Министерство науки и высшего образования РФ Федеральное государственное бюджетное образовательное учреждение высшего образования «Национальный исследовательский университет «МЭИ»

Направление подготовки/специальность: 27.03.04 Управление в технических системах

Наименование образовательной программы: Интеллектуальные технологии управления в технических

системах, обработка и анализ данных

Уровень образования: высшее образование - бакалавриат

Форма обучения: Очная

Оценочные материалы по дисциплине Компьютерная графика

> Москва 2024

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ РАЗРАБОТАЛ:

 Подписано электронной подписью ФГБОУ ВО «НИУ «МЭИ»

 Сведения о владельце ЦЭП МЭИ

 Владелец
 Пирогова М.А.

 Идентификатор
 Rd3677be1-PirogovaMA-3a7507dg

СОГЛАСОВАНО:

Руководитель образовательной программы

Разработчик

NOSO	Подписано электронн	ой подписью ФГБОУ ВО «НИУ «МЭИ»		
THE PROPERTY AND S	Сведения о владельце ЦЭП МЭИ			
	Владелец	Сидорова Е.Ю.		
» <u>М⊙И</u> «	Идентификатор	R0dee6ce9-SidorovaYY-923dc6a8		

Е.Ю. Сидорова

Пирогова

M.A.

Заведующий выпускающей кафедрой

NOSO NOSO	Подписано электронной подписью ФГБОУ ВО «НИУ «МЭИ»				
	Сведения о владельце ЦЭП МЭИ				
	Владелец	Бобряков А.В.			
³ M <mark>⊙</mark> M ³	Идентификатор	R2c90f415-BobriakovAV-70dec1fa			

А.В. Бобряков

ОБЩАЯ ЧАСТЬ

Оценочные материалы по дисциплине предназначены для оценки достижения обучающимися запланированных результатов обучения по дисциплине, этапа формирования запланированных компетенций и уровня освоения дисциплины.

Оценочные материалы по дисциплине включают оценочные средства для проведения мероприятий текущего контроля успеваемости и промежуточной аттестации.

Формируемые у обучающегося компетенции:

- 1. ОПК-6 Способен разрабатывать и использовать алгоритмы и программы, современные информационные технологии, методы и средства контроля, диагностики и управления, пригодные для практического применения в сфере своей профессиональной деятельности
 - ИД-1 Использует современные информационные технологии и программное обеспечение при решении задач профессиональной деятельности

и включает:

для текущего контроля успеваемости:

Форма реализации: Компьютерное задание

- 1. Контрольная работа №:3 Создание и редактирование твердотельных моделей. Нанесение размеров на твердотельную модель. Создание блоков. (Контрольная работа)
- 2. Контрольная работа №1: Построение и редактирование двумерных моделей. (Контрольная работа)
- 3. Контрольная работа №2: Создание и редактирование трехмерных поверхностных моделей (Контрольная работа)

Форма реализации: Проверка задания

1. Защита лабораторной работы: «Интерфейс nanoCAD. Двумерные примитивы» (Лабораторная работа)

БРС дисциплины

3 семестр

Перечень контрольных мероприятий <u>текущего контроля</u> успеваемости по дисциплине:

- КМ-1 Защита лабораторной работы: «Интерфейс nanoCAD. Двумерные примитивы» (Лабораторная работа)
- КМ-2 Контрольная работа №1: Построение и редактирование двумерных моделей. (Контрольная работа)
- КМ-3 Контрольная работа №2: Создание и редактирование трехмерных поверхностных моделей (Контрольная работа)
- КМ-4 Контрольная работа №:3 Создание и редактирование твердотельных моделей. Нанесение размеров на твердотельную модель. Создание блоков. (Контрольная работа)

Вид промежуточной аттестации – Зачет с оценкой.

Вознан нуоууунгууу	Веса контрольных мероприятий, %				
Раздел дисциплины	Индекс	КМ-	КМ-	КМ-	КМ-

	КМ:	1	2	3	4
	Срок КМ:	4	8	12	15
Интерфейс и система команд nanoCAD. Примитивы	nanoCAD.				
Способы построения двухмерных моделей. Команды	I				
редактирования двухмерных моделей. Блоки. Коман	да				
написания текста.					
Интерфейс и система команд nanoCAD. Примитивы	nanoCAD.				
Способы построения двухмерных моделей. Команды	I				
редактирования двухмерных моделей. Блоки. Коман	да	+	+	+	+
написания текста.					
Трехмерные поверхностные модели. Редактирование	e				
поверхностных моделей					
Трехмерные поверхностные модели. Редактирование					
поверхностных моделей.				+	
Трехмерные твердотельные модели. Редактирование					
твердотельных моделей					
Трехмерные твердотельные модели. Редактирование					
твердотельных моделей					+
Способы создания реалистических изображений в nanoCAD.					
Команды нанесения размеров на двумерные чертежи и					
твердотельные модели					
Способы создания реалистических изображений вnanoCAD.					
Команды нанесения размеров на двумерные чертежи и					+
твердотельные модели					
	Bec KM:	5	30	25	40

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ТЕКУЩЕГО КОНТРОЛЯ

I. Оценочные средства для оценки запланированных результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций

Индекс	Индикатор	Запланированные	Контрольная точка
компетенции	_	результаты обучения по	
		дисциплине	
ОПК-6	ИД-1 _{ОПК-6} Использует современные	Знать: методы и средства	КМ-1 Защита лабораторной работы: «Интерфейс nanoCAD. Двумерные примитивы» (Лабораторная работа)
	информационные	компьютерной графики и	км-2 Контрольная работа №1: Построение и редактирование
	технологии и программное		двумерных моделей. (Контрольная работа)
	обеспечение при решении	<u> </u>	КМ-3 Контрольная работа №2: Создание и редактирование
	задач профессиональной	=	трехмерных поверхностных моделей (Контрольная работа)
	деятельности	разработки и оформления	КМ-4 Контрольная работа №:3 Создание и редактирование
		технической документации	твердотельных моделей. Нанесение размеров на твердотельную
		с помощью современных	модель. Создание блоков. (Контрольная работа)
		информационных	
		технологий	
		Уметь:	
		разрабатывать	
		геометрические модели	
		средствами современных	
		САПР, в частности,	
		средствами САПР общего	
		назначения nanoCAD	

II. Содержание оценочных средств. Шкала и критерии оценивания

КМ-1. Защита лабораторной работы: «Интерфейс nanoCAD. Двумерные примитивы»

Формы реализации: Проверка задания

Тип контрольного мероприятия: Лабораторная работа

Вес контрольного мероприятия в БРС: 5

Процедура проведения контрольного мероприятия: Ответы на вопросы в устной форме.

Краткое содержание задания:

В ходе выполнения лабораторной работы необходимо выполнить задания в САПР nanoCAD. Для этого необходимо изучить систему команд и настройку интерфейса САПР nanoCAD

Контрольные вопросы/задания:

Запланированные результаты	Вопросы/задания для проверки
обучения по дисциплине	
Знать: методы и средства	1. Как осуществляется в САПР nanoCAD работа с
компьютерной графики и	объектными привязками? Пояснить, как связаны
геометрического	объектные привязки с принципами параметризации в
моделирования	геометрическом моделировании

Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание все задания выполнены без ошибок.

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство заданий выполнено, ошибки незначительные.

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется, если все задания преимущественно выполнено, есть ошибки.

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задания не выполнены неверно или преимущественно не выполнены

КМ-2. Контрольная работа №1: Построение и редактирование двумерных моделей.

Формы реализации: Компьютерное задание

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 30

Процедура проведения контрольного мероприятия: Ответы на вопросы в устной форме.

Редактирование модели в САПР nanoCAD.

Краткое содержание задания:

Необходимо построить двумерную модель в САПР nanoCAD по индивидуальному заданию. Затем выполнить редактиорвание.

Контрольные вопросы/задания:

Запланированные	результаты	Вопросы/задания для проверки
обучения по дисци	плине	
Знать: методы	и средства	1.Перечислить команды САПР nanoCAD, с
компьютерной	графики и	помощью которых создаются скругления и фаски
геометрического моделирования		на двумерной модели.

Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если задание выполнено полностью, но есть незначительные ошибки

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено, есть грубые ошибки

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-3. Контрольная работа №2: Создание и редактирование трехмерных поверхностных моделей

Формы реализации: Компьютерное задание

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 25

Процедура проведения контрольного мероприятия: Выполнение команд редактирования

поверхностной модели в САПР nanoCAD. Ответ на вопросы в устной форме.

Краткое содержание задания:

В САПР Auto CAD необходимо построить трехмерную поверхностную сетевую модель. Выполнить редактирование по индивидуальному заданию.

Контрольные вопросы/задания:

контрольные вопросы/задания.	
Запланированные результаты	Вопросы/задания для проверки
обучения по дисциплине	
Знать: методы и средства	1.Пояснить, как повысить степень гладкости
компьютерной графики и	сетевых поверхностных моделей в САПР nanoCAD.
геометрического моделирования	2.Рассказать. как выполнить уточнение сетевых
	поверхностных моделей в САПР nanoCAD.
	3. Что такое грани сетевой поверхностной модели,
	созданной в САПР nanoCAD?
	4. Какие из разработанных в геометрическом

Запланированные результаты	Вопросы/задания для проверки
обучения по дисциплине	
	моделировании алгоритмов поверхностного
	моделирования есть в САПР nanoCAD?
Уметь: разрабатывать	1. Какие возможности для создания поверхностных
геометрические модели	моделей есть в САПР nanoCAD? Построить
средствами современных САПР,	несколько совмещенных заданных базовых сетевыех
в частности, средствами САПР	примитивов, используя пользовательские системы
общего назначения nanoCAD	координат
	2.Оценить возможности САПР nanoCAD для
	создания поверхностей по кинематическому
	принципу. Построить сетевую поверхностную
	модель соединения и две сетевые поверхностные
	модели вращения (на 180 и 90градусов) в САПР
	nanoCAD
	3. Есть ли возможности в САПР nanoCAD для
	создания четырехугольных поверхностей?

Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если задание выполнено, но есть непринципиальные ошибки.

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено, есть существенные ошибки.

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-4. Контрольная работа №:3 Создание и редактирование твердотельных моделей. Нанесение размеров на твердотельную модель. Создание блоков.

Формы реализации: Компьютерное задание

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 40

Процедура проведения контрольного мероприятия: Проверка правильности выполненного задания. Ответы на вопросы преподавателя. Выполнение дополнительных заданий в САПР nanoCAD.

Краткое содержание задания:

В САПР nanoCAD необходимо построить твердотельную модель по индивидуальному заданию. Выполнить редактирование модели. Выполнить разрез или сечение. Создать блок. Проставить размеры.

Контрольные вопросы/задания:

Запланированные результаты	Вопросы/задания для проверки
обучения по дисциплине	
Знать: методы и средства компьютерной графики и геометрического моделирования	1.Перечислить команды твердотельного моделирования САПР nanoCAD, которые позволяют строить тела по кинематическому принципу в САПР nanoCAD? 2.Дать определение булевым операциям. Как они реализованы в САПР nanoCAD? 3.Перечислить подходы к созданию твердотельных моделей в геометрическом моделировании. Какие из перечисленных
	подходов к твердотельному моделированию реализованы в САПР nanoCAD?
Знать: методы и средства разработки и оформления технической документации с помощью современных информационных технологий	1.Перечислить команды нанесения размеров, используемые в САПР nanoCAD. Какие средства для разработки технической документации есть в САПР nanoCAD?

Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме, ошибки незначительные.

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если задание в основном выполнено, есть недочеты. На дополнительные вопросы ответы даны недостаточно полные.

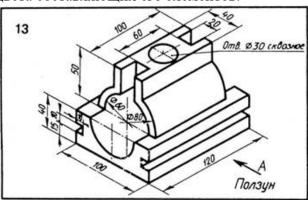
Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено, на дополнительные вопросы ответов не получено.

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено


СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

3 семестр

Форма промежуточной аттестации: Зачет с оценкой

Пример билета

- 1. Создать модель твердого тела. Нанести размеры в соответствии с указаниями преподавателя. Выполнить сечение.
- 2. Перенести сечение в любую точку рабочего поля. Разбить его на отдельные примитивы. Примитивы закрасить различными цветами. Перенести сечение на слой, отличный от нулевого. Оформить сечение в виде блока. Вставить в чертеж и поменять цвета составляющих его элементов.

Процедура проведения

Зачет выставляется по совокупности результатов всех контрольных мероприятий. Все задания выполняются в САПР nanoCAD. Приведен пример задания на третью контрольную работу.

I. Перечень компетенций/индикаторов и контрольных вопросов проверки результатов освоения дисциплины

1. Компетенция/Индикатор: ИД-1_{ОПК-6} Использует современные информационные технологии и программное обеспечение при решении задач профессиональной деятельности

Вопросы, задания

- 1.Пользовательский интерфейс САПР nanoCAD и его особенности.
- 2. Команды нанесения размеров в САПР nanoCAD.
- 3. Блоки и их назначение. Команды создания блоков в САПР nanoCAD.
- 4. Команды редактирования топологических составляющих твердого тела в САПР nanoCAD.
- 5. Команды редактирования твердого тела, как единое целое команды общего редактирования в САПР nanoCAD.
- 6. Команды построения твердотельных моделей на основе кинематического принципа в современных САПР (на примере nanoCAD).
- 7. Твердотельные примитивы и булевы операции в современных САПР (на примере nanoCAD).
- 8. Способы редактирования сетевых поверхностных моделей в САПР nanoCAD
- 9. Команды создания и редактирования процедурных поверхностных моделей и NURBS поверхностей в САПР nanoCAD.

- 10.Способы построения сетевых поверхностных моделей в САПР nanoCAD.
- 11. Управление видовым представлением трехмерных моделей в современных САПР (на примере nanoCAD).
- 12.Способы создания параметрических моделей в современных САПР (на примере nanoCAD)
- 13. Команды редактирования САПР nanoCAD
- 14. Команды создания двумерных моделей САПР nanoCAD
- 15. Начальные установки САПР папоСАD.

Материалы для проверки остаточных знаний

- 1. Что такое булевы операции? Какие булевы операции реализованы в САПР nanoCAD? Ответы:
- а)Булевы операции позволяют создавать сложные твердотельные модели на основе более простых. Объединение, вычитание, пересечение.
- б) Булевы операции позволяют строит поверхностные модели
- в) Булевы операции позволяют вычитать и объедитнять простые твердые тела Верный ответ: а) Булевы операции позволяют создавать сложные твердотельные модели на основе более простых. Объединение, вычитание, пересечение.
- 2. Дать определение базовым элементам формы? Какие базовые элементы формы используются для построения твердых тел в САПР nanoCAD?

Ответы:

- а) Модели, построенные по кинематическому принципу
- б) Базовые элементы формы простейшие твердые тела. Это твердотельные примитивы либо тела построенные на основе их Твердотельные примитивы: параллелепипед, клин, конус, пирамида и усеченная пирамида, тор сфера, полисолид.
- в) Параллелепипед и сфера
 - Верный ответ: б) Базовые элементы формы простейшие твердые тела. Это твердотельные примитивы либо тела построенные на основе их Твердотельные примитивы: параллелепипед, клин, конус, пирамида и усеченная пирамида, тор сфера, полисолид.
- 3.Пояснить, когда необходимо использовать пользовательские системы координат Ответы:
- а) Пользовательские системы координат необходимы для простановки размеров
- б)Пользовательские системы координат необходимы для нанесения штриховки
- в) Пользовательские системы координат необходимы для построения сложных поверхностных и твердотельных моделей. Изменение пользовательской системы координат позволяет размещать систему координат на одной из составляющих модели (например грани). Возможные способы создания пользовательских систем координат привязка начала координат к точке на объекте, выбрать три точки на модели начало координат, направление оси X, направление оси Y и т.п.

Верный ответ: в) Пользовательские системы координат необходимы для построения сложных поверхностных и твердотельных моделей. Изменение пользовательской системы координат позволяет размещать систему координат на одной из составляющих модели (например грани). Возможные способы создания пользовательских систем координат - привязка начала координат к точке на объекте, выбрать три точки на модели - начало координат, направление оси X, направление оси Y и т.п.

4.Перечислить команды создания сетевых поверхностных моделей есть в САПР nanoCAD

Ответы:

- а) Базовые поверхностные примитивы, 3D сеть, 3D грань
- б) 3D сеть

- в) 3D грань
 - Верный ответ: a) Базовые поверхностные примитивы, 3D сеть, 3D грань
- 5.Перечислить типы трехмерных моделей разрабатываются в современных САПР.
- а)В современных САПР (в том числе и в nanoCAD) можно разработать только поверхностные модели
- б)В современных САПР (в том числе и в nanoCAD) можно разработать поверхностные и твердотельные модели. Можно создавать сетевые. Твердые тела создаются на основе базовых элементов формы и булевых операций над ними: объединение, вычитание, пересечение). Трехмерные модели могут создаваться на основе кинематического принципа.
- в) В современных САПР (в том числе и в nanoCAD) можно разработать только твердотельные модели по кинематическому принципу

Верный ответ: б) В современных САПР (в том числе и в nanoCAD) можно разработать поверхностные и твердотельные модели. Можно создавать сетевые. Твердые тела создаются на основе базовых элементов формы и булевых операций над ними: объединение, вычитание, пересечение). Трехмерные модели могут создаваться на основе кинематического принципа.

- 6.Перечислить команды общего редактирования, которые есть в САПР nanoCAD. Ответы:
- а) В САПР nanoCAD к командам общего редактирования относятся команда зеркальное отражение
- б) В САПР nanoCAD к командам общего редактирования относятся команда массив, в)В САПР nanoCAD к командам общего редактирования относятся команды обрезать, удлинить, подобие, разорвать, зеркальное отражение.

Верный ответ: в) В САПР nanoCAD к командам общего редактирования относятся команды обрезать, удлинить, подобие, разорвать, зеркальное отражение.

- 7.Перечислить, команды позволяющие строить кривые в САПР nanoCAD Ответы:
- а) Кривые в САПР nanoCAD можно создать с помощью команд: полилиния с последующей аппроксимацией, по управляющим или по определяющим точкам. Для построения используется математический аппарат для кривых Безье, В-сплайнов, Nurbs кривых.
- б) Кривые в САПР nanoCAD можно создать сплайны на основе кривых Безье
- в) Кривые в САПР nanoCAD можно создать В-сплайны

Верный ответ: а) Кривые в САПР nanoCAD можно создать с помощью команд: полилиния с последующей аппроксимацией, по управляющим или по определяющим точкам. Для построения используется математический аппарат для кривых Безье, В-сплайнов, Nurbs кривых.

- 8. Какие двумерные примитивы можно создать в САПР nanoCAD? Ответы:
- а) В САПР nanoCAD можно создать отрезки прямых и дуги
- б) В САПР nanoCAD можно создавать все геометрические примитивы (точка, луч, отрезок, дуга окружность, сплайн, полилиния и т.д.). Дополнительно штриховка. Принципы создания соответствуют геометрическим параметрам примитивов.
- в) В САПР nanoCAD можно создать отрезки прямых, окружности, полилинии Верный ответ: б) В САПР nanoCAD можно создавать все геометрические примитивы (точка, луч, отрезок, дуга окружность, сплайн, полилиния и т.д.). Дополнительно штриховка. Принципы создания соответствуют геометрическим параметрам примитивов.
- 9. Что такое объектная привязка? Как реализовать эту возможность в САПР nanoCAD? Ответы:

- а)В САПР nanoCAD объектная привязка создаются, как привязка к конечным точкам примитива.
- б) В САПР nanoCAD объектная привязка создается с помощью кнопки оПривязка в строке состояния. При выполнении команд отслеживаются различные геометрические зависимости (например, середина примитива, пересечение примитивов и т.п.).
- в) В САПР nanoCAD объектная привязка создается, как привязка к определяющим точкам сплайна

Верный ответ: б) В САПР nanoCAD объектная привязка создается с помощью кнопки оПривязка в строке состояния. При выполнении команд отслеживаются различные геометрические зависимости (например, середина примитива, пересечение примитивов и т.п.).

- 10.Пояснить, как происходит настройка рабочего пространства САПР nanoCAD. Ответы:
- а)Настройка рабочего пространства в САПР nanoCAD происходит с помощью опций строки состояния
- б)Настройка рабочего пространства в САПР nanoCAD происходит через командную строку
- в) Настройка рабочего пространства в САПР nanoCAD происходит с помощью опций строки состояния, или через командную строку. Например, Установить размер сетки, включить/выключить сетку, установить режим перемещения только вдоль координатных осей, включить/ выключить объектную привязку, включить/выключить динамическое отслеживание и т.п.

Верный ответ: в) Настройка рабочего пространства в САПР nanoCAD происходит с помощью опций строки состояния, или через командную строку. Например, Установить размер сетки, включить/выключить сетку, установить режим перемещения только вдоль координатных осей, включить/ выключить объектную привязку, включить/выключить динамическое отслеживание и т.п.

- 11.Перечислить возможности САПР nanoCAD для работы с ее системой команд. Ответы:
- а) В САПР nanoCAD с системой команд можно работать с помощью падающего меню
- б) В САПР nanoCAD с системой команд можно работать с помощью строки состояния
- в) В САПР nanoCAD с системой команд можно работать с помощью ленточного меню, панели инструментов, падающего меню, строки состояния, контекстного меню.

Верный ответ: в) В САПР nanoCAD с системой команд можно работать с помощью ленточного меню, панели инструментов, падающего меню, строки состояния, контекстного меню.

12. Какие команды построения по кинематическому принципу используются для создания твердотельных моделей?

Ответы:

- а)В САПР nanoCAD для построения твердотельных моделей по кинематическому принципу используются команды: Вращение, Вытягивание по траектории, Выдавливание, Вытягивание по сечениям
- б)В САПР nanoCAD для построения твердотельных моделей по кинематическому принципу используются команды: Выдавливание, Вытягивание по траектории
- в) В САПР nanoCAD для построения твердотельных моделей по кинематическому принципу используются команды: Вращение, Вытягивание по сечениям

Верный ответ: a) В САПР nanoCAD для построения твердотельных моделей по кинематическому принципу используются команды: Вращение, Вытягивание по траектории, Выдавливание, Вытягивание по сечениям

13.Перечислить возможности редактирования твердого тела в САПР nanoCAD Ответы:

- а)Твердое тело в САПР nanoCAD можно редактировать, как единое целое (например, поворот)
- б)Твердое тело в САПР nanoCAD можно редактировать, используя отдельные топологические составляющие твердого тела граней, ребер, вершин, оболочки (например, Выдавить грань)
- в)Твердое тело в САПР nanoCAD можно редактировать, как единое целое (например, поворот); редактирование отдельных топологических составляющих твердого тела граней, ребер, вершин, оболочки (например, Выдавить грань)

Верный ответ: в)Твердое тело в САПР nanoCAD можно редактировать, как единое целое (например, поворот); редактирование отдельных топологических составляющих твердого тела - граней, ребер, вершин, оболочки (например, Выдавить грань)

- 14. Как решена задача простановки размеров в САПР nanoCAD? Ответы:
- а) Для простановки размеров в CAПР nanoCAD используются отдельные команды для простановки размеров на различных примитивах
- б) Для простановки размеров в САПР nanoCAD используются различные команды для трехмерных моделей и для двумерных моделей
- в) Для простановки размеров в САПР nanoCAD используется команда Размеры, которые связаны с геометрическими параметрами модели. Команда нанесения размеров является ассоциативной, т.е. всегда связана с примитивами, на которые наносятся размеры. Можно наносить угловые, линейные, радиальные, диаметральные, размеры .Есть возможность простановки размеров от базовой точки, продолженные размеры. Перед началом работы с командой Размеры. Необходимо выполнить настройки всех составляющих элементов размера.

Верный ответ: в) Для простановки размеров в САПР nanoCAD используется команда Размеры, которые связаны с геометрическими параметрами модели. Команда нанесения размеров является ассоциативной, т.е. всегда связана с примитивами, на которые наносятся размеры. Можно наносить угловые, линейные, радиальные, диаметральные, размеры .Есть возможность простановки размеров от базовой точки, продолженные размеры. Перед началом работы с командой Размеры. Необходимо выполнить настройки всех составляющих элементов размера.

II. Описание шкалы оценивания

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Все контрольные мероприятия выполнены на высоком уровне. Грубых ошибок нет. Все дополнительные задания выполнены.

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Большинство контрольных мероприятий выполнено на хорошем уровне. Ошибки незначительные. Дополнительные задания в основном выполнены.

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Все работы выполнены с ошибками. Ответы на вопросы не получены или получены не на все вопросы.

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Все работы не выполнены или выполнены преимущественно неправильно

ІІІ. Правила выставления итоговой оценки по курсу

Оценка определяется в соответствии с Положением о балльно-рейтинговой системе для студентов НИУ «МЭИ» на основании семестровой и аттестационной составляющих.