульбака-Лейблера

Верный ответ: 2

3.К какой группе показателей относится метрика Deficit?

Ответы:

- 1. Оценка качества в процессе обучения
- 2. Показатели качества классификации
- 3. Показатели качества регрессии
- 4. Показатели устойчивости

Верный ответ: 4

4.К какой группе показателей относится метрика Validation Error?

Ответы:

1. Оценка качества в процессе обучения

- 2. Показатели качества классификации
- 3. Показатели качества регрессии
- 4. Показатели устойчивости

Верный ответ: 1

5. Чем одноклассовая классификация от бинарной классификации?

Ответы:

- 1. Отсутствием разметки в данных
- 2. Неразделимость данных на два класса

Верный ответ: 1

6.Где в ГНС находятся полносвязные слои нейронов?

Ответы:

- 1. На входе
- 2. В любом месте
- 3. На выходе

Верный ответ: 3

7.Зависит ли количество весовых коэффициентов нейронов сверточного слоя от размера вектора (матрицы) на входе?

Ответы:

- 1. Да
- 2. Нет

Верный ответ: 2

2. Компетенция/Индикатор: ИД- $4_{\Pi K-1}$ Использует стандартное программное обеспечение и специализированные библиотеки для обработки и анализа данных

Вопросы, задания

- 1. Приведите методы предобработки графических данных для ГНС.
- 2.Перечислите основные функции активации, применяемые в ГНС.
- 3.Опишите отличия ячеек LSTM и GRU.

Материалы для проверки остаточных знаний

1. Чем ГНС отличается от многослойного перцептрона?

Ответы:

- 1. Большим количеством слоев
- 2. Наличием специализированных слоев
- 3. Применением методов ускорения обучения
- 4. Наличием несигмоидальных функций активации

Верный ответ: 2,4

2. Укажите функцию ошибки для задачи регрессии:

Ответы:

- 1. Сумма квадратов отклонений
- 2. Расстояние Кульбака-Лейблера

Верный ответ: 1

3.К какой группе показателей относится метрика Recall?

Ответы:

- 1. Оценка качества в процессе обучения
- 2. Показатели качества классификации
- 3. Показатели качества регрессии
- 4. Показатели устойчивости

Верный ответ: 2

4.К какой группе показателей относится метрика МАРЕ?

Ответы:

1. Оценка качества в процессе обучения

- 2. Показатели качества классификации
- 3. Показатели качества регрессии
- 4. Показатели устойчивости

Верный ответ: 3

5. Какова основная мотивация разработки LSTM и GRU

Ответы:

- 1. Проблема исчезающих градиентов
- 2. Ограничения на производительность рекуррентных нейросетей Верный ответ: 1
- 6.Почему сигмоидальная функция активации ограниченно используется в ГНС? Ответы:
- 1. Вычислительная сложность реализации
- 2. Проблема нулевой производной при насыщении Верный ответ: 2

7. Зачем используется предобучение входных слоев?

Ответы:

- 1. Для ускорения последующего обучения
- 2. Для снижения вероятности попадания в локальный минимум
- 3. Для контроля над переобучением (overfitting) Верный ответ: 1

8. Какая архитектура нейросети используется для предобучения?

Ответы:

- 1. LSTM
- 2. Многослойный перцептрон
- 3. Автокодировщик Верный ответ: 3

II. Описание шкалы оценивания

Оценка: 5

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Работа выполнена в рамках "продвинутого" уровня. Ответы даны верно, четко сформулированные особенности практических решений

Оценка: 4

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Работа выполнена в рамках "базового" уровня. Большинство ответов даны верно. В части материала есть незначительные недостатки

Оценка: 3

Нижний порог выполнения задания в процентах: 30

Описание характеристики выполнения знания: Работа выполнена в рамках "порогового" уровня. Основная часть задания выполнена верно. на вопросы углубленного уровня

Оценка: 2

Описание характеристики выполнения знания: Работа не выполнена или выполнена преимущественно неправильно

III. Правила выставления итоговой оценки по курсу

Оценка определяется в соответствии с Положением о балльно-рейтинговой системе для студентов НИУ «МЭИ» на основании семестровой и зачетной составляющих.