Министерство науки и высшего образования РФ Федеральное государственное бюджетное образовательное учреждение высшего образования «Национальный исследовательский университет «МЭИ»

Направление подготовки/специальность: 27.03.04 Управление в технических системах

Наименование образовательной программы: Интеллектуальные технологии управления в технических

системах, обработка и анализ данных

Уровень образования: высшее образование - бакалавриат

Форма обучения: Очная

Оценочные материалы по дисциплине Нейро-нечеткие технологии в задачах управления

Москва 2024

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ РАЗРАБОТАЛ:

СОГЛАСОВАНО:

Руководитель образовательной программы

Разработчик

NOSO SE	Подписано электронн	ой подписью ФГБОУ ВО «НИУ «МЭИ»	
	Сведения о владельце ЦЭП МЭИ		
MOM	Владелец	Сидорова Е.Ю.	
	Идентификатор	R0dee6ce9-SidorovaYY-923dc6a8	

Е.Ю. Сидорова

Косинский

М.Ю.

Заведующий выпускающей кафедрой

1930 M OM	Подписано электронн	ой подписью ФГБОУ ВО «НИУ «МЭИ»	
	Сведения о владельце ЦЭП МЭИ		
	Владелец	Бобряков А.В.	
	Идентификатор	R2c90f415-BobriakovAV-70dec1fa	

А.В. Бобряков

ОБЩАЯ ЧАСТЬ

Оценочные материалы по дисциплине предназначены для оценки: достижения обучающимися запланированных результатов обучения по дисциплине, этапа формирования запланированных компетенций и уровня освоения дисциплины.

Оценочные материалы по дисциплине включают оценочные средства для проведения мероприятий текущего контроля успеваемости и промежуточной аттестации.

Формируемые у обучающегося компетенции:

- 1. ПК-1 Способен разрабатывать и применять технологии сбора, обработки и анализа разнотипных данных для расчета и проектирования систем и средств автоматизации и управления
 - ИД-3 Демонстрирует знание различных способов машинного обучения и способность применять их на практике
 - ИД-4 Использует стандартное программное обеспечение и специализированные библиотеки для обработки и анализа данных

и включает:

для текущего контроля успеваемости:

Форма реализации: Защита задания

- 1. Защита лабораторной работы №1 (Интервью)
- 2. Защита лабораторной работы №2 (Интервью)
- 3. Защита лабораторной работы №3 (Интервью)
- 4. Защита лабораторной работы №4 (Интервью)

Форма реализации: Компьютерное задание

1. Выполнение лабораторной работы №1 (Лабораторная работа)

БРС дисциплины

7 семестр

	Веса ко	нтроль	ных ме	еропри	ятий, 9	o o
D.,	Индекс	КМ-	КМ-	КМ-	КМ-	КМ-
Раздел дисциплины	KM:	1	2	3	4	5
	Срок КМ:	4	8	12	15	16
Основы теории искусственных нейронных сетей.						
Нейрон и его модели. Биологический нейрон.						
свойства искусственного нейрона. Классифик						
нейронных сетей и их свойства. Архитектуры нейронных		+				
сетей. Многослойная (двухслойная) сеть прямого						
распространения						
Обучение нейронных сетей. Алгоритм обратного						
распространения ошибки Иллюстрация процесса						
обучения НС. Математическое описание процесса		+				
обучения. Рассмотрение алгоритма для однослойной и						
многослойной сети. Геометрическая интерпретация.						
Переобучение и обобщение						

				<u> </u>	
Алгоритмы обучения без учителя. Особенности	+				
Применение искусственных нейронных сетей в					
управлении и диагностике					
Применение нейросетей в задачах диагностики,					
кластеризация и поиск зависимостей, прогнозирование.		+			
Понятие диагностики технических систем					
Нейрорегуляторы. Предпосылки применения.					
Существующие подходы. Структура и особенности		+			
системы управления с нейрорегулятором. Рассмотрение		ı			
работы и настройки регулятора					
Основные понятия интеллектуального управления.					
Понятие интеллектуальной системы управления (ИСУ).		+			
Признаки ИСУ					
Основы теории генетических алгоритмов. Применение в					
управлении и диагностике					
Генетические алгоритмы и традиционные методы					
оптимизации. Введение в генетические алгоритмы. Место					
генетических алгоритмов в задачах оптимизации.			+		
Основные понятия генетических алгоритмов					
Классический генетический алгоритм. Иллюстрация					
выполнения алгоритма. Понятия популяции, хромосом,					
генотипа, фенотипа, аллели, локуса. Функция					
приспособленности. Примеры. Шаги классического			+		
генетического алгоритма. Генетические операторы.					
Кодирование параметров задачи в генетическом					
алгоритме					
Основная теорема о генетических алгоритмах			+		
Модификации классического генетического алгоритма.					
Модификация методов селекции. Использование особых					
процедур репродукции. Модифицированные генетические			+		
операторы и методы кодирования. Масштабирование			,		
функции приспособленности					
Рассмотрение применения в задачах диагностики и					
управления			+		
Основы теории нечётких множеств. Применение в					
1					
управлении и диагностике					
Понятие нечёткого множества. Нечёткость и вероятность.					
История возникновения. Характеристики нечётких					
множеств. Функции принадлежности. Операции над				+	
нечёткими множествами. Операции на нечетких					
множествах. Алгебраические и логические операции.					
Свойства операций					
Нечеткие отношения и их свойства. Нечеткая и					
лингвистическая переменные. Термы лингвистических					
переменных. Нечёткие числа. Операции над нечеткими				+	
числами. Нечеткие числа (L-R)-типа. Нечеткие					
отношения. Операции над нечеткими отношениями					
Нечеткий вывод. Правила нечеткой импликации.					
Алгоритм Мамдани. Алгоритм Цукамото. Алгоритм					
Ларсена. Упрощённый алгоритм нечёткого вывода.				+	
Методы приведения к чёткости. Метод нечеткого					
-				•	

управления Такаги-Сугено. Алгоритм Такаги-Сугено.					
Особенности формирования функций принадлежности.					
Сравнение с алгоритмом Мамдани					
Нечёткий регулятор. Структура нечёткой системы					
управления. Рассмотрение работы регулятора.					
Рассмотрение решения задачи диагностики с				+	
применением нечётких систем					
Основы теории нейро-нечётких систем. Применение в					
управлении и диагностике					
Нейро-нечёткие системы. Предпосылки возникновения.					
Структура системы. Принципы работы. Сравнение с					+
нечёткими и нейросистемами					
Создание и обучение нейро-нечётких систем на основе					
выборок данных. Модификации систем. Примеры					+
использования в управлении и диагностике					
Bec KM:	5	25	25	30	15

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ТЕКУЩЕГО КОНТРОЛЯ

I. Оценочные средства для оценки запланированных результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций

Индекс	Индикатор	Запланированные	Контрольная точка
компетенции		результаты обучения по	
		дисциплине	
ПК-1	ИД-3пк-1 Демонстрирует	Знать:	Выполнение лабораторной работы №1 (Лабораторная работа)
	знание различных	предпосылки	Защита лабораторной работы №1 (Интервью)
	способов машинного	возникновения и основные	Защита лабораторной работы №3 (Интервью)
	обучения и способность	понятия теории	
	применять их на практике	искусственных нейронных	
		сетей	
		современные методы	
		применения	
		искусственных нейронных	
		сетей для решения задач	
		диагностики и управления	
		Уметь:	
		применять элементы	
		теории нечетких систем	
		для решения задач	
		диагностики и управления	
ПК-1	ИД-4пк-1 Использует	Знать:	Защита лабораторной работы №2 (Интервью)
	стандартное программное	современные методы	Защита лабораторной работы №4 (Интервью)
	обеспечение и	применения аппарата	
	специализированные	теории генетических	
	библиотеки для обработки	алгоритмов для решения	
	и анализа данных	задач диагностики и	
		управления	
		Уметь:	
		выбирать методы решения	

	задач управления и	
	диагностики с помощью	
	аппарата теории нейро-	
	нечетких множеств	

II. Содержание оценочных средств. Шкала и критерии оценивания

КМ-1. Выполнение лабораторной работы №1

Формы реализации: Компьютерное задание

Тип контрольного мероприятия: Лабораторная работа

Вес контрольного мероприятия в БРС: 5

Процедура проведения контрольного мероприятия: Выдача студентам индивидуальных контрольных заданий. Консультации по содержанию задания. Выполнение заданий

студентами. Проверка результатов выполнения

Краткое содержание задания:

Включает 9 пунктов. Для выполнения задания по пунктам студент должен создать ИНС в программной среде разработки на основе выборки с данными. ИНС должны быть обучены в изучаемой среде с отображением полученных результатов. Результаты в виде протоколов программы и графиков включаются в файл протокола по выполненному заланию

Контрольные вопросы/задания:

Знать: предпосылки	1. Чем определяется выходное значение нейрона
возникновения и основные	2. Чем определяется количество нейронов во входном
понятия теории искусственных	слое
нейронных сетей	3. Назовите отличия нейронов входного и
	промежуточного слоя сети

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: Возможны только несущественные погрешности в результатах выполнения. В документе с результатами выполнения должны быть зафиксированы протоколы программы и графики, иллюстрирующие процедуры обучения и проверки ИНС

Оценка: 4

Нижний порог выполнения задания в процентах: 75

Описание характеристики выполнения знания: В выполнении задания должно быть не более 1 ошибки. Документ с результатами может иметь только небольшие погрешности

Оценка: 3

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: В выполнении задания должно быть не более 2 ошибок. Документ с результатами может иметь некоторые погрешности

Оценка: 2

Описание характеристики выполнения знания: В результатах – более 2 ошибок. Документ имеет значительные погрешности в оформлении

КМ-2. Защита лабораторной работы №1

Формы реализации: Защита задания

Тип контрольного мероприятия: Интервью

Вес контрольного мероприятия в БРС: 25

Процедура проведения контрольного мероприятия: Проверка отчётов по выполненной лабораторной работе и выдача студентам индивидуальных вопросов. Консультации по содержанию вопроса. Подготовка студентов к ответу на вопросы. Устные ответы на вопросы. Пояснение студентами содержимого отчёта по лабораторной работе

Краткое содержание задания:

Необходимо представить на проверку отчёт по лабораторной работе с пояснениями и выводами. Также задание включает 1 вопрос для подготовки. Вопрос отражает один из изученных в теме лабораторной работы подразделов. Для выполнения задания по пункту студент должен подготовить развёрнутый ответ на поставленный вопрос

Контрольные вопросы/задания:

Знать: современные методы	1.Каким образом решалась задача диагностики при
применения искусственных	помощи ИНС в лабораторной работе
нейронных сетей для решения	2. Каким ещё способом можно использовать ИНС для
задач диагностики и управления	решения задачи диагностики

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: Возможны только несущественные погрешности в результатах выполнения. Документ с результатами выполнения должен быть правильно оформлен (титульный лист, задание, отчет о выполнении, протокол программы)

Оценка: 4

Нижний порог выполнения задания в процентах: 75

Описание характеристики выполнения знания: В выполнении задания должно быть не более 1 ошибки. Документ с результатами может иметь только небольшие погрешности

Оценка: 3

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: В выполнении задания должно быть не более 2 ошибок. Документ с результатами может иметь некоторые погрешности

Оценка: 2

Описание характеристики выполнения знания: В результатах – более 2 ошибок. Документ имеет значительные погрешности в оформлении

КМ-3. Защита лабораторной работы №2

Формы реализации: Защита задания

Тип контрольного мероприятия: Интервью **Вес контрольного мероприятия в БРС:** 25

Процедура проведения контрольного мероприятия: Проверка отчётов по выполненной лабораторной работе и выдача студентам индивидуальных вопросов. Консультации по содержанию вопроса. Подготовка студентов к ответу на вопросы. Устные ответы на вопросы. Пояснение студентами содержимого отчёта по лабораторной работе

Краткое содержание задания:

Необходимо представить на проверку отчёт по лабораторной работе с пояснениями и выводами. Также задание включает 1 вопрос для подготовки. Вопрос отражает один из изученных в теме лабораторной работы подразделов. Для выполнения задания по пункту студент должен подготовить развёрнутый ответ на поставленный вопрос

Контрольные вопросы/задания:

Знать: современные методы	1.Для чего нужна селекция в процедуре
применения аппарата теории	генетического алгоритма
генетических алгоритмов для	2. Какой способ кодирования используется в
решения задач диагностики и	классической версии генетического алгоритма
управления	

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: Возможны только несущественные погрешности в результатах выполнения. Документ с результатами выполнения должен быть правильно оформлен (титульный лист, задание, отчет о выполнении, протокол программы)

Оценка: 4

Нижний порог выполнения задания в процентах: 75

Описание характеристики выполнения знания: В выполнении задания должно быть не более 1 ошибки. Документ с результатами может иметь только небольшие погрешности

Оценка: 3

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: В выполнении задания должно быть не более 2 ошибок. Документ с результатами может иметь некоторые погрешности

Оценка: 2

Описание характеристики выполнения знания: В результатах – более 2 ошибок. Документ имеет значительные погрешности в оформлении

КМ-4. Защита лабораторной работы №3

Формы реализации: Защита задания

Тип контрольного мероприятия: Интервью **Вес контрольного мероприятия в БРС:** 30

Процедура проведения контрольного мероприятия: Проверка отчётов по выполненной лабораторной работе и выдача студентам индивидуальных вопросов. Консультации по содержанию вопроса. Подготовка студентов к ответу на вопросы. Устные ответы на вопросы. Пояснение студентами содержимого отчёта по лабораторной работе

Краткое содержание задания:

Необходимо представить на проверку отчёт по лабораторной работе с пояснениями и выводами. Также задание включает 1 вопрос для подготовки. Вопрос отражает один из изученных в теме лабораторной работы подразделов. Для выполнения задания по пункту студент должен подготовить развёрнутый ответ на поставленный вопрос

Контрольные вопросы/задания:

Уметь: применять элементы	1. Приведите пример использования нечёткой логики
теории нечетких систем для	в задаче управления
решения задач диагностики и	2.Как задаётся вид алгоритма нечёткого вывода для
управления	моделирования в программной среде разработки
	ИНС?

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: Возможны только несущественные погрешности в результатах выполнения. Документ с результатами выполнения должен быть правильно оформлен (титульный лист, задание, отчет о выполнении, протокол программы)

Оценка: 4

Нижний порог выполнения задания в процентах: 75

Описание характеристики выполнения знания: В выполнении задания должно быть не более 1 ошибки. Документ с результатами может иметь только небольшие погрешности

Оценка: 3

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: В выполнении задания должно быть не более 2 ошибок. Документ с результатами может иметь некоторые погрешности

Оценка: 2

Описание характеристики выполнения знания: В результатах – более 2 ошибок. Документ имеет значительные погрешности в оформлении

КМ-5. Защита лабораторной работы №4

Формы реализации: Защита задания

Тип контрольного мероприятия: Интервью **Вес контрольного мероприятия в БРС:** 15

Процедура проведения контрольного мероприятия: Проверка отчётов по выполненной лабораторной работе и выдача студентам индивидуальных вопросов. Консультации по содержанию вопроса. Подготовка студентов к ответу на вопросы. Устные ответы на вопросы. Пояснение студентами содержимого отчёта по лабораторной работе

Краткое содержание задания:

Необходимо представить на проверку отчёт по лабораторной работе с пояснениями и выводами. Также задание включает 1 вопрос для подготовки. Вопрос отражает один из изученных в теме лабораторной работы подразделов. Для выполнения задания по пункту студент должен подготовить развёрнутый ответ на поставленный вопрос

Контрольные вопросы/задания:

Уметь: выбирать методы	1.Как выбрать способ построения нейро-нечёткой
решения задач управления и	системы в программной среде разработки ИНС?
диагностики с помощью	2.Приведите пример использования нейро-нечёткой
аппарата теории нейро-нечетких	системы в задаче управления
множеств	

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: Возможны только несущественные погрешности в результатах выполнения. Документ с результатами выполнения должен быть правильно оформлен (титульный лист, задание, отчет о выполнении, протокол программы)

Оценка: 4

Нижний порог выполнения задания в процентах: 75

Описание характеристики выполнения знания: В выполнении задания должно быть не более 1 ошибки. Документ с результатами может иметь только небольшие погрешности

Оценка: 3

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: В выполнении задания должно быть не более 2 ошибок. Документ с результатами может иметь некоторые погрешности

Оценка: 2

Описание характеристики выполнения знания: В результатах – более 2 ошибок. Документ имеет значительные погрешности в оформлении

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

7 семестр

Форма промежуточной аттестации: Зачет с оценкой

Пример билета

Оценка определяется по совокупности результатов текущего контроля успеваемости в соответствии с Положением о балльно-рейтинговой системе для студентов НИУ «МЭИ»

Процедура проведения

Оценка определяется по совокупности результатов текущего контроля успеваемости в соответствии с Положением о балльно-рейтинговой системе для студентов НИУ «МЭИ»

- I. Перечень компетенций/индикаторов и контрольных вопросов проверки результатов освоения дисциплины
- **1. Компетенция/Индикатор:** ИД- $3_{\Pi K-1}$ Демонстрирует знание различных способов машинного обучения и способность применять их на практике

Вопросы, задания

1. Как рассчитать алгебраическую сумму двух нечётких множеств

Материалы для проверки остаточных знаний

- 1. При помощи какой операции объединяются сигналы на входе нейрона Ответы:
- умножения
- сложения
- деления
- вычитания
- 2. Как называется нейрорегулятор, который обучается на примерах вход-выходных данных обычного регулятора или человека-оператора, а затем заменяет его

Ответы:

- инверсный
- подражающий
- прогнозирующий

Верный ответ: Подражающий

3. Какие значения может принимать функция принадлежности у нормального нечёткого множества

Ответы:

- $-(-\infty;+\infty)$
- [0; 1]
- 0 и 1
- --1 и 1

Верный ответ: [0; 1]

4. На каком этапе нечёткого логического вывода рассчитываются значения функций принадлежности, определённые для соответствующих входных переменных

Ответы:

- дефаззификация
- фаззификация
- -композиция

-декомпозиция

Верный ответ: фаззификация

5. Что настраивается в нейро-нечёткой системе в процессе обучения? Выберите все возможные варианты ответа

Ответы:

- параметры функций принадлежности входных переменных
- параметры заключений правил
- весовые коэффициенты связей между нейронами
- количество входов-выходов нейронной сети

Верный ответ: Параметры функций принадлежности входных переменных, параметры заключений правил

- 6. Требуется ли рассчитывать производную при использовании генетического алгоритма Ответы:
- требуется
- не требуется
- достаточно рассчитать оценку производной

Верный ответ: Не требуется

2. Компетенция/Индикатор: ИД- $4_{\Pi K-1}$ Использует стандартное программное обеспечение и специализированные библиотеки для обработки и анализа данных

Вопросы, задания

1.«Ошибка обучения» ИНС

Материалы для проверки остаточных знаний

- 1. Какая функция активации, как правило, используется в нейронах входного слоя Ответы:
- единичный скачок
- линейный порог
- сигмоидальная
- у входных нейронов нет функции активации
- 2. Чем определяется сила связи между нейронами соседних слоёв в слоистой ИНС Ответы:
- весовыми коэффициентами
- функцией активации этих нейронов
- нейроны соседних слоёв не связаны между собой

Верный ответ: Весовыми коэффициентами

3. Что такое «ошибка обучения» ИНС

Ответы:

- это ошибка, рассчитываемая между откликами сети и обучающей выборкой в процессе обучения
- это ошибка, рассчитываемая после обучения между откликами сети и специальной проверочной выборкой
- это среднеквадратичное отклонение обучающей выборки

Верный ответ: Это ошибка, рассчитываемая между откликами сети и обучающей выборкой в процессе обучения

4. Какие из указанных утверждений неверны

Ответы:

- нечёткие переменные являются значениями лингвистической переменной
- лингвистические переменные являются значениями нечёткой переменной
- лингвистическая и нечёткая переменные это синонимы

Верный ответ: Лингвистические переменные являются значениями нечёткой переменной, лингвистическая и нечёткая переменные — это синонимы

5.У какого алгоритма нечёткого логического вывода заключения правил могут иметь вид z = ax + by

Ответы:

- Мамдани
- Ларсена
- Сугено-Такаги

Верный ответ: Сугено-Такаги

6.На использовании какого алгоритма нечёткого вывода основаны нейро-нечёткие системы типа ANFIS

Ответы:

- Мамдани
- Ларсена
- Сугено-Такаги

Верный ответ: Сугено-Такаги

7.Из скольких слоёв (не считая входного) состоит ИНС, описывающая нейро-нечёткую систему

Ответы:

- 3
- 5
- 10

Верный ответ: 5

8. Для решения какой задачи предназначен генетический алгоритм

Ответы:

- задачи классификации
- задачи кластеризации
- задачи оптимизации
- задачи аппроксимации

Верный ответ: Задачи оптимизации

II. Описание шкалы оценивания

Оценка: 5

Нижний порог выполнения задания в процентах: 85

Описание характеристики выполнения знания: Оценка 5 «отлично» выставляется, если задание выполнено в полном объеме или имеет несущественные погрешности

Оценка: 4

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка 4 «хорошо» выставляется, если задание выполнено в полном объеме, но имеется не более 2 ошибок

Оценка: 3

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка 3 «удовлетворительно» выставляется, если задание выполнено не менее, чем на 70% или имеется не более 4 ошибок

Оценка: 2

Описание характеристики выполнения знания: Оценка 2 «неудовлетворительно» выставляется, если задание выполнено менее, чем на 60%, или имеет более 4 ошибок

III. Правила выставления итоговой оценки по курсу

Оценка определяется в соответствии с Положением о балльно-рейтинговой системе для студентов НИУ «МЭИ» на основании семестровой и экзаменационной составляющих