Министерство науки и высшего образования РФ Федеральное государственное бюджетное образовательное учреждение высшего образования «Национальный исследовательский университет «МЭИ»

Направление подготовки/специальность: 27.03.04 Управление в технических системах

Наименование образовательной программы: Интеллектуальные технологии управления в технических

системах, обработка и анализ данных

Уровень образования: высшее образование - бакалавриат

Форма обучения: Очная

Оценочные материалы по дисциплине Моделирование систем управления

Москва 2024

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ РАЗРАБОТАЛ:

Подписано электронной подписью ФГБОУ ВО «НИУ «МЭИ»

Сведения о владельце ЦЭП МЭИ

Владелец Васильев А.А.

Идентификатор R04dba875-VasilyevAA-f364bf09

СОГЛАСОВАНО:

Руководитель образовательной программы

Разработчик

MON S	Подписано электронн	ой подписью ФГБОУ ВО «НИУ «МЭИ»		
	Сведения о владельце ЦЭП МЭИ			
	Владелец	Сидорова Е.Ю.		
	Идентификатор	R0dee6ce9-SidorovaYY-923dc6a8		

Е.Ю. Сидорова

A.A.

Васильев

Заведующий выпускающей кафедрой

NCW NCW	Подписано электронн	ой подписью ФГБОУ ВО «НИУ «МЭИ»			
	Сведения о владельце ЦЭП МЭИ				
	Владелец	Бобряков А.В.			
	Идентификатор	R2c90f415-BobriakovAV-70dec1fa			

А.В. Бобряков

ОБЩАЯ ЧАСТЬ

Оценочные материалы по дисциплине предназначены для оценки достижения обучающимися запланированных результатов обучения по дисциплине, этапа формирования запланированных компетенций и уровня освоения дисциплины.

Оценочные материалы по дисциплине включают оценочные средства для проведения мероприятий текущего контроля успеваемости и промежуточной аттестации.

Формируемые у обучающегося компетенции:

- 1. РПК-1 Способен проводить натурные и вычислительные эксперименты с использованием стандартных программных средств с целью получения математических моделей процессов и объектов автоматизации и управления
 - ИД-1 Применяет современные среды программирования для подготовки и проведения экспериментов по заданным методикам и обработки их результатов
 - ИД-4 Демонстрирует знание алгоритмов решения типовых задач моделирования процессов и объектов автоматизации и управления, областей и способов их применения

и включает:

для текущего контроля успеваемости:

Форма реализации: Билеты (письменный опрос)

- 1. Тест № 1 (Тестирование)
- 2. Тест № 2 (Тестирование)

Форма реализации: Компьютерное задание

- 1. Лабораторная работа № 1 (Лабораторная работа)
- 2. Лабораторная работа № 2 (Лабораторная работа)
- 3. Лабораторная работа № 3 (Лабораторная работа)

БРС дисциплины

7 семестр

Перечень контрольных мероприятий <u>текущего контроля</u> успеваемости по дисциплине:

- КМ-1 Лабораторная работа № 1 (Лабораторная работа)
- КМ-2 Тест № 1 (Тестирование)
- КМ-3 Лабораторная работа № 2 (Лабораторная работа)
- КМ-4 Лабораторная работа № 3 (Лабораторная работа)
- КМ-5 Тест № 2 (Тестирование)

Вид промежуточной аттестации – Экзамен.

	Веса контрольных мероприятий, %						
Doower averyour	Индекс	КМ-	КМ-	КМ-	КМ-	КМ-	
Раздел дисциплины	KM:	1	2	3	4	5	
	Срок КМ:	5	8	9	13	14	
Формализованные представления моделей описания							
динамических систем в пространстве состояний и общие							

	1	1		1	1
подходы к работе с ними.					
Основные понятия теории моделирования		+		+	
Принцип системного подхода в компьютерном моделировании систем управления.		+		+	
Аналоговые структурные модели динамических систем.				+	+
Способы получения моделей описания систем в					
векторно-матричной форме и преобразования к пространству состояний.				+	+
Переходная матрица состояния и матричная					
передаточная функция для моделей в непрерывном и					
дискретном времени					
Матричная форма представления динамической					
системы.	+	+			
Переходная матрица состояния стационарной линейной	,				
динамической системы	+	+			
Многосвязные системы.			_		_
тиногосвязные системы.			+		+
Дискретные системы управления.			+		+
Обзор численных методов интегрирования нелинейных уравнений состояния	+				
Инструментальные средства моделирования систем					
управления					
Современные технологии компьютерного					
моделирования.	+				
Особенности реализации компьютерных моделей					
динамических систем на базе средств Matlab/Simulink.	+				
Методы моделирования объектов и систем с					
распределёнными параметрами					
Объекты и системы с распределёнными параметрами.			+		
Метод конечных разностей (МКР) для моделирования					
объектов и систем с распределенными параметрами.			+		
Аппроксимация одномерного параболического			+		
оператора по схеме с весами			'		
Разностные схемы для моделирования многомерных		+		+	
распределённых объектов.		'		'	
Математические основания метода конечных элементов:		+		+	
проекционный и вариационный подходы.					
Метод конечных элементов для решения задачи		+		+	
теплопроводности.					-
Вычислительные архитектуры для решения задач с					+
распределенными параметрами.					1
Моделирование случайных процессов и систем					
управления при случайных воздействиях					
Задачи моделирования стохастических систем.					+
Определение систем массового обслуживания (СМО) и					+
основные термины.					<u> </u>

Параметры и классификация систем массового обслуживания						+
Bed	c KM:	15	30	15	15	25

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ТЕКУЩЕГО КОНТРОЛЯ

I. Оценочные средства для оценки запланированных результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций

Индекс	Индикатор	Запланированные	Контрольная точка
компетенции	_	результаты обучения по	
		дисциплине	
РПК-1	ИД-1РПК-1 Применяет	Знать:	КМ-1 Лабораторная работа № 1 (Лабораторная работа)
	современные среды	формы представления	КМ-2 Лабораторная работа № 2 (Лабораторная работа)
	программирования для	систем в пространстве	КМ-3 Лабораторная работа № 3 (Лабораторная работа)
	подготовки и проведения	состояний, постановку	КМ-4 Тест № 1 (Тестирование)
	экспериментов по	дифференциальных задач и	КМ-5 Тест № 2 (Тестирование)
	заданным методикам и	методы численного их	
	обработки их результатов	решения.	
		основные этапы создания	
		моделей, виды и способы	
		моделирования	
		технических систем;	
		Уметь:	
		классифицировать модели	
		динамических систем;	
		составлять и	
		преобразовывать модели	
		динамических систем.	
РПК-1	ИД-4РПК-1 Демонстрирует	Знать:	КМ-1 Лабораторная работа № 1 (Лабораторная работа)
	знание алгоритмов	принципы построения	КМ-2 Лабораторная работа № 2 (Лабораторная работа)
	решения типовых задач	компьютерных	КМ-3 Лабораторная работа № 3 (Лабораторная работа)
	моделирования процессов		КМ-4 Тест № 1 (Тестирование)
	и объектов автоматизации		КМ-5 Тест № 2 (Тестирование)
	и управления, областей и	<u> </u>	
	способов их применения	моделирования	
		детерминированных и	

стохастических систем.	
Уметь:	
осваивать программные	
комплексы для	
моделирования систем;	
пользоваться	
инструментальными	
системами компьютерного	
моделирования	

II. Содержание оценочных средств. Шкала и критерии оценивания

КМ-1. Лабораторная работа № 1

Формы реализации: Компьютерное задание

Тип контрольного мероприятия: Лабораторная работа

Вес контрольного мероприятия в БРС: 15

Процедура проведения контрольного мероприятия: выдача студентам индивидуальных контрольных заданий. Консультации по содержанию задания. Выполнение заданий студентами. Проверка результатов выполнения.

Краткое содержание задания:

лабораторная работа по теме «Исследование методов моделирования динамических систем на базе аналоговых структурных моделей». Цель работы — закрепление знаний по использованию методов аналогового структурного моделирования на примере динамических объектов первого и второго порядков, а также освоение инструментальной базы моделирования непрерывных систем в среде MATLAB/Simulink. На основе методики составления аналоговой структурной схемы динамического объекта применительно к объектам, порядок которых не выше второго, составить структурные схемы моделирования динамических звеньев. Получить и записать аналитические выражения для переходных функций динамических звеньев. Записать математическую модель динамической системы второго порядка в стандартной форме уравнений состояния. Определить и записать матрицы A, B, C, D исследуемой системы с учетом заданных по вариантам параметров объекта.

Контрольные вопросы/задания:

Запланированные результаты	Вопросы/задания для проверки
обучения по дисциплине	
Знать: принципы построения	1. Дать определение матрицам состояния,
компьютерных имитационных	управления, наблюдения и связи.
моделей;	2.Какие базовые блоки используются в
	структурных аналоговых схемах?
Уметь: составлять и	1.Получите и запишите аналитические выражения
преобразовывать модели	для переходных функций динамических звеньев.
динамических систем.	2.Представьте заданное линейное
	дифференциальное уравнение 2-го порядка в виде
	аналоговой структурной схемы.

Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 30

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-2. Тест № 1

Формы реализации: Билеты (письменный опрос) Тип контрольного мероприятия: Тестирование Вес контрольного мероприятия в БРС: 30

Процедура проведения контрольного мероприятия: прохождение тестирования путем выдача студентам бланков с вопросами для тестирования, либо прохождение тестирования с помощью средств дистанционного обучения. Проверка результатов выполнения.

Краткое содержание задания:

тест включает 13 вопросов по теме «Методы численного интегрирования дифференциальных уравнений». Каждый вопрос требует выбора одного из правильных ответов, установления соответствия понятий, упорядочения последовательности действий или решения примера с вводом ответа. На ответы выделяется ограниченное время — 60 минут.

Контрольные вопросы/задания:

контрольные вопросы/задания.			
Запланированные результаты обучения по	Вопросы/задания для проверки		
дисциплине			
Знать: формы представления систем в	1.Укажите одношаговые методы		
пространстве состояний, постановку	интегрирования.		
дифференциальных задач и методы численного их	2. Укажите свойства неявной		
решения.	разностной схемы при решении		
	параболической задачи.		
Уметь: составлять и преобразовывать модели	1.Оцените увеличение точности		
динамических систем.	решения при увеличении порядка		
	точности аппроксимации.		
Уметь: пользоваться инструментальными	1.Предложите форму разбиения		
системами компьютерного моделирования	пространства и метод численного		
	интегрирования.		

Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 30

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-3. Лабораторная работа № 2

Формы реализации: Компьютерное задание

Тип контрольного мероприятия: Лабораторная работа

Вес контрольного мероприятия в БРС: 15

Процедура проведения контрольного мероприятия: выдача студентам индивидуальных контрольных заданий. Консультации по содержанию задания. Выполнение заданий студентами. Проверка результатов выполнения.

Краткое содержание задания:

лабораторная работа по теме «Построение частотных характеристик и исследование устойчивости линейных систем». Цель работы — приобретение практических навыков исследования динамических систем на основе их имитационных моделей и изучение стандартных функций пакета МАТLAB для исследования частотных характеристик и устойчивости линейных систем. Моделирование выполнить по двум вариантам: с использованием блока «передаточная функция» библиотеки Simulink и на основе уравнений состояния динамической системы, записанных в канонической форме.

Контрольные вопросы/задания:

контрольные вопросы/задания.	
Запланированные результаты	Вопросы/задания для проверки
обучения по дисциплине	
Знать: возможности пакетов	1.Изложите алгебраический критерий
компьютерного моделирования	устойчивости для замкнутой системы.
детерминированных и	2. Дайте определение канонического
стохастических систем.	представления системы.
Уметь: классифицировать модели	1.Получите структурную аналоговую модель
динамических систем;	неминимально-фазового звена первого порядка.
	2.Используя метод канонического
	преобразования передаточной функции для
	случая простых корней, запишите
	математическую модель в форме уравнений
	состояния динамической системы.

Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 30

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-4. Лабораторная работа № 3

Формы реализации: Компьютерное задание

Тип контрольного мероприятия: Лабораторная работа

Вес контрольного мероприятия в БРС: 15

Процедура проведения контрольного мероприятия: выдача студентам индивидуальных контрольных заданий. Консультации по содержанию задания. Выполнение заданий студентами. Проверка результатов выполнения.

Краткое содержание задания:

лабораторная работа по теме «Исследование динамической модели энергоблока ТЭС». Целью работы является определение принадлежности математической модели энергоблока ТЭС к сингулярно возмущенным с представлением возмущения в неявном виде. Получить (в общем виде) линеаризованную на интервале времени модель описания свободных составляющих процессов в энергоблоке

Контрольные вопросы/задания:

контрольные вопросы/задания.		
Запланированные результаты обучения по	Вопросы/задания для проверки	
дисциплине		
Знать: формы представления систем в	1.Дайте определение сингулярно-	
пространстве состояний, постановку	возмущенным математическим	
дифференциальных задач и методы	моделям.	
численного их решения.	2. Что такое свободное и возмущенное	
	движение динамической системы?	
Уметь: осваивать программные комплексы для	1.Сделать вывод о принадлежности	
моделирования систем;	исходной модели описания энергоблока	
	к сингулярно возмущенным.	
Уметь: пользоваться инструментальными	1. Найти корни характеристического	
системами компьютерного моделирования	уравнения.	

Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 30

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-5. Тест № 2

Формы реализации: Билеты (письменный опрос) Тип контрольного мероприятия: Тестирование Вес контрольного мероприятия в БРС: 25

Процедура проведения контрольного мероприятия: прохождение тестирования путем выдача студентам бланков с вопросами для тестирования, либо прохождение тестирования с помощью средств дистанционного обучения. Проверка результатов выполнения.

Краткое содержание задания:

тест включает 11 вопросов по теме «Модели стохастических объектов и систем». Каждый вопрос требует выбора одного из правильных ответов, установления соответствия понятий, упорядочения последовательности действий или решения примера с вводом ответа. На ответы выделяется ограниченное время — 60 минут.

Контрольные вопросы/задания:

Запланированные результаты обучения по	Вопросы/задания для проверки
дисциплине	
Знать: основные этапы создания моделей,	1.Укажите причины рассмотрения
виды и способы моделирования	случайных процессов при исследовании
технических систем;	систем управления.
	2.Укажите минимальную сложность
	вычисления спектральной мощности по
	выборке длиной N.
Уметь: классифицировать модели	1.Выберите из перечисленных простейшие
динамических систем;	потоки заявок.
Уметь: осваивать программные комплексы	1.Проведите классификацию по Кендаллу
для моделирования систем;	описанной СМО.

Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 30

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

7 семестр

Форма промежуточной аттестации: Экзамен

Пример билета

- 1) Системный подход и пространство состояний. Математические модели систем в пространстве состояний.
- 2) Объекты управления и системы с распределенными параметрами. Математическое описание. Классификация.

Процедура проведения

2.Процедура проведения экзамена определяется текущим положением об экзаменах и зачетах НИУ «МЭИ». Студент получает билет с 2 вопросами по лекционному курсу. Время на подготовку ответа — 60 мин. Далее он отвечает на поставленные вопросы, а также на дополнительные вопросы преподавателя, принимающего зачет. По результатам ответов выставляется оценка за экзамен, которая сообщается студенту.

I. Перечень компетенций/индикаторов и контрольных вопросов проверки результатов освоения дисциплины

1. Компетенция/Индикатор: ИД-1_{РПК-1} Применяет современные среды программирования для подготовки и проведения экспериментов по заданным методикам и обработки их результатов

Вопросы, задания

- 1.Постройте аналоговую структурную модель n-го порядка общего вида. С каким элементом схемы связано определение переменной состояния и почему? Может ли порядок системы превышать степень полинома знаменателя в операторном представлении передаточной функции? Почему?
- 2.Опишите получение уравнений состояния системы методом канонического разложения передаточной функции для случая простых корней. Нормальная жорданова форма. Особенности канонической и нормальной жордановой формы.
- 3.Опишите получение уравнений состояния системы методом простых множителей. Какому преобразованию операторного представления передаточной функции соответствует данный метод?

Материалы для проверки остаточных знаний

- 1.Отметьте виды моделей, применяемых при моделировании технических систем? Ответы:
- 1. Психологические
- 2. Математические
- 3. Физические
- 4. Абстрактные
- 5. Структурно-функциональные
- 6. Геометрические
- 7. Концептуальные
- 8. Имитационные (программные) Верный ответ: 2,3,5,7,8
- 2. Укажите правильную последовательность шагов при моделировании

Ответы:

- 1. Анализ известных знаний
- 2. Построение формализованной модели
- 3. Упрощение модели
- 4. Реализация модели
- 5. Проверка адекватности модели
- 6. Использование модели

Верный ответ: 1,2,3,4,5,6

3. Выберите методы упрощения моделей систем управления:

Ответы:

- 1. Понижение размерности
- 2. Повышение размерности
- 3. Перенормирование
- 4. Аппроксимация
- 5. Линеаризация
- 6. Фаззификация

Верный ответ: 1,4,5

4. Охарактеризуйте пример математической модели

Ответы:

- 1. В непрерывном времени
- 2. В дискретном времени
- 3. С распределенными параметрами
- 4. С сосредоточенными параметрами
- 5. Линейная
- 6. Нелинейная
- 7. Стационарная
- 8. Нестационарная

Верный ответ: 1,4,5,8

5. Укажите свойства переходной (фундаментальной) матрицы системы:

Ответы:

- 1. Определяет свободные колебания линейной системы
- 2. Определяет закон возмущенного движения системы
- 3. Характеризует управляемость системы
- 4. Определяет реакцию і-й переменной состояния на единичный скачек на ј-й переменной состояния
- 5. Определяет реакцию і-й переменной состояния на единичный скачек на ј-м элементе вектора возмущения
- 6. Однозначно находится для любой линейной системы
- 7. Однозначно находится для любой стационарной линейной системы Верный ответ: 1,4,7

6.Выберите правильные утверждения

Ответы

- 1. Z-преобразование передаточной функции описывает поведение непрерывной системы в моменты времени с шагом квантования Т
- 2. Частота Найквиста ограничивает спектр представимых частот дискретной системы
- 3. Динамические свойства модели в дискретном времени зависят от шага квантования по времени T
- 4. Динамические свойства модели в дискретном времени не зависят от шага квантования по времени Т
- 5. Переходная матрица нестационарной дискретной линейной системы всегда может быть найдена

- 6. Переходная матрица дискретной линейной системы вычисляется аналогично непрерывной
- 7. Модель авторегрессии-скользящего среднего позаимствована из теории непрерывных систем
- 8. Модель авторегрессии-скользящего среднего может быть приведена к Z-представлению передаточной функции
- 9. Синтез оптимальной системы управления в непрерывном времени при переводе всех элементов системы (объекта и регулятора) в дискретное время сохранит свойство оптимальности
- 10. Z-преобразование это преобразование Лапласа с шагом квантования по времени Т
- 11. Z-преобразование непрерывной системы с разными шагами квантования даст разные модели в дискретном времени

Верный ответ: 2,4,5,8,11

7. Укажите одношаговые методы интегрирования

Ответы:

- 1. Метод Эйлера
- 2. Метод Эйлера-Коши
- 3. Метод канонического разложения
- 4. Метод Адамса
- 5. Метод Рунге-Кутты 3-го порядка
- 6. Метод Галеркина

Верный ответ: 1,2,5

8. Укажите многошаговые методы интегрирования:

Ответы:

- 1. Метод Эйлера
- 2. Метод Эйлера-Коши
- 3. Метод канонического разложения
- 4. Метод Адамса
- 5. Метод Рунге-Кутты 3-го порядка
- 6. Метод Галеркина Верный ответ: 4
- **2. Компетенция/Индикатор:** ИД-4_{РПК-1} Демонстрирует знание алгоритмов решения типовых задач моделирования процессов и объектов автоматизации и управления, областей и способов их применения

Вопросы, задания

- 1. Опишите получение уравнений состояния системы на основе аналоговой структурной модели. Чем похожи и чем отличаются уравнения состояния, получаемые методом простых множителей и на основе аналоговой структурной модели?
- 2.Опишите приведение нормальной формы описания динамической системы к канонической. Отличается ли аналоговая структурная модель нормальной формы от канонической? Если да, то чем?

Материалы для проверки остаточных знаний

- 1.Выберите правильное определение формирующего фильтра
 - Ответы:
- 1. Передаточная функция, обеспечивающая некоторую спектральную характеристику случайного процесса
- 2. Генератор формы сигнала случайного процесса
- 3. Функция, преобразующая белый шум в сигнал с соответствующим спектром Верный ответ: 3
- 2. Укажите методы численного решения уравнений в частных производных

Ответы:

- 1. Метод прогонки
- 2. Метод Эйлера
- 3. Метод суммарной аппроксимации
- 4. Метод Галеркина
- 5. Метод Ритца
- 6. Метод Адамса
- 7. Метод переменных направлений

Верный ответ: 1,3,4,5,7

3.Укажите методы, применимые для решения уравнений в частных производных в двумерном пространстве:

Ответы:

- 1. Метод суммарной аппроксимации
- 2. Метод переменных направлений
- 3. Метод прогонки
- 4. Метод конечных элементов

Верный ответ: 1,2,4

- 4.Укажите свойства неявной разностной схемы при решении параболической задачи Ответы:
- 1. Абсолютно устойчива
- 2. Условно устойчива
- 3. Неустойчива
- 4. Решение вычисляется непосредственно при переходе со слоя на слой
- 5. Решение вычисляется с помощью метода прогонки

Верный ответ: 1,5

5. При увеличении порядка точности аппроксимации на 2 (например, с 1 до 3) точность приближенного решения увеличивается

Ответы:

- 1. Ha 2
- 2. В 2 раза
- 3. В 10 раз
- 4. В 100 раз
- 5. В 1000 раз

Верный ответ: 4

6.Выберите правильное определение системы массового обслуживания

Ответы:

- 1. Это система с большим количеством обрабатываемых заявок
- 2. Это система с большим количеством обрабатывающих устройств
- 3. Это система, обработка заявок в которой имеет стохастический характер
- 4. Это система, в которой образуются очереди заявок
- 5. Это система, описываемая в терминах заявок, очередей и обслуживающих устройств
- 6. Это система, поток заявок в которой описывается распределением Пуассона Верный ответ: 5
- 7. Назовите свойства простейшего потока заявок

Ответы:

- 1. Никакие две заявки не могут поступить одновременно
- 2. Пуассоновское распределение числа заявок в заданном промежутке времени
- 3. Экспоненциальное распределение числа заявок в заданном промежутке времени
- 4. Интенсивность зависит от времени
- 5. Интенсивность не зависит от времени

6. Вероятность поступления следующей заявки зависит от количества недавно поступивших заявок

Верный ответ: 1,2,5

II. Описание шкалы оценивания

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Оценка 5 «отлично» выставляется, если задание выполнено в полном объеме или имеет несущественные погрешности.

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка 4 «хорошо» выставляется, если задание выполнено в полном объеме, но имеется не более 2 ошибок.

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 30

Описание характеристики выполнения знания: Оценка 3 «удовлетворительно» выставляется, если задание выполнено не менее, чем на 60% или имеется не более 4 ошибок.

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка 2 «неудовлетворительно» выставляется, если задание выполнено менее, чем на 60%, имеется более 4 ошибок или полностью отсутствует ответ на один из вопросов.

III. Правила выставления итоговой оценки по курсу

Оценка определяется в соответствии с Положением о балльно-рейтинговой системе для студентов НИУ «МЭИ» на основании семестровой и экзаменационной составляющих.