Министерство науки и высшего образования РФ Федеральное государственное бюджетное образовательное учреждение высшего образования «Национальный исследовательский университет «МЭИ»

Направление подготовки/специальность: 27.03.04 Управление в технических системах

Наименование образовательной программы: Интеллектуальные технологии управления в технических

системах, обработка и анализ данных

Уровень образования: высшее образование - бакалавриат

Форма обучения: Очная

Оценочные материалы по дисциплине Теория автоматического управления, часть 2

Москва 2024

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ РАЗРАБОТАЛ:

Подписано электронной подписью ФГБОУ ВО «НИУ «МЭИ»

Сведения о владельце ЦЭП МЭИ

Владелец Сидорова Е.Ю.

Идентификатор R0dee6ce9-SidorovaYY-923dc6a8

Е.Ю. Сидорова

Разработчик

СОГЛАСОВАНО:

Руководитель образовательной программы

A HOSO NAS	Подписано электронн	ой подписью ФГБОУ ВО «НИУ «МЭИ»		
New New	Сведения о владельце ЦЭП МЭИ			
	Владелец	Сидорова Е.Ю.		
	Идентификатор	R0dee6ce9-SidorovaYY-923dc6a8		

Е.Ю. Сидорова

Заведующий выпускающей кафедрой

MOM I	Подписано электронн	ой подписью ФГБОУ ВО «НИУ «МЭИ»			
	Сведения о владельце ЦЭП МЭИ				
	Владелец	Бобряков А.В.			
	Идентификатор	R2c90f415-BobriakovAV-70dec1fa			

А.В. Бобряков

ОБЩАЯ ЧАСТЬ

Оценочные материалы по дисциплине предназначены для оценки: достижения обучающимися запланированных результатов обучения по дисциплине, этапа формирования запланированных компетенций и уровня освоения дисциплины.

Оценочные материалы по дисциплине включают оценочные средства для проведения мероприятий текущего контроля успеваемости и промежуточной аттестации.

Формируемые у обучающегося компетенции:

- 1. ОПК-3 Способен использовать фундаментальные знания для решения базовых задач управления в технических системах с целью совершенствования в профессиональной деятельности
 - ИД-1 Демонстрирует способность решать профессиональные задачи с использованием фундаментальных знаний
- 2. ОПК-4 Способен осуществлять оценку эффективности систем управления, разработанных на основе математических методов
 - ИД-1 Применяет типовые критерии оценки эффективности систем управления, разработанных на основе математических методов
 - ИД-2 Определяет критерии оценки эффективности разработанных систем управления
- 3. ОПК-9 Способен выполнять эксперименты по заданным методикам и обрабатывать результаты с применением современных информационных технологий и технических средств
 - ИД-2 Осуществляет постановку задач исследования, проведение экспериментов и обработку их результатов с использованием современных информационных технологий и технических средств

и включает:

для текущего контроля успеваемости:

Форма реализации: Защита задания

1. Защита расчетного задания «Анализ линейных импульсных систем автоматического управления» (Расчетно-графическая работа)

Форма реализации: Письменная работа

1. Контрольная работа "Нахождение дискретной передаточной функции импульсной системы автоматического управления" (Контрольная работа)

Форма реализации: Смешанная форма

1. Тест «Исследование систем автоматического управления при случайных воздействиях» и выполнение лабораторных работ № 3 и № 4 (Heт)

Форма реализации: Устная форма

- 1. Защита лабораторной работы № 1 "Исследование влияния квантования по времени на качество работы линейной импульсной системы автоматического управления" (Лабораторная работа)
- 2. Защита лабораторной работы № 2 «Исследование линейных импульсных систем автоматического управления» (Лабораторная работа)

БРС дисциплины

7 семестр

	Dass	TAO I I MARCO	** *** *** * * *	0007777	77777 0/	
	Веса контрольных мероприятий, %					
Раздел дисциплины	Индекс	KM-	KM-	KM-	KM-	KM-
	KM:	1	2	3	4	5
	Срок КМ:	4	8	12	13	15
Основные положения дискретных систем	управления					
Основные положения дискретных систем	управления	+	+	+	+	
Основные характеристики импульсных си	стем					
автоматического управления						
Основные характеристики импульсных си	стем	,		,		
автоматического управления		+	+	+	+	
Устойчивость и синтез импульсных систем	M					
управления						
Устойчивость и синтез импульсных систем				+	+	
управления				Т	Т	
Характеристики случайных процессов						
Характеристики случайных процессов						+
Оценка точности работы систем управлен	ия при					
случайных воздействиях	_					
Оценка точности работы систем управления при						
случайных воздействиях						+
Синтез систем автоматического управления при						
случайных воздействиях						
Синтез систем автоматического управлени	Синтез систем автоматического управления при					
случайных воздействиях						+
	Bec KM:	5	10	30	25	30

\$Общая часть/Для промежуточной аттестации\$

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ТЕКУЩЕГО КОНТРОЛЯ

I. Оценочные средства для оценки запланированных результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций

Индекс	Индикатор	Запланированные	Контрольная точка
компетенции		результаты обучения по	
		дисциплине	
ОПК-3	ИД-1 _{ОПК-3} Демонстрирует способность решать профессиональные задачи с использованием фундаментальных знаний	Знать: статистические	Контрольная работа "Нахождение дискретной передаточной функции импульсной системы автоматического управления" (Контрольная работа) Тест «Исследование систем автоматического управления при случайных воздействиях» и выполнение лабораторных работ № 3 и № 4 (Нет)
ОПК-4	ИД-1 _{ОПК-4} Применяет типовые критерии оценки эффективности систем управления, разработанных на основе математических методов	осуществимой и работоспособной импульсной системы Уметь: осуществлять расчет нелинейных систем методом статистической линеаризации	Защита лабораторной работы № 2 «Исследование линейных импульсных систем автоматического управления» (Лабораторная работа) Тест «Исследование систем автоматического управления при случайных воздействиях» и выполнение лабораторных работ № 3 и № 4 (Нет)
ОПК-4	ИД-2 _{ОПК-4} Определяет критерии оценки	Знать: влияние квантования по	Защита расчетного задания «Анализ линейных импульсных систем автоматического управления» (Расчетно-графическая работа)

	эффективности	времени на качество	Защита лабораторной работы № 1 "Исследование влияния квантования
	разработанных систем	работы линейной	по времени на качество работы линейной импульсной системы
	управления	импульсной системы	автоматического управления" (Лабораторная работа)
		автоматического	
		управления	
		Уметь:	
		оценивать устойчивость и	
		точность работы	
		импульсной системы	
		автоматического	
		управления	
ОПК-9	ИД-20ПК-9 Осуществляет	Знать:	Защита лабораторной работы № 1 "Исследование влияния квантования
	постановку задач	методику проведения и	по времени на качество работы линейной импульсной системы
	исследования, проведение	обработки результатов	автоматического управления" (Лабораторная работа)
	экспериментов и	экспериментальных	Тест «Исследование систем автоматического управления при
	обработку их результатов	исследований на реальных	случайных воздействиях» и выполнение лабораторных работ № 3 и №
	с использованием	объектах при наличии	4 (HeT)
	современных	случайных воздействий на	
	информационных	систему управления	
	технологий и технических	Уметь:	
	средств	проводить	
		экспериментальные	
		исследования на	
		действующих объектах по	
		заданной методике с	
		использованием	
		современных программно-	
		аппаратных средств	

II. Содержание оценочных средств. Шкала и критерии оценивания

КМ-1. Контрольная работа "Нахождение дискретной передаточной функции импульсной системы автоматического управления"

Формы реализации: Письменная работа

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 5

Процедура проведения контрольного мероприятия: Работа проводится по вариантам, во время лекции. Время на проведение - 30 минут.

Краткое содержание задания:

Контрольная работа ориентирована на нахождение дискретной передаточной функции разомкнутой импульсной системы автоматического управления.

Контрольные вопросы/задания:

Уметь: применять свойства и теоремы дискретного преобразования Лапласа для определения дискретной передаточной функции импульсной системы автоматического управления

1.Для заданной структурной схемы линейной ИСАУ найти дискретную передаточную функцию Wp*(p).

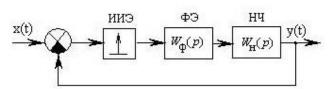


Figure 1 Структурная схема ИСАУ

Вариант 1:

$$W_{\phi}(p) = \frac{1 - e^{-pT}}{p}, \qquad W_{\pi}(p) = \frac{(1 + 2p)}{(1 + p)(1 + 5p)}.$$

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 100

Описание характеристики выполнения знания: Оценка "отлично" выставляется, если задание выполнено правильно.

Оиенка: 4

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Оценка "хорошо" выставляется, если задание выполнено с небольшими расчетными ошибками, но алгоритм его решения выбран правильно.

Оценка: 3

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется, если задание выполнено с грубыми расчетными ошибками, но алгоритм его решения выбран правильно.

Оценка: 2

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется, если студент не смог наметить правильный путь решения задания или оно выполнено с грубыми ошибками, которые существенно повлияли на вид полученного ответа.

КМ-2. Защита лабораторной работы № 1 "Исследование влияния квантования по времени на качество работы линейной импульсной системы автоматического управления"

Формы реализации: Устная форма

Тип контрольного мероприятия: Лабораторная работа

Вес контрольного мероприятия в БРС: 10

Процедура проведения контрольного мероприятия: Лабораторная работа принимается к защите при наличии оформленного в письменном виде отчета, содержащего протокол выполнения и обработки результатов проведения работы, а также требуемые выводы. Каждому члену бригады выдаются вопросы на защиту. Защита проводится в устной форме в виде подготовки и изложения развернутого ответа. Время на подготовку ответа — не более 30 минут.

Краткое содержание задания:

Контрольное мероприятие ориентировано на проверку следующих знаний:

- основные положения дискретных систем автоматического управления,
- влияние квантования по времени на качество работы линейной импульсной системы автоматического управления.

Контрольные вопросы/задания:

Знать: влияние квантования по	1. Назовите виды квантования сигнала, применяемые
времени на качество работы	в системах автоматического управления.
линейной импульсной системы	2. Дайте определение амплитудно-импульсной
автоматического управления	модуляции (АИМ). Напишите аналитическое
	выражение для сигнала на выходе идеального
	импульсного элемента при АИМ.
	3.Поясните на основе полученных в лабораторной
	работе графиков, как влияет период квантования на
	величину Кпред.
Уметь: проводить	1. Как определяются показатели качества работы
экспериментальные	импульсной системы автоматического управления
исследования на действующих	(ИСАУ)?
объектах по заданной методике с	2.Как построить область устойчивости для
использованием современных	исследуемой системы?
программно-аппаратных средств	3.Определите передаточную функцию
	формирователя $W\phi(p)$, если известна форма
	импульса на выходе импульсного элемента.

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: Защита лабораторной работы принимается с оценкой «отлично», если выполнены следующие условия: - протокол выполнения лабораторной работы не содержит ошибочных результатов; - по полученным результатам сделаны правильные выводы; - даны правильные и полные ответы не менее чем на 90% вопросов на защите работы.

Оценка: 4

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Защита лабораторной работы принимается с оценкой «хорошо», если выполнены следующие условия: - протокол выполнения лабораторной работы не содержит ошибочных результатов; - ЛФЧХ и АФХ построены в основном верно; - даны правильные и полные ответы не менее чем на 80% вопросов на защите работы.

Оценка: 3

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Защита лабораторной работы принимается с оценкой «удовлетворительно», если выполнены следующие условия: - протокол выполнения лабораторной работы содержит не более 15% ошибочных результатов, получаемых в результате обработки экспериментальных данных; - по полученным результатам сделаны правильные, но не достаточно полные выводы; - даны правильные ответы не менее чем на 60% вопросов на защите работы.

Оценка: 2

Описание характеристики выполнения знания: Защита лабораторной работы не принимается и ставится оценка «неудовлетворительно», если студентом не выполнены условия, предполагающие оценку «удовлетворительно».

КМ-3. Защита лабораторной работы № 2 «Исследование линейных импульсных систем автоматического управления»

Формы реализации: Устная форма

Тип контрольного мероприятия: Лабораторная работа

Вес контрольного мероприятия в БРС: 30

Процедура проведения контрольного мероприятия: Лабораторная работа принимается к защите при наличии оформленного в письменном виде отчета, содержащего протокол выполнения и обработки результатов проведения работы, а также требуемые выводы. Каждому члену бригады выдаются вопросы на защиту. Защита проводится в устной форме в виде подготовки и изложения развернутого ответа. Время на подготовку ответа — не более 30 минут.

Краткое содержание задания:

Контрольное мероприятие ориентировано на проверку следующих знаний:

- основные положения дискретных систем автоматического управления,
- основные характеристики импульсных систем автоматического управления,
- устойчивость и синтез импульсных систем управления.

Контрольные вопросы/задания:

Знать: методику синтеза	1.Запишите условие, позволяющее исследовать
осуществимой и	ИСАУ как непрерывную. Поясните это соотношение
работоспособной импульсной	на основании сравнения спектров сигналов в ИСАУ и
системы	в непрерывной системе.
	2.Как оценивается устойчивость линейной ИСАУ по
	критерию Найквиста для случаев устойчивой,
	неустойчивой и нейтрально-устойчивой разомкнутой системы?
	3.Сформулируйте условия осуществимости и
	грубости ИСАУ.
	4. Каковы особенности уравнения синтеза

переходного процесса конечной длительности? 5.Определите устойчивость ИСАУ и постройте h[lT] для заданной дискретной передаточной функции
системы.

Описание шкалы оценивания:

Оиенка: 5

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: Защита лабораторной работы принимается с оценкой «отлично», если выполнены следующие условия: - протокол выполнения лабораторной работы не содержит ошибочных результатов; - по полученным результатам сделаны правильные выводы; - даны правильные и полные ответы не менее чем на 90% вопросов на защите работы.

Оценка: 4

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Защита лабораторной работы принимается с оценкой «хорошо», если выполнены следующие условия: - протокол выполнения лабораторной работы содержит не более 5% ошибочных результатов, получаемых в результате обработки экспериментальных данных; - по полученным результатам сделаны правильные, но не достаточно полные выводы; - даны правильные ответы не менее чем на 80% вопросов на защите работы.

Оценка: 3

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Защита лабораторной работы принимается с оценкой «удовлетворительно», если выполнены следующие условия: - протокол выполнения лабораторной работы содержит не более 15% ошибочных результатов, получаемых в результате обработки экспериментальных данных; - по полученным результатам сделаны правильные, но не достаточно полные выводы; - даны правильные ответы не менее чем на 60% вопросов на защите работы.

Оценка: 2

Описание характеристики выполнения знания: Защита лабораторной работы не принимается и ставится оценка «неудовлетворительно», если студентом не выполнены условия, предполагающие оценку «удовлетворительно».

КМ-4. Защита расчетного задания «Анализ линейных импульсных систем автоматического управления»

Формы реализации: Защита задания

Тип контрольного мероприятия: Расчетно-графическая работа

Вес контрольного мероприятия в БРС: 25

Процедура проведения контрольного мероприятия: Расчетное задание выполняется по вариантам в форме домашнего задания с оформлением отчета. Защита отчета проводится в устной форме в виде ответов на вопросы по выполненному расчетному заданию.

Краткое содержание задания:

Для заданной структурной схемы линейной импульсной системы автоматического управления (ИСАУ) выполнить следующие задания:

1. Преобразовать исходную структурную схему к типовому виду; определить непрерывную передаточную функцию приведенной непрерывной части разомкнутой импульсной системы Wпн(p);

- 2. По Wпн(p) найти дискретную передаточную функцию разомкнутой импульсной системы $Wp^*(p)$;
- 3. Построить годограф разомкнутой ИСАУ точным и приближенным способами. Сравнить построенные годографы.
- 4. Оценить устойчивость замкнутой ИСАУ и найти предельный коэффициент усиления:
- а) по критерию Найквиста;
- b) по критерию Гурвица;
- с) по корням характеристического уравнения.
- 5. Построить переходной процесс для замкнутой ИСАУ.
- 6. Определить статическую и кинетическую ошибки устойчивой замкнутой ИСАУ.
- 7. Провести сравнение расчетных результатов с данными, полученными моделированием ИСАУ в MATLAB (Simulink).

Контрольные вопросы/задания:

1.Поясните, как Вы определили дискретные
передаточные функции разомкнутой и
замкнутой ИСАУ.
2.Поясните, как оценивалась устойчивость ИСАУ.
3.Поясните, как оценивалась точность работы ИСАУ.
4.Поясните, какие соотношения были использованы
для построения годографа ИСАУ?
5. Как построить переходный процесс для замкнутой
ИСАУ?

Описание шкалы оценивания:

Оиенка: 5

Нижний порог выполнения задания в процентах: 100

Описание характеристики выполнения знания: Расчетное задание считается выполненным на оценку «отлично», если для выполнения всех разделов задания выбраны правильные методы и получены решения без расчетных ошибок, при этом студент ответил правильно на вопросы, заданные ему на защите отчета по расчетному заданию.

Оценка: 4

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Расчетное задание считается выполненным на оценку «хорошо», если для выполнения всех разделов задания выбраны правильные методы и получены решения, возможно, с расчетными ошибками или небрежно оформлен отчет, и при этом студент в основном правильно ответил на вопросы, заданные ему на зашите отчета.

Оценка: 3

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Расчетное задание считается выполненным на оценку «удовлетворительно», если при выполнении разделов задания допущено не более одной ошибки в выборе метода решения или допущены ошибки в расчетах, или если в ответах на вопросы на защите отчета студент допустил существенные ошибки.

Оценка: 2

Описание характеристики выполнения знания: Расчетное задание считается выполненным на оценку «удовлетворительно», если при выполнении разделов задания не выполнены условия, предполагающие оценку «удовлетворительно».

КМ-5. Тест «Исследование систем автоматического управления при случайных воздействиях» и выполнение лабораторных работ № 3 и № 4

Формы реализации: Смешанная форма Тип контрольного мероприятия: Нет Вес контрольного мероприятия в БРС: 30

Процедура проведения контрольного мероприятия: Процедура проведения теста: Тест проводится в письменной форме во время лекции. Состоит из двух частей, в каждой по 5 заданий. К каждому заданию в части 1 даны несколько ответов, из которых нужно выбрать один правильный. Решение заданий части 2 нужно вписать в предназначенное для него поле. Время на проведение теста - 30 минут. Для зачета выполнения лабораторных работ №№ 3 и 4 необходимо продемонстрировать их выполнение. Для допуска к лабораторным работам необходимо предоставить выполненные задания на подготовку к соответствующим работам.

Краткое содержание задания:

Тестирование и выполнение лабораторных работ №№ 3, 4 направлено на проверку знаний по второй части курса ("Исследование САУ при случайных воздействиях"), а также на знание методики проведения и обработки результатов экспериментальных исследований на реальных объектах при наличии случайных воздействий на систему управления.

Контрольные вопросы/задания:

Контрольные вопросы/задания:	
Знать: статистические	1.
характеристики случайных	Спектральная плотность случайного процесса
процессов	показывает:
	а) среднее значение СП
	б) статистическую взаимосвязь между значениями СП,
	взятыми в моменты времени t1 и t2
	в) амплитуду отклонения СП от своего среднего
	значения
	г) распределение мощности СП по частоте
	2.Чем более инерционен объект, тем
	а) быстрее убывает автокорреляционная функция
	Ryy(T), описывающая сигнал на его выходе
	б) слабее корреляция между значениями выходного
	сигнала объекта, взятыми в моменты времени t1 и t2
	в) шире график спектральной плотности Sy(w)
	г) медленнее изменяется выходной сигнал y(t) объекта
	2.11
	3. Напишите соотношение для определения
	дисперсии случайного процесса путем усреднения по
	множеству реализаций.
	4. Что характеризует взаимная корреляционная
	функция?
Знать: методику проведения и	1.Дайте определения случайного процесса (СП),
обработки результатов	белого шума, стационарного (в узком и широком
экспериментальных	смыслах) СП, эргодического СП.
исследований на реальных	2.Дайте определение и поясните смысл
объектах при наличии	корреляционной функции и спектральной плотности
случайных воздействий на	случайного процесса.
систему управления	3. Как определяются оптимальные параметры
J J 1	1 1

	следящей системы на основе вычислительного эксперимента? 4.Запишите алгоритм и основное выражение для определения корреляционной функции по виду реализации случайного процесса, наблюдаемого на отрезке [0,T]. 5.Запишите соотношения, связывающие корреляционные функции и спектральные плотности случайных сигналов на входе и выходе линейного динамического звена.
Уметь: осуществлять расчет нелинейных систем методом статистической линеаризации	1. Напишите аналитические выражения для вычисления математического ожидания и дисперсии случайного сигнала на выходе нелинейного звена. 2. На основе метода статистической линеаризации запишите уравнения замыкания нелинейной САУ по математическому ожиданию и по дисперсии случайного сигнала. 3. Поясните суть графоаналитического метода решения уравнений замыкания. Как осуществляется решение этих уравнений с помощью метода последовательных приближений?

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: Задание считается выполненным на оценку «отлично», если даны правильные ответы не менее чем на 90 % вопросов теста и студент выполнил лабораторные работы №№ 3 и 4.

Оценка: 4

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Задание считается выполненным на оценку «хорошо», если студент выполнил лабораторные работы №№ 3 и 4 и дал правильные ответы - не менее чем на 80 % вопросов из 1-ой части теста и - не менее чем на 60 % вопросов из 2-й части теста или наоборот: - не менее чем на 60 % вопросов из 1-ой части теста и - не менее чем на 80 % вопросов из 2-й части теста.

Оценка: 3

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Задание считается выполненным на оценку «удовлетворительно», если студент выполнил лабораторные работы №№ 3 и 4 и дал правильные ответы - не менее чем на 60 % вопросов из 1-ой части теста и - не менее чем на 40 % вопросов из 2-й части теста, при этом суммарный процент правильных ответов на вопросы из обеих частей теста не меньше 60-ти %.

Оценка: 2

Описание характеристики выполнения знания: Тест считается выполненным на оценку «неудовлетворительно», если студентом не выполнены условия, предполагающие оценку «удовлетворительно».

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

7 семестр

Форма промежуточной аттестации: Экзамен

Пример билета

	ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 1			верждаю кафедро УИТ	
МЭИ	Кафедра Управления и интеллектуальных технологий	-			
	Дисциплина ТАУ, часть 2 ИВТИ	«	»	20	Г
	1. Дискретное преобразование Лапласа, основные свойства и георемы. Примеры получения формул дискретных изображений сигналов. 2. Понятие случайного процесса. Определение статистических характеристик для эргодического случайного процесса. 3. Задача. Задана дискретная передаточная функциея замкнутой ИСАУ: $W_{s}^{\star}(p) = \frac{Y^{\star}(p)}{X^{\star}(p)} = \frac{2e^{pT}+3}{s^{3}pT} + 5e^{2pT} + 2e^{pT} + 1.$ На основании разностного уравнения построить $h[lT]$, $l=\overline{0,3}$.				

Figure 2

Процедура проведения

Экзамен проводится в письменной форме по билетам. Время на подготовку ответа – 90 минут.

I. Перечень компетенций/индикаторов и контрольных вопросов проверки результатов освоения дисииплины

1. Компетенция/Индикатор: ИД-1_{ОПК-3} Демонстрирует способность решать профессиональные задачи с использованием фундаментальных знаний

Вопросы, задания

- 1.Способы квантования сигнала. Классификация дискретных систем управления. Определение импульсной системы автоматического управления (ИСАУ), функциональная и структурная схемы замкнутой линейной ИСАУ. Представление сигнала при амплитудно-импульсной модуляции.
- 2. Дискретное преобразование D, основные свойства и теоремы. Вывод формулы для дискретного изображения сигнала $X^*(p)$ на основании X(p).
- 3. Уравнения ИСАУ относительно изображений сигналов. Вывод выражения для дискретной передаточной функции замкнутой системы и передаточной функции ошибки от задающего воздействия.
- 4. Понятие стационарного случайного процесса в широком и узком смыслах.
- Эргодические случайные процессы. Аналитические выражения для вычисления основных статистических характеристик эргодических СП.
- 5.Понятие корреляционной функции и ее свойства. Аналитические выражения для вычисления корреляционной функции путем усреднения по времени и по множеству. Примеры корреляционных функций типовых случайных процессов и регулярных сигналов
- 6.Спектральная плотность СП и ее физический смысл. Взаимная спектральная плотность двух случайных процессов. Связь между видом графиков корреляционной функции и спектральной плотности случайного процесса.

Материалы для проверки остаточных знаний

- 1. Какой случайный процесс называют эргодическим? Ответы:
- а) случайный процесс, для которого значения, взятые в моменты времени t1 и t2, являются независимыми, как бы мало ни было расстояние между t1 и t2
- б) случайный процесс, для которого среднее по множеству реализаций равно среднему по времени для одной реализации
- в) случайный процесс, для которого корреляционная функция затухает
- г) случайный процесс, для которого спектральная плотность постоянна

Верный ответ: б)

2. Как называются системы, в которых происходит квантование сигнала и по времени, и по уровню?

Ответы:

- а) импульсными
- б) цифровыми
- в) релейными
- г) разрывными

Верный ответ: б)

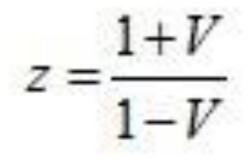
3. Как называется изменение параметров импульса (или импульсной последовательности) при изменении входного сигнала?

Ответы:

- а) моделирование
- б) D-преобразование
- в) дискретизация
- г) модуляция

Верный ответ: г)

4.Запишите выражение для дискретного преобразования Лапласа.


Ответы

a)
$$f[lT] = \sum_{v=1}^{n} \frac{B^{*}(p_{v})}{A^{*}(p_{v})} \cdot e^{p_{v}(l-1)T}$$
 6) $\Delta y[lT] = y[(l+1)T] - y[lT]$

в)
$$X^*(p) = \sum_{l=0}^{\infty} x[lT]e^{-pT}$$
 г) $x^*(t) = \sum_{l=0}^{\infty} x[lT]\delta(t-lT)$

Верный ответ: в)

5. Как называется соотношение

Ответы:

- а) билинейное преобразование
- б) формула разложения
- в) свертка
- г) D-преобразование

Верный ответ: а)

2. Компетенция/Индикатор: ИД-1_{ОПК-4} Применяет типовые критерии оценки эффективности систем управления, разработанных на основе математических методов

Вопросы, задания

- 1. Условия, которые должны быть соблюдены при задании передаточной функции синтезируемой линейной ИСАУ. Первое уравнение синтеза.
- 2.Методика составления уравнений синтеза линейной ИСАУ. Вывод уравнения синтеза линейной ИСАУ с переходным процессом конечной длительности.
- 3. Метод статистической линеаризации нелинейных элементов. Определение коэффициентов K0 и K1 по двум критериям эквивалентности нелинейной и заменяющей ее линейной зависимости.

Материалы для проверки остаточных знаний

1. Как называют систему, в которой при малых изменениях параметров изменения величин, характеризующих состояние системы, будут также малы?

Ответы:

- а) устойчивой
- б) физически реализуемой
- в) грубой
- г) негрубой

Верный ответ: в)

- 2. Приведите условие осуществимости передаточной функции корректирующего звена.
- а) корректирующее звено является устойчивым
- б) степень числителя дискретной передаточной функции корректирующего звена строго меньше степени знаменателя
- в) степень числителя дискретной передаточной функции корректирующего звена не превышает степень знаменателя
- г) в знаменателе дискретной передаточной функции корректирующего звена только одно слагаемое

Верный ответ: в)

3. Компетенция/Индикатор: ИД-2_{ОПК-4} Определяет критерии оценки эффективности разработанных систем управления

Вопросы, задания

- 1.Понятие устойчивости линейной ИСАУ (по входному воздействию и по начальным условиям). Необходимые и достаточные условия устойчивости линейной ИСАУ в плоскостях Р и Z (с выводом).
- 2. Прямые и косвенные показатели качества линейных ИСАУ.
- 3.Определение установившихся значений ошибок замкнутой ИСАУ по задающему воздействию и по возмущению. Условие астатизма ИСАУ по задающему воздействию.

Материалы для проверки остаточных знаний

1. Как называется числовая последовательность, полученная в результате измерительной или вычислительной процедуры, в которой аргумент изменяется через равные интервалы?

Ответы:

- а) дельта-функция б) решетчатая функция
- в) изображение
- г) оригинал

Верный ответ: б)

2. Что является необходимым и достаточным условием устойчивости линейной ИСАУ на плоскости Z?

Ответы:

- а) все корни характеристического уравнения левые
- б) все корни характеристического уравнения правые
- в) все корни характеристического уравнения лежат вне окружности единичного радиуса
- г) все корни характеристического уравнения лежат внутри окружности единичного радиуса

Верный ответ: г)

4. Компетенция/Индикатор: ИД-2_{ОПК-9} Осуществляет постановку задач исследования, проведение экспериментов и обработку их результатов с использованием современных информационных технологий и технических средств

Вопросы, задания

- 1.Спектральная характеристика сигнала при амплитудно-импульсной модуляции после идеального импульсного элемента и на выходе ИСАУ. Теорема Котельникова. Условия, при которых ИСАУ можно исследовать как непрерывную (показать графически на основе спектральной характеристики).
- 2. Понятия автокорреляционной функции, взаимной корреляционной функции, центрированной корреляционной функции. Связь между видом автокорреляционной функции выходного сигнала объекта и его инерционностью.
- 3. Прохождение случайного сигнала через линейное звено. Определение автокорреляционной функции случайного сигнала на выходе динамического звена, если известна автокорреляционная функция входного сигнала (стационарного и эргодического СП).
- 4.Определение спектральной плотности случайного сигнала на выходе динамического звена с передаточной функцией W(p), на входе которого действует случайное воздействие со спектральной плотностью Sx(w).
- 5. Примеры автокорреляционных функций и спектральных плотностей типовых СП и регулярных сигналов.
- 6. Нелинейное преобразование случайных сигналов. Примеры изменения плотности вероятности при прохождении случайного сигнала через нелинейное звено.

Материалы для проверки остаточных знаний

1. Чему равна спектральная плотность постоянного сигнала x(t)=A=const? Ответы:

Figure 3

Верный ответ: в)

2. Чему равна автокорреляционная функция случайного сигнала на выходе динамического звена с весовой функцией w(t), на входе которого действует случайный сигнал с автокорреляционной функцией $Rxx(\tau)$?

Ответы:

Верный ответ: б)

3. Как называется теорема, при выполнении которой из квантованного сигнала можно восстановить исходный непрерывный сигнал без искажения?

Ответы:

- а) теорема Фурье
- б) теорема разложения
- в) теорема о свертке
- г) теорема Котельникова

Верный ответ: г)

II. Описание шкалы оценивания

Оценка: 5

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: Оценка «отлично» выставляется студенту, который показал при ответе на вопросы экзаменационного билета, включая практическое задание, что владеет материалом изученной дисциплины, свободно применяет свои знания для объяснения различных явлений и при решении задач.

Оценка: 4

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Оценка «хорошо» выставляется студенту, в основном правильно ответившему на вопросы экзаменационного билета, включая практическое задание (допускается несколько недочетов непринципиального характера).

Оценка: 3

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка «удовлетворительно» выставляется студенту, если его ответ на вопросы экзаменационного билета правильный, но неполный, допущены негрубые ошибки.

Оценка: 2

Описание характеристики выполнения знания: Оценка «неудовлетворительно» выставляется студенту, если им не выполнены условия, предполагающие оценку «удовлетворительно».

ІІІ. Правила выставления итоговой оценки по курсу

Оценка определяется в соответствии с Положением о балльно-рейтинговой системе для студентов НИУ «МЭИ» на основании семестровой и экзаменационной составляющих.