Министерство науки и высшего образования РФ Федеральное государственное бюджетное образовательное учреждение высшего образования «Национальный исследовательский университет «МЭИ»

Направление подготовки/специальность: 27.03.04 Управление в технических системах

Наименование образовательной программы: Интеллектуальные технологии управления в технических

системах, обработка и анализ данных

Уровень образования: высшее образование - бакалавриат

Форма обучения: Очная

Оценочные материалы по дисциплине Робототехника и гибкие автоматизированные производства

Москва 2024

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ РАЗРАБОТАЛ:

СОГЛАСОВАНО:

Руководитель образовательной программы

Разработчик

INC. BUILDINGS	Подписано электронной подписью ФГБОУ ВО «НИУ «МЭИ»		
New	Сведения о владельце ЦЭП МЭИ		
	Владелец	Сидорова Е.Ю.	
	Идентификатор	R0dee6ce9-SidorovaYY-923dc6a8	

Заведующий выпускающей кафедрой

NOSO PER	Подписано электронн	ой подписью ФГБОУ ВО «НИУ «МЭИ»	
	Сведен	A B	
Владелец Бобряков А.В.		F. 6	
» <u>МЭИ</u> »	Идентификатор	R2c90f415-BobriakovAV-70dec1fa	Бобряков

Д.В.

Вершинин

Е.Ю.

Сидорова

ОБЩАЯ ЧАСТЬ

Оценочные материалы по дисциплине предназначены для оценки достижения обучающимися запланированных результатов обучения по дисциплине, этапа формирования запланированных компетенций и уровня освоения дисциплины.

Оценочные материалы по дисциплине включают оценочные средства для проведения мероприятий текущего контроля успеваемости и промежуточной аттестации.

Формируемые у обучающегося компетенции:

- 1. РПК-1 Способен проводить натурные и вычислительные эксперименты с использованием стандартных программных средств с целью получения математических моделей процессов и объектов автоматизации и управления
 - ИД-1 Применяет современные среды программирования для подготовки и проведения экспериментов по заданным методикам и обработки их результатов
 - ИД-4 Демонстрирует знание алгоритмов решения типовых задач моделирования процессов и объектов автоматизации и управления, областей и способов их применения

и включает:

для текущего контроля успеваемости:

Форма реализации: Допуск к лабораторной работе

- 1. Защита лабораторной работы №1 (Лабораторная работа)
- 2. Защита лабораторной работы №2 (Лабораторная работа)
- 3. Защита лабораторной работы №3 (Лабораторная работа)
- 4. Защита лабораторной работы №4, 5 и 6 (Лабораторная работа)

БРС дисциплины

8 семестр

Перечень контрольных мероприятий <u>текущего контроля</u> успеваемости по дисциплине:

- КМ-1 Защита лабораторной работы №1 (Лабораторная работа)
- КМ-2 Защита лабораторной работы №2 (Лабораторная работа)
- КМ-3 Защита лабораторной работы №3 (Лабораторная работа)
- КМ-4 Защита лабораторной работы №4, 5 и 6 (Лабораторная работа)

Вид промежуточной аттестации – Зачет с оценкой.

	Веса контрольных мероприятий, %				
Роздол диомилии	Индекс	КМ-	КМ-	КМ-	КМ-
Раздел дисциплины	KM:	1	2	3	4
	Срок КМ:	4	6	8	11
Гибкие автоматизированные производства. Назначение					
Понятие – гибкие автоматизированные производства (ГАП).					
Место ГАП в системе материального производства.					
Экономические предпосылки целесообразности внедрения ГАП.				+	
Принципы построения и структура ГАП. Принципы					

проектирования гибких автоматизированных производств				
Изучение специфики производства (на примере механического производства) и выработка требований при формировании технического задания на создание ГАП. Этапы проектирования ГАП. Обобщенная структурная схема ГАП. Состав управляющей части ГАП: автоматизированная система управления производство (АСУП), автоматизированная система технологической подготовки производства (АСТПП), система автоматизированного проектирования (САПР)	+	+	+	+
Виды робототехнических устройств. Конструкции манипуляторов. Виды датчиков робототехнических устройств				
Классификация роботов и манипуляторов. Манипуляторы ручного управления. Элементы манипуляторов и их сочленения	+	+	+	
Кинематические схемы манипуляторов	+	+	+	
Виды рабочих зон манипуляторов. Эффективность работы оператора в контуре управления манипулятором	+	+	+	+
Следящие системы с отражением усилий Симметричная следящая система с отражением усилий, ее устойчивость. Виды датчиков робототехнических устройств. Датчики внутреннего состояния приводов манипулятора. Датчики окружающей обстановки, тактильные датчики		+	+	
Управляющая часть роботов. Сенсорные устройства роботов. Принципы программирования промышленных роботов				
Обобщенная функциональная схема управляющей части роботов разных поколений. Уровни управлений	+	+	+	+
Прямая и обратная задача кинематики, реализуемая на втором уровне управления роботом первого поколения.	+	+	+	+
Роботы второго поколения с реализацией обратной связи от состояния окружающей среды. Сенсорные устройства роботов и их классификация. Датчики для управления перемещением и для сборочных работ. Сенсоры для очувствления роботов		+	+	
Принципы и средства программирования роботов первого поколения. Управляющая часть роботов третьего поколения		+	+	
Принципы проектирования гибких автоматизированных производств и мобильные роботы				
Изучение специфики производства (на примере механического производства) и выработка требований при формировании технического задания на создание ГАП. Этапы проектирования ГАП. Обобщенная структурная схема ГАП. Состав управляющей части ГАП: автоматизированная система управления производство (АСУП), автоматизированная система технологической подготовки производства (АСТПП), система автоматизированного проектирования (САПР)		+	+	
Гибкие производственные системы (ГПС) в составе ГАП. Их структура и состав оборудования. Гибкие производственные модули в составе ГПС. Схемы и виды производственных модулей. Состав оборудования, формирующий гибкий производственный модуль: технологическое оборудование (станки с числовым программным управлением, технологические роботы), загрузочные роботы, вспомогательный транспорт, позиции базирования и	+		+	+

промежуточного хранения, вспомогательное оборудование				
Понятие мобильности робота. Современные мобильные роботы промышленного назначения. Мобильные роботы специального назначения. Шагающие роботы	+		+	+
Устройства передвижения роботов. Сенсорные устройства роботов и их классификация. Датчики для управления перемещением и для сборочных работ. Сенсоры для очувствления роботов. Принципы и средства программирования роботов второго поколения. Управляющая часть роботов мобильных роботов	+		+	+
Bec KM:	20	25	25	30

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ТЕКУЩЕГО КОНТРОЛЯ

I. Оценочные средства для оценки запланированных результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций

Индекс	Индикатор	Запланированные	Контрольная точка
компетенции		результаты обучения по	
		дисциплине	
РПК-1	ИД-1 _{РПК-1} Применяет	Знать:	КМ-1 Защита лабораторной работы №1 (Лабораторная работа)
	современные среды	основные методы, способы	КМ-2 Защита лабораторной работы №2 (Лабораторная работа)
	программирования для	и средства построения	КМ-3 Защита лабораторной работы №3 (Лабораторная работа)
	подготовки и проведения	робототехнических	
	экспериментов по	устройств и гибких	
	заданным методикам и	автоматизированных	
	обработки их результатов	производств)	
		Уметь:	
		собирать, обрабатывать,	
		анализировать и	
		систематизировать научно-	
		техническую информацию	
		по робототехнике и ГАП,	
		использовать достижения	
		отечественной и	
		зарубежной науки, техники	
		и технологии	
РПК-1	ИД-4 _{РПК-1} Демонстрирует	Знать:	КМ-1 Защита лабораторной работы №1 (Лабораторная работа)
	знание алгоритмов	особенности	КМ-2 Защита лабораторной работы №2 (Лабораторная работа)
	решения типовых задач	программирования и	КМ-3 Защита лабораторной работы №3 (Лабораторная работа)
	моделирования процессов	управления	КМ-4 Защита лабораторной работы №4, 5 и 6 (Лабораторная работа)
	и объектов автоматизации	промышленными роботами	
	и управления, областей и	и манипуляторами	
	способов их применения	Уметь:	
		проводить эксперименты	

на действующих объектах	
по заданным методикам и	
обрабатывать результаты с	
применением современных	
информационных	
технологий и технических	
средств	

II. Содержание оценочных средств. Шкала и критерии оценивания

КМ-1. Защита лабораторной работы №1

Формы реализации: Допуск к лабораторной работе **Тип контрольного мероприятия:** Лабораторная работа

Вес контрольного мероприятия в БРС: 20

Процедура проведения контрольного мероприятия: Выдача студентам индивидуальных контрольных заданий. Консультации по содержанию задания. Выполнение заданий студентами. Проверка результатов выполнения.

Краткое содержание задания:

Задание включает 5-6 пунктов. 1 - 2 пункта отражают теоретические вопросы раздела. Остальные пункты относятся к пунктам задания лабораторной работы. Для выполнения задания по пункту студент должен написать ответы на теоретические вопросы по изучаемому разделу программы и представить и защитить отчет по выполнению пунктов задания по лабораторной работе

Контрольные вопросы/задания:

Запланированные результаты обучения по дисциплине	Вопросы/задания для проверки		
Знать: основные методы, способы и средства построения	1.Основные составляющие		
робототехнических устройств и гибких	ГАП		
автоматизированных производств)			
Знать: особенности программирования и управления	1.Как формируются рабочие		
промышленными роботами и манипуляторами	зоны манипуляторов		
Уметь: проводить эксперименты на действующих	1.Как осуществляется		
объектах по заданным методикам и обрабатывать	процесс обучения робота		
результаты с применением современных	заданным точкам в		
информационных технологий и технических средств	пространстве		
	2.Как осуществить		
	аварийное отключение		
	манипулятора		

Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: Возможны только несущественные погрешности в результатах выполнения. Документ с результатами выполнения должен быть правильно оформлен (титульный лист, задание, отчет о выполнении, протокол программы или измерений)

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 75

Описание характеристики выполнения знания: В выполнении задания должно быть не более 1 ошибки. Документ с результатами может иметь только небольшие погрешности

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: В выполнении задания должно быть не более 2 ошибок. Документ с результатами может иметь некоторые погрешности

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: В результатах – более 2 ошибок. Документ имеет значительные погрешности в оформлении

КМ-2. Защита лабораторной работы №2

Формы реализации: Допуск к лабораторной работе **Тип контрольного мероприятия**: Лабораторная работа

Вес контрольного мероприятия в БРС: 25

Процедура проведения контрольного мероприятия: Выдача студентам индивидуальных контрольных заданий. Консультации по содержанию задания. Выполнение заданий студентами. Проверка результатов выполнения.

Краткое содержание задания:

Задание включает 5-6 пунктов. 1 - 2 пункта отражают теоретические вопросы раздела. Остальные пункты относятся к пунктам задания лабораторной работы. Для выполнения задания по пункту студент должен написать ответы на теоретические вопросы по изучаемому разделу программы и представить и защитить отчет по выполнению пунктов задания по лабораторной работе

Контрольные вопросы/задания:

контрольные вопросы/задания:	
Запланированные результаты обучения по	Вопросы/задания для проверки
дисциплине	
Знать: основные методы, способы и средства	1.Виды соединений звеньев
построения робототехнических устройств и гибких	манипулятора
автоматизированных производств)	
Знать: особенности программирования и	1.Основные команды,
управления промышленными роботами и	обеспечивающие движение
манипуляторами	манипулятора от точки к точке
Уметь: собирать, обрабатывать, анализировать и	1.Какие команды используются
систематизировать научно-техническую	при взаимодействии робота с
информацию по робототехнике и ГАП,	технологическим оборудованием
использовать достижения отечественной и	2.Особенности программирования
зарубежной науки, техники и технологии	робота, если требуется работа по
	складированию изделий в
	определенные ячейки

Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: Возможны только несущественные погрешности в результатах выполнения. Документ с результатами выполнения должен быть правильно оформлен (титульный лист, задание, отчет о выполнении, протокол программы или измерений)

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 75

Описание характеристики выполнения знания: В выполнении задания должно быть не более 1 ошибки. Документ с результатами может иметь только небольшие погрешности

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: В выполнении задания должно быть не более 2 ошибок. Документ с результатами может иметь некоторые погрешности

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: В результатах – более 2 ошибок. Документ имеет значительные погрешности в оформлении

КМ-3. Защита лабораторной работы №3

Формы реализации: Допуск к лабораторной работе **Тип контрольного мероприятия:** Лабораторная работа

Вес контрольного мероприятия в БРС: 25

Процедура проведения контрольного мероприятия: Выдача студентам индивидуальных контрольных заданий. Консультации по содержанию задания. Выполнение заданий студентами. Проверка результатов выполнения.

Краткое содержание задания:

Задание включает 5-6 пунктов. 1 - 2 пункта отражают теоретические вопросы раздела. Остальные пункты относятся к пунктам задания лабораторной работы. Для выполнения задания по пункту студент должен написать ответы на теоретические вопросы по изучаемому разделу программы и представить и защитить отчет по выполнению пунктов задания по лабораторной работе

Контрольные вопросы/задания:

Запланированные результаты обучения по дисциплине	Вопросы/задания для проверки	
Знать: основные методы, способы и средства построения	1.Принцип работы	
робототехнических устройств и гибких	ультразвукового измерителя	
автоматизированных производств)	расстояния	
Знать: особенности программирования и управления	1.Виды бесконтактных	
промышленными роботами и манипуляторами	концевых выключателей	
Уметь: собирать, обрабатывать, анализировать и	1.Как обучить робота точкам	
систематизировать научно-техническую информацию по	с использованием выносного	
робототехнике и ГАП, использовать достижения	пульта оператора	
отечественной и зарубежной науки, техники и		
технологии		
Уметь: проводить эксперименты на действующих	1.Как отрегулировать	
объектах по заданным методикам и обрабатывать	рабочую зону манипулятора	
результаты с применением современных	с пневматическими	
информационных технологий и технических средств	приводами	

Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: Возможны только несущественные погрешности в результатах выполнения. Документ с результатами выполнения должен быть правильно оформлен (титульный лист, задание, отчет о выполнении, протокол программы или измерений)

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 75

Описание характеристики выполнения знания: В выполнении задания должно быть не более 1 ошибки. Документ с результатами может иметь только небольшие погрешности

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: В выполнении задания должно быть не более 2 ошибок. Документ с результатами может иметь некоторые погрешности

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: В результатах – более 2 ошибок. Документ имеет значительные погрешности в оформлении

КМ-4. Защита лабораторной работы №4, 5 и 6

Формы реализации: Допуск к лабораторной работе Тип контрольного мероприятия: Лабораторная работа

Вес контрольного мероприятия в БРС: 30

Процедура проведения контрольного мероприятия: Выдача студентам индивидуальных контрольных заданий. Консультации по содержанию задания. Выполнение заданий студентами. Проверка результатов выполнения.

Краткое содержание задания:

Задание включает 5-6 пунктов. 1 - 2 пункта отражают теоретические вопросы раздела. Остальные пункты относятся к пунктам задания лабораторной работы. Для выполнения задания по пункту студент должен написать ответы на теоретические вопросы по изучаемому разделу программы и представить и защитить отчет по выполнению пунктов задания по лабораторной работе

Контрольные вопросы/задания:

Запланированные результаты обучения по	Вопросы/задания для проверки
дисциплине	
Знать: особенности программирования и	1.В чем различие между прямой и
управления промышленными роботами и	обратной задачей кинематики
манипуляторами	2.В чем отличие между
	технологическим роботом и роботом-
	загрузчиком
	3.Классификация мобильных роботов
	4. Как обеспечивается статическая
	устойчивость шагающих роботов
Уметь: проводить эксперименты на	1.Как оценить длительность
действующих объектах по заданным	технологического цикла изготовления
методикам и обрабатывать результаты с	изделия при последовательной
применением современных информационных	обработке его на нескольких станках и
технологий и технических средств	одном роботе-загрузчике
	2.Как избежать столкновения
	манипуляторов при работе в общей
	рабочей зоне
	3. Какие исполнительные элементы
	используются в схвате робота при
	работе с ферромагнитными материалами

Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: Возможны только несущественные погрешности в результатах выполнения. Документ с результатами выполнения должен быть

правильно оформлен (титульный лист, задание, отчет о выполнении, протокол программы или измерений)

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 75

Описание характеристики выполнения знания: В выполнении задания должно быть не более 1 ошибки. Документ с результатами может иметь только небольшие погрешности

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: В выполнении задания должно быть не более 2 ошибок. Документ с результатами может иметь некоторые погрешности

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: В результатах – более 2 ошибок. Документ имеет значительные погрешности в оформлении

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

8 семестр

Форма промежуточной аттестации: Зачет с оценкой

Пример билета

БИЛЕТ № 2

- 1. Классификация манипуляторов и робототехнических систем. Поколения роботов
- 2. Уравнения динамики и структурная схема привода с абсолютно жесткой передачей
- 3. Трансформаторные датчики. Принцип работы, характеристики, достоинства и недостатки

Процедура проведения

Экзамен относится к категории «устный».

- Экзамен проводится в аудитории с числом студентов из расчета 5 человек на одного экзаменатора.
- Студент получает билет.
- Время на подготовку 40 минут.
- Результаты подготовки предоставляются в виде текстового документа с ответами на вопросы и необходимыми математическими выкладками и рисунками.
- Время, предоставляемое студенту, для ответов преподавателю на вопросы билета и дополнительные вопросы составляет 20 минут.
- По результатам ответа студента на вопросы билета и дополнительные вопросы преподаватель сообщает студенту оценку за экзамен, определяет итоговую оценку за освоение дисциплины с учетом итоговой оценки студента в бально-ретинговой структуре и отпускает студента

I. Перечень компетенций/индикаторов и контрольных вопросов проверки результатов освоения дисциплины

1. Компетенция/Индикатор: ИД-1_{РПК-1} Применяет современные среды программирования для подготовки и проведения экспериментов по заданным методикам и обработки их результатов

Вопросы, задания

- 1.Основные условия эффективности применения роботов в промышленном производстве
- 2. Примерные структуры гибких производственных систем (РТК, РПК, ТК, РКИК)
- 3. Длинные кинематические передачи. Необходимость их применения в структуре следящих систем роботов

Материалы для проверки остаточных знаний

- 1. Какая задача кинематики имеет единственное решение
 - Ответы:
- прямая
- обратная

Верный ответ: Прямая

2. Какой привод используется в манипуляторах большой грузоподъемности? Какие виды циклических управляющих конструкций могут использоваться в среде MATLAB Ответы:

- пневматический
- гидравлический
- электрический

Верный ответ: Гидравлический

3. Какой датчик следует выбрать для измерения частоты вращения вала

Ответы:

- тахогенератор
- акустический
- тензометрический

Верный ответ: Тахогенератор

4.Имеет ли смысл использовать загрузочный робот при работе с универсальными станками

Ответы:

- да
- нет

Верный ответ: Нет

5. Какой шагающий робот обладает абсолютной статической устойчивостью

Ответы:

- двуногий
- четырехногий
- шестиногий

Верный ответ: Шестиногий

6.Основной недостаток программируемых роботов первого поколения

Ответы:

- низкое быстродействие
- большие габариты
- отсутствие связи с внешней средой

Верный ответ: Отсутствие связи с внешней средой

7. Каким звеном в структурной схеме представляется упругая кинематическая передача Ответы:

- интегрирующим
- колебательным
- апериодическим

Верный ответ: Колебательным

8. Для измерения какого параметра используется ультразвуковой датчик

Ответы:

- расстояния
- толщины материала
- скорости перемещения

Верный ответ: Расстояния

2. Компетенция/Индикатор: ИД-4_{РПК-1} Демонстрирует знание алгоритмов решения типовых задач моделирования процессов и объектов автоматизации и управления, областей и способов их применения

Вопросы, задания

- 1. Прямая и обратная задача кинематики. Расчет характеристических координат робота
- 2.Структурная схема двигателя с выделенной нагрузкой (упругая передача)
- 3.Оптимизация траектории движения обслуживающих (загрузочных) роботов

Материалы для проверки остаточных знаний

1.Зачем используется нестандартное вспомогательное оборудование в составе гибких производственных комплексов

Ответы:

- для упрощения позиционирования заготовок
- для уменьшения рабочее зоны
- для сокращения транспортных расходов

Верный ответ: Для упрощения позиционирования заготовок

- 2. Как регулируется рабочая зона манипулятора с пневматическими приводами Ответы:
- с помощью соответствующих команд программатора
- с использованием регулируемых механических упоров

Верный ответ: С использованием регулируемых механических упоров

3.Где располагаются электрические двигатели манипулятора при использовании длинных кинематических передач

Ответы:

- в специальном моторном отсеке непосредственно в месте передачи момента вращения нагрузке
- в специальном моторном отсеке у основания манипулятора
- непосредственно в месте передачи момента вращения нагрузке

Верный ответ: В специальном моторном отсеке у основания манипулятора

- 4. Какие датчики используются в схвате робота при работе с хрупкими предметами Ответы:
- акустически и температуры
- тока и напряжения
- давления и проскальзывания

Верный ответ: Давления и проскальзывания

- 5. Что такое позиция базирования в роботизированном производственном комплексе Ответы:
- место фиксации заготовке при обработке ее технологическими роботами
- место расположения технологического робота

Верный ответ: Место фиксации заготовке при обработке ее технологическими роботами

6.Для каких видов нагрузок конструируются манипуляторы с длинными кинематическими передачами

Ответы:

- для малых нагрузок
- для средних нагрузок
- для больших нагрузок

Верный ответ: Для малых и больших нагрузок

7. Как влияет на точность позиционирования упругая кинематическая передача, если обратная связь идет непосредственно от нагрузки

Ответы:

- не влияет на точность позиционирования
- ошибка позиционирования возрастает

Верный ответ: Не влияет на точность позиционирования

8. Какие приспособления для работы с плоскими предметами получили наибольшее распространение в манипуляторах

Ответы:

- электрические магниты
- вакуумные присоски
- специальные трехпальцевые зажимы

Верный ответ: Электрические магниты, вакуумные присоски

II. Описание шкалы оценивания

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 85

Описание характеристики выполнения знания: Оценка 5 «отлично» выставляется, если задание в билете выполнено в полном объеме или имеет несущественные погрешности

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка 4 «хорошо» выставляется, если задание в билете выполнено в полном объеме, но имеется не более 2 ошибок

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка 3 «удовлетворительно» выставляется, если задание в билете выполнено не менее, чем на 70% или имеется не более 4 ошибок

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка 2 «неудовлетворительно» выставляется, если задание в билете выполнено менее, чем на 60%, или имеет более 4 ощибок

III. Правила выставления итоговой оценки по курсу

Оценка определяется в соответствии с Положением о балльно-рейтинговой системе для студентов НИУ «МЭИ» на основании семестровой и экзаменационной составляющих.