Министерство науки и высшего образования РФ Федеральное государственное бюджетное образовательное учреждение высшего образования «Национальный исследовательский университет «МЭИ»

Направление подготовки/специальность: 27.03.04 Управление в технических системах

Наименование образовательной программы: Интеллектуальные технологии управления в технических

системах, обработка и анализ данных

Уровень образования: высшее образование - бакалавриат

Форма обучения: Очная

Оценочные материалы по дисциплине Физика

> Москва 2024

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ РАЗРАБОТАЛ:

 Подписано электронной подписью ФГБОУ ВО «НИУ «МЭИ»

 Сведения о владельце ЦЭП МЭИ

 Владелец
 Корецкая И.В.

 Идентификатор
 R4a92a730-KoretskyalV-a2586154

СОГЛАСОВАНО:

Руководитель образовательной программы

Разработчик

O NOSO	Подписано электронной подписью ФГБОУ ВО «НИУ «МЭИ»				
	Сведения о владельце ЦЭП МЭИ				
	Владелец	Сидорова Е.Ю.			
> M⊙N >	Идентификатор	R0dee6ce9-SidorovaYY-923dc6a8			

Е.Ю. Сидорова

И.В. Корецкая

Заведующий выпускающей кафедрой

NISO NE	Подписано электронн	ой подписью ФГБОУ ВО «НИУ «МЭИ»	
MOM	Сведения о владельце ЦЭП МЭИ		
	Владелец	Бобряков А.В.	
	Идентификатор	R2c90f415-BobriakovAV-70dec1fa	

А.В. Бобряков

ОБЩАЯ ЧАСТЬ

Оценочные материалы по дисциплине предназначены для оценки достижения обучающимися запланированных результатов обучения по дисциплине, этапа формирования запланированных компетенций и уровня освоения дисциплины.

Оценочные материалы по дисциплине включают оценочные средства для проведения мероприятий текущего контроля успеваемости и промежуточной аттестации.

Формируемые у обучающегося компетенции:

1. ОПК-1 Способен анализировать задачи профессиональной деятельности на основе положений, законов и методов в области естественных наук и математики

ИД-4 Демонстрирует понимание физических явлений и применяет законы механики, термодинамики, электричества и магнетизма

и включает:

для текущего контроля успеваемости:

Форма реализации: Письменная работа

- 1. Динамика твердого тела (Тестирование)
- 2. Кинематика и динамика материальной точки (Тестирование)
- 3. Механика (Контрольная работа)
- 4. Молекулярная физика и термодинамика (Контрольная работа)
- 5. Электромагнетизм (Контрольная работа)
- 6. Электростатика (Контрольная работа)
- 7. Электростатическое поле в вакууме (Тестирование)
- 8. Электростатическое поле в веществе (Тестирование)

Форма реализации: Смешанная форма

- 1. Механика (защита) (Лабораторная работа)
- 2. Молекулярная физика и термодинамика (защита) (Лабораторная работа)
- 3. Электромагнетизм (защита) (Лабораторная работа)
- 4. Электростатика (защита) (Лабораторная работа)

БРС дисциплины

1 семестр

Перечень контрольных мероприятий <u>текущего контроля</u> успеваемости по лиспиплине:

- КМ-1 Кинематика и динамика материальной точки (Тестирование)
- КМ-2 Динамика твердого тела (Тестирование)
- КМ-3 Механика (Контрольная работа)
- КМ-4 Механика (защита) (Лабораторная работа)
- КМ-5 Молекулярная физика и термодинамика (Контрольная работа)
- КМ-6 Молекулярная физика и термодинамика (защита) (Лабораторная работа)

Вид промежуточной аттестации – Экзамен.

Раздел дисциплины	Веса контрольных мероприятий, %

	Индекс	KM-1	KM-2	KM-3	KM-4	KM-5	КМ-6
	KM:	4	0	10	10	1.7	1.4
	Срок КМ:	4	8	10	10	15	14
Механика							
Механика		+	+	+	+		
Элементы специальной теории							
относительности							
Элементы специальной теории				+			
относительности				T			
Молекулярная физика и термодинамика							
Молекулярная физика и термодинамика						+	+
	Bec KM:	10	10	25	20	25	10

2 семестр

Перечень контрольных мероприятий <u>текущего контроля</u> успеваемости по дисциплине:

- КМ-1 Электростатическое поле в вакууме (Тестирование)
- КМ-2 Электростатическое поле в веществе (Тестирование)
- КМ-3 Электростатика (Контрольная работа)
- КМ-4 Электростатика (защита) (Лабораторная работа)
- КМ-5 Электромагнетизм (Контрольная работа)
- КМ-6 Электромагнетизм (защита) (Лабораторная работа)

Вид промежуточной аттестации – Экзамен.

		Веса контрольных мероприятий, %							
Раздел дисциплины	Индекс	KM-1	KM-2	KM-3	KM-4	KM-5	KM-6		
т аздел дисциплины	KM:								
	Срок КМ:	4	7	9	8	15	14		
Электростатика									
Электростатика		+	+	+	+				
Электромагнетизм									
Электромагнетизм						+	+		
Колебания и волны									
Колебания и волны							+		
	Вес КМ:	10	10	25	15	25	15		

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ТЕКУЩЕГО КОНТРОЛЯ

I. Оценочные средства для оценки запланированных результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций

Индекс	Индикатор	Запланированные	Контрольная точка
компетенции	_	результаты обучения по	
		дисциплине	
ОПК-1	ИД-4 _{ОПК-1} Демонстрирует	Знать:	КМ-1 Кинематика и динамика материальной точки (Тестирование)
	понимание физических	законы электромагнетизма,	КМ-2 Динамика твердого тела (Тестирование)
	явлений и применяет	которые обусловливают	КМ-3 Механика (Контрольная работа)
	законы механики,	явления или процессы в	КМ-4 Механика (защита) (Лабораторная работа)
	термодинамики,	устройствах различной	КМ-5 Молекулярная физика и термодинамика (Контрольная работа)
	электричества и	физической природы, и	КМ-6 Молекулярная физика и термодинамика (защита) (Лабораторная
	магнетизма	выполнять применительно	работа)
		к ним простые технические	КМ-7 Электростатическое поле в вакууме (Тестирование)
		расчёты	КМ-8 Электростатическое поле в веществе (Тестирование)
		законы электростатики,	КМ-9 Электростатика (Контрольная работа)
		которые обусловливают	КМ-10 Электростатика (защита) (Лабораторная работа)
		явления или процессы в	КМ-11 Электромагнетизм (Контрольная работа)
		устройствах различной	КМ-12 Электромагнетизм (защита) (Лабораторная работа)
		физической природы, и	
		выполнять применительно	
		к ним простые технические	
		расчёты	
		основные физические	
		явления, законы механики	
		и их математическое	
		описание	
		законы молекулярной	
		физики и термодинамики,	
		которые обусловливают	
		явления или процессы в	

устройствах различной физической природы, и выполнять применительно к ним простые технические расчёты законы механики, которые обусловливают явления или процессы в устройствах различной физической природы, и выполнять применительно к ним простые технические расчёты основные физические явления, законы электростатики и их математическое описание основные физические явления, законы молекулярной физики и термодинамики и их математическое описание Уметь: применять основные физические явления, законы электростатики и их математическое описание к решению задач применять основные физические явления, законы механики и их математическое описание к решению задач

	применять основные физические явления,	
	законы электромагнетизма	
	и их математическое	
	описание к решению задач	

II. Содержание оценочных средств. Шкала и критерии оценивания

1 семестр

КМ-1. Кинематика и динамика материальной точки

Формы реализации: Письменная работа

Тип контрольного мероприятия: Тестирование **Вес контрольного мероприятия в БРС:** 10

Процедура проведения контрольного мероприятия: Тест на 20 минут.

Краткое содержание задания:

Численное значение мгновенной скорости движущегося тела в данный момент времени равно:

- 1) Отношению пути, пройденному материальной точкой, ко времени, за которое этот участок пути был преодолен
- 2) Отношению вектора перемещения материальной точки ко времени, за которое это смещение произошло
- 3) Производной от пути, пройденному материальной точкой, по времени (верный)
- 4) Алгебраической сумме производных от координат по времени

Контрольные вопросы/задания:

Запланированные результаты	Вопросы/задания для проверки
обучения по дисциплине	Бопросы задания для проверки
	1 11
Знать: основные физические	1. Численное значение мгновенной скорости
явления, законы механики и их	движущегося тела в данный момент времени равно:
математическое описание	1) Отношению пути, пройденному материальной
	точкой, ко времени, за которое этот участок пути был
	преодолен
	2) Отношению вектора перемещения материальной
	точки ко времени, за которое это смещение
	произошло
	3) Производной от пути, пройденному материальной
	точкой, по времени (верный)
	4) Алгебраической сумме производных от координат
	по времени
	2.На наклонной плоскости, составляющей угол α с
	горизонтом, неподвижно лежит брусок массы т.
	Чему равна сила трения, действующая на брусок со
	стороны наклонной плоскости?
	1) mg
	2) mg sinα (верный)
	3) mg cosa
	4) mg sinα - μmg cosα

Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: Оценка "отлично" выставляется, если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "хорошо" выставляется, если большинство вопросов раскрыто, выбрано верное направление для решения задач

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется, если задание преимущественно выполнено

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется, если задание выполнено неверно или преимущественно не выполнено

КМ-2. Динамика твердого тела

Формы реализации: Письменная работа

Тип контрольного мероприятия: Тестирование **Вес контрольного мероприятия в БРС:** 10

Процедура проведения контрольного мероприятия: Тест на 20 минут.

Краткое содержание задания:

Имеются два блока одинаковой массы и радиуса. Один из них выполнен в форме полого цилиндра, а второй в форме сплошного цилиндра. На блоки намотаны нити, к концам которых прикреплены одинаковые грузы. Какой из грузов быстрее коснется пола, если изначально они были на одинаковой высоте?

- 1. Они коснутся пола одновременно
- 2. Быстрее коснется пола груз сплошного блока (верный)
- 3. Быстрее коснется пола груз полого блока
- 4. Задача не доопределена, так как неизвестно какой из цилиндров длиннее и насколько

Контрольные вопросы/задания:

Запланированные	Вопросы/задания для проверки
результаты обучения	
по дисциплине	
Знать: основные	Į.
физические явления,	į
законы механики и их	<u> </u>
математическое	!
описание	1
	I_1

	!
	I
	<u> </u>
	I_2
	1
	I I
	j
	1
	1. I

Запланированные	Вопросы/задания для проверки
результаты обучения	
по дисциплине	
	Имеются два стержня одинаковой массы, но разной длины.
	Один из них в два раза длиннее другого. Как соотносятся
	моменты инерции длинного I_1 и короткого I_2 стержней,
	относительно оси проходящей через их центр перпендикулярно
	стержням?
	1. $I_1 = I_2$
	$2. I_1 = 2I_2$
	$3. I_1 = 3I_2$
	$4. I_1 = 4I_2$ (верный)
	2.Имеются два блока одинаковой массы и радиуса. Один из них
	выполнен в форме полого цилиндра, а второй в форме
	сплошного цилиндра. На блоки намотаны нити, к концам
	которых прикреплены одинаковые грузы. Какой из грузов
	быстрее коснется пола, если изначально они были на
	одинаковой высоте?
	1. Они коснутся пола одновременно
	2. Быстрее коснется пола груз сплошного блока (верный)
	3. Быстрее коснется пола груз полого блока
	4. Задача не доопределена, так как неизвестно какой из
	цилиндров длиннее и насколько

Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: Оценка "отлично" выставляется, если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "хорошо" выставляется, если большинство вопросов раскрыто, выбрано верное направление для решения задач

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется, если задание преимущественно выполнено

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется, если задание выполнено неверно или преимущественно не выполнено

КМ-3. Механика

Формы реализации: Письменная работа

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 25

Процедура проведения контрольного мероприятия: Контрольная работа на 90 минут.

Краткое содержание задания:

Блок массы m укреплен на вершине наклонной плоскости, составляющей угол α с горизонтом. Через блок перекинута нить, на одном конце которой свободно висит груз

массой m_2 . Другой конец нити привязан к грузу массой $m_1 < m_2$, лежащему на наклонной плоскости. Найти ускорение, с которым будут двигаться грузы. Трение отсутствует. Масса блока распределена равномерно по радиусу (т.е. блок считать обручем).

Контрольные вопросы/задания:

Запланированные результаты	Вопросы/задания для проверки
обучения по дисциплине	
Уметь: применять основные	1. Блок массы т укреплен на вершине наклонной
физические явления, законы	плоскости, составляющей угол α с горизонтом. Через
механики и их математическое	блок перекинута нить, на одном конце которой
описание к решению задач	свободно висит груз массой m_2 . Другой конец нити
	привязан к грузу массой $m_1 < m_2$, лежащему на
	наклонной плоскости. Найти ускорение, с которым
	будут двигаться грузы. Трение отсутствует. Масса
	блока распределена равномерно по радиусу (т.е. блок
	считать обручем).
	2. Диск вкатывается на наклонную плоскость, при этом
	скорость его центра масс равна v_1 . Угол наклона
	плоскости относительно горизонта равен α. Какое
	расстояние пройдёт центр масс диска к моменту, когда
	его скорость уменьшится до величины v_2 ? Считать, что
	диск катится без проскальзывания.
	3.Собственная длина стержня равна 1,0 м. Определите
	его длину для наблюдателя, относительно которого
	стержень перемещается со скоростью 0,6•с,
	направленной вдоль стержня.

Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: Оценка "отлично" выставляется, если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "хорошо" выставляется, если большинство вопросов раскрыто, выбрано верное направление для решения задач

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется, если задание преимущественно выполнено

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется, если задание выполнено неверно или преимущественно не выполнено

КМ-4. Механика (защита)

Формы реализации: Смешанная форма

Тип контрольного мероприятия: Лабораторная работа

Вес контрольного мероприятия в БРС: 20

Процедура проведения контрольного мероприятия: Выборочно: беседа со студентом/проверка задания в письменной форме.

Краткое содержание задания:

Потенциальная энергия. Связь ее изменения с работой консервативных сил. Условия сохранения полной механической энергии.

Контрольные вопросы/задания:

Запланированные результаты обучения	Вопросы/задания для проверки
по дисциплине	
Знать: законы механики, которые	1.Момент силы относительно оси (сила
обусловливают явления или процессы в	действует в плоскости, перпендикулярной
устройствах различной физической	оси). Направление вектора момента силы.
природы, и выполнять применительно к	Основное уравнение динамики
ним простые технические расчёты	вращательного движения (формулировка и
	вывод).
	2.Потенциальная энергия. Связь ее
	изменения с работой консервативных сил.
	Условия сохранения полной механической
	энергии.

Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: Оценка "отлично" выставляется, если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "хорошо" выставляется, если большинство вопросов раскрыто, выбрано верное направление для решения задач

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется, если задание преимущественно выполнено

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется, если задание выполнено неверно или преимущественно не выполнено

КМ-5. Молекулярная физика и термодинамика

Формы реализации: Письменная работа

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 25

Процедура проведения контрольного мероприятия: Контрольная работа на 90 минут.

Краткое содержание задания:

Идеальный двухатомный газ совершает тепловой цикл, состоящий из трех процессов: адиабатного, изобарического и изохорического. Изохорический процесс протекает с повышением температуры. Давление в адиабатном процессе изменяется от начального p_1 до p_2 . Изобразить цикл в осях (p, V) и определить его КПД.

Контрольные вопросы/задания:

Запланированные результаты Вопросы/задания для проверки		
обучения по дисциплине		
Знать: основные физические	1.Идеальный двухатомный газ совершает тепловой	
явления, законы	цикл, состоящий из трех процессов: адиабатного,	
молекулярной физики и	изобарического и изохорического. Изохорический	
термодинамики и их	процесс протекает с повышением температуры.	
математическое описание	Давление в адиабатном процессе изменяется от	
	начального p_1 до p_2 . Изобразить цикл в осях (\pmb{p}, \pmb{V}) и	
	определить его КПД.	
	2. Кинетическая энергия вращательного движения всех	
	молекул азота (N_2) находящихся в баллоне емкостью	
	$0,02~{ m M}^3$, равна $5\cdot 10^3~{ m Дж}$, а средняя квадратичная	
	скорость молекул равна $8 \cdot 10^2$ м/с. Найти массу азота и	
	его давление.	

Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: Оценка "отлично" выставляется, если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "хорошо" выставляется, если большинство вопросов раскрыто, выбрано верное направление для решения задач

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется, если задание преимущественно выполнено

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется, если задание выполнено неверно или преимущественно не выполнено

КМ-6. Молекулярная физика и термодинамика (защита)

Формы реализации: Смешанная форма

Тип контрольного мероприятия: Лабораторная работа

Вес контрольного мероприятия в БРС: 10

Процедура проведения контрольного мероприятия: Выборочно: беседа со

студентом/проверка задания в письменной форме.

Краткое содержание задания:

I начало термодинамики. Определение всех величин, входящих в него. Применение I начала термодинамики к изохорическому и изобарическому процессам.

Контрольные вопросы/задания:

Запланированные	результаты	обучения	ПО	Вопросы/задания для проверки
дисциплине				
Знать: законы	молекулярної	й физики	И	1.І начало термодинамики.
термодинамики,	которые	обусловлива	ают	Определение всех величин, входящих
явления или процессы в устройствах различной		в него. Применение І начала		

Запланированные результаты обучения по	Вопросы/задания для проверки
дисциплине	
физической природы, и выполнять	термодинамики к изохорическому и
применительно к ним простые технические	изобарическому процессам.
расчёты	2.Средняя квадратичная скорость и
	средняя кинетическая энергия
	поступательного движения молекул
	(вывод формулы).

Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: Оценка "отлично" выставляется, если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "хорошо" выставляется, если большинство вопросов раскрыто, выбрано верное направление для решения задач

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется, если задание преимущественно выполнено

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется, если задание выполнено неверно или преимущественно не выполнено

2 семестр

КМ-1. Электростатическое поле в вакууме

Формы реализации: Письменная работа

Тип контрольного мероприятия: Тестирование **Вес контрольного мероприятия в БРС:** 10

Процедура проведения контрольного мероприятия: Тест на 20 минут.

Краткое содержание задания:

Положительный точечный заряд q находится в центре сферической поверхности. Если за пределы сферы поместить такой же заряд, то поток вектора напряженности электростатического поля через сферическую поверхность:

- 1) не изменится (верный)
- 2) увеличится в 2 раза
- 3) уменьшится в 2 раза
- 4) станет равным нулю

Контрольные вопросы/задания:

	<u>' ' '</u>
Запланированные	Вопросы/задания для проверки
результаты обучения по	
дисциплине	

Запланированные	Вопросы/задания для проверки
результаты обучения по	
дисциплине	
Знать: основные	
физические явления,	10
законы электростатики и	TU
их математическое	
описание	
	/
	4.0
	1.
	В центре тонкого кольца, равномерно заряженного зарядом
	$+ m{Q},$ в равновесии находится точечный заряд $m{q}$. Определите
	величину и знак заряда q .
	1) только q=+2Q
	2) только q = -3Q
	3) только q = 0
	4) любой (верный)
	2.Положительный точечный заряд q находится в центре
	сферической поверхности. Если за пределы сферы поместить
	такой же заряд, то поток вектора напряженности
	электростатического поля через сферическую поверхность:
	1) не изменится (верный)
	2) увеличится в 2 раза
	3) уменьшится в 2 раза
	4) станет равным нулю

Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: Оценка "отлично" выставляется, если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "хорошо" выставляется, если большинство вопросов раскрыто, выбрано верное направление для решения задач

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется, если задание преимущественно выполнено

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется, если задание выполнено неверно или преимущественно не выполнено

КМ-2. Электростатическое поле в веществе

Формы реализации: Письменная работа

Тип контрольного мероприятия: Тестирование **Вес контрольного мероприятия в БРС:** 10

Процедура проведения контрольного мероприятия: Тест на 20 минут.

Краткое содержание задания:

Связанными называют заряды:

- 1) нарушающие электрическую нейтральность диэлектрика
- 2) способные перемещаться под действием сил поля на любые расстояния
- 3) входящие в состав молекул диэлектрика (верный)
- 4) нет правильного утверждения

Контрольные вопросы/задания:

контрольные вопросы/задания:			
Запланированные результаты обучения	Вопросы/задания для проверки		
по дисциплине			
Знать: основные физические явления,	1.Связанными называют заряды:		
законы электростатики и их	1) нарушающие электрическую		
математическое описание	нейтральность диэлектрика		
	2) способные перемещаться под действием		
	сил поля на любые расстояния		
	3) входящие в состав молекул диэлектрика		
	(верный)		
	4) нет правильного утверждения		
	2.Как ведут себя силовые линии		
	электростатического поля вблизи		
	поверхности проводника?		
	1) Огибают поверхность проводника, не		
	пересекая её		
	2) Входят в поверхность проводника под		
	прямым углом и заканчиваются (или		
	начинаются) (верный)		
	3) Входят в поверхность проводника под		
	прямым углом и проходят её насквозь		
	4) Входят в поверхность проводника под		
	разными углами, в зависимости от формы		
	проводника		

Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: Оценка "отлично" выставляется, если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "хорошо" выставляется, если большинство вопросов раскрыто, выбрано верное направление для решения задач

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется, если задание преимущественно выполнено

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется, если задание выполнено неверно или преимущественно не выполнено

КМ-3. Электростатика

Формы реализации: Письменная работа

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 25

Процедура проведения контрольного мероприятия: Контрольная работа на 90 минут.

Краткое содержание задания:

На оси кольца радиусом R, заряженного с линейной плотностью заряда $\tau > 0$, находится точечный заряд Q > 0. Определить силу, действующую на точечный заряд.

Контрольные вопросы/задания:

Запланированные	Вопросы/задания для проверки
результаты обучения по	
дисциплине	
Уметь: применять	1.На оси кольца радиусом R, заряженного с линейной
основные физические	плотностью заряда $\tau > 0$, находится точечный заряд $Q > 0$.
явления, законы	Определить силу, действующую на точечный заряд.
электростатики и их	2.Шар из диэлектрика радиусом R_1 с диэлектрической
математическое описание к	проницаемостью ε>1 заряжен по объему с плотностью ρ>0.
решению задач	Шар окружён концентричным ему проводящим
	сферическим шаровым слоем внутренним радиусом R_2 и
	внешним радиусом R_3 , имеющим заряд $Q>0$. Найти
	зависимости $D_r(r)$, $E_r(r)$ и $\varphi(r)$, если $\varphi(\infty)=0$.
	Построить графики.

Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: Оценка "отлично" выставляется, если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "хорошо" выставляется, если большинство вопросов раскрыто, выбрано верное направление для решения задач

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется, если задание преимущественно выполнено

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется, если задание выполнено неверно или преимущественно не выполнено

КМ-4. Электростатика (защита)

Формы реализации: Смешанная форма

Тип контрольного мероприятия: Лабораторная работа

Вес контрольного мероприятия в БРС: 15

Процедура проведения контрольного мероприятия: Выборочно: беседа со

студентом/проверка задания в письменной форме.

Краткое содержание задания:

Электрическое поле в диэлектриках, вектор смещения. Теорема Остроградского-Гаусса для диэлектрика (вывод).

Контрольные вопросы/задания:

Запланированные результаты обучения по	Вопросы/задания для проверки
дисциплине	
Знать: законы электростатики, которые	1. Электрическое поле в диэлектриках,
обусловливают явления или процессы в	вектор смещения. Теорема
устройствах различной физической природы,	Остроградского-Гаусса для диэлектрика
и выполнять применительно к ним простые	(вывод).
технические расчёты	2.Проводники в электростатическом
	поле. Напряженность поля внутри
	проводника. Разность потенциалов
	между произвольными точками
	проводника.

Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: Оценка "отлично" выставляется, если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "хорошо" выставляется, если большинство вопросов раскрыто, выбрано верное направление для решения задач

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется, если задание преимущественно выполнено

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется, если задание выполнено неверно или преимущественно не выполнено

КМ-5. Электромагнетизм

Формы реализации: Письменная работа

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 25

Процедура проведения контрольного мероприятия: Контрольная работа на 90 минут.

Краткое содержание задания:

Прямоугольная рамка, имеющая площадь S, число витков N и сопротивление R, вращается с угловой скоростью ω вокруг своей стороны, перпендикулярной линии индукции однородного магнитного поля B. Найти закон изменения ЭДС индукции со временем и максимальные значения ЭДС и силы тока.

Контрольные вопросы/задания:

Запланированные результаты	Вопросы/задания для проверки	
обучения по дисциплине		
Уметь: применять основные	1.Индукция магнитного поля в центре квадратной	
физические явления, законы	рамки со стороной 14 см равна $4 \cdot 10^{-5}$ Тл. Найти ток,	
электромагнетизма и их	текущий по рамке, и магнитный момент рамки с	
математическое описание к	током.	
решению задач	2.Прямоугольная рамка, имеющая площадь S, число	
	витков N и сопротивление R , вращается с угловой	
	скоростью ω вокруг своей стороны,	
	перпендикулярной линии индукции однородного	
	магнитного поля В. Найти закон изменения ЭДС	
	индукции со временем и максимальные значения ЭДС	
	и силы тока.	

Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: Оценка "отлично" выставляется, если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "хорошо" выставляется, если большинство вопросов раскрыто, выбрано верное направление для решения задач

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется, если задание преимущественно выполнено

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется, если задание выполнено неверно или преимущественно не выполнено

КМ-6. Электромагнетизм (защита)

Формы реализации: Смешанная форма

Тип контрольного мероприятия: Лабораторная работа

Вес контрольного мероприятия в БРС: 15

Процедура проведения контрольного мероприятия: Выборочно: беседа со студентом/проверка задания в письменной форме.

Краткое содержание задания:

Явление электромагнитной индукции. Вывод закона Фарадея-Максвелла из закона сохранения энергии.

Контрольные вопросы/задания:

Запланированные результаты обучения по	Вопросы/задания для проверки
дисциплине	
Знать: законы электромагнетизма, которые	1.Закон Био-Савара-Лапласа и его
обусловливают явления или процессы в	применение к расчету магнитной
устройствах различной физической природы, и	индукции в центре витков с током.
выполнять применительно к ним простые	2.Явление электромагнитной
технические расчёты	индукции. Вывод закона Фарадея-
	Максвелла из закона сохранения
	энергии.
	3.Свободные гармонические
	колебания: пружинный маятник,
	математический маятник, физический
	маятник, идеальный колебательный
	контур.

Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: Оценка "отлично" выставляется, если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "хорошо" выставляется, если большинство вопросов раскрыто, выбрано верное направление для решения задач

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется, если задание преимущественно выполнено

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется, если задание выполнено неверно или преимущественно не выполнено

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

1 семестр

Форма промежуточной аттестации: Экзамен

Пример билета

Механическое движение материальной точки. Система отсчета. Кинематические характеристики движения. Закон движения материальной точки. Примеры.

При изотермическом расширении 10 г азота, находящегося при температуре 17°C, была совершена работа 860 Дж. Во сколько раз изменилось давление азота при расширении?

Процедура проведения

Устная форма

- I. Перечень компетенций/индикаторов и контрольных вопросов проверки результатов освоения дисциплины
- **1. Компетенция/Индикатор:** ИД-4_{ОПК-1} Демонстрирует понимание физических явлений и применяет законы механики, термодинамики, электричества и магнетизма

Вопросы, задания

- 1. Механическое движение материальной точки. Система отсчета. Кинематические характеристики движения. Закон движения материальной точки. Примеры.
- 2. Механическая энергия системы тел. Закон изменения механической энергии системы тел. Консервативные и неконсервативные системы. Закон сохранения механической энергии.
- 3.Постулаты специальной теории относительности. Преобразования Лоренца, релятивистский закон сложения скоростей.
- 4.Идеальный газ. Равновесное состояние газа, температура и концентрация. Давление идеального газа. Уравнение состояния.
- 5. І начало термодинамики. Количество теплоты, сообщенное газу, внутренняя энергия и работа газа. Работа газа в изотермическом процессе.
- 6.Однородный шар начинает скатываться без скольжения по плоскости, наклоненной под углом 30° к горизонту. За сколько времени он пройдет путь l = 98 см? (Момент инерции шара относительно оси, проходящей через его центр $I = \frac{2}{5} mR^2$).
- 7.При изотермическом расширении 10 г азота, находящегося при температуре 17° С, была совершена работа 860 Дж. Во сколько раз изменилось давление азота при расширении? 8. Груз массой 500 кг падает с высоты H=2 м на сваю массы 100 кг. При этом свая уйдет в грунт на глубину S=10 см. Определите среднюю силу сопротивления грунта. Удар груза и сваи считать неупругим.
- 9.Пуля массой 10 г, летящая горизонтально со скоростью 200 м/с, ударяется в подвешенный на веревке ящик с песком и застревает в нем. Определите массу ящика, если он после удара поднялся на высоту 10 см. Чему равно натяжение веревки в положении максимального отклонения от вертикали?
- 10.Найти среднеквадратичную скорость, среднюю кинетическую энергию поступательного движения и полную среднюю кинетическую энергию молекулы гелия и молекулы азота при температуре 27°C. Какова будет полная энергия всех молекул 56 граммов каждого из этих газов?

Материалы для проверки остаточных знаний

1. При изотермическом процессе объем газа возрос в три раза. Что произошло с давлением и температурой?

Ответы:

1) давление уменьшилось в три раза, температура не изменилась 2) давление осталось прежним, температура возросла в три раза 3) давление увеличилось в три раза, температура не изменилась 4) давление не изменилось, температура уменьшилась в три раза

Верный ответ: 1

2. При изотермическом процессе объем газа возрос в три раза. Что произошло с давлением и температурой?

Ответы:

1) давление уменьшилось в три раза, температура не изменилась 2) давление осталось прежним, температура возросла в три раза 3) давление увеличилось в три раза, температура не изменилась 4) давление не изменилось, температура уменьшилась в три раза

Верный ответ: 1

3. Машина с коэффициентом полезного действия 30% поглощает за цикл количество тепла равное 400 Дж. Чему равна работа, совершаемая машиной за цикл?

Ответы:

1) 10 Дж 2) 30 Дж 3) 120 Дж 4) 280 Дж

Верный ответ: 3

4. Ниже приведены несколько вариантов формулировки второго начала термодинамики. Укажите **неправильное** утверждение, касающееся этого вопроса.

OTRETAL

1) Невозможен процесс, единственным результатом которого является передача теплоты от холодного тела к горячему 2) Невозможен процесс, в результате которого работа, совершенная газом, была бы равна разности теплот нагревателя и холодильника 3) Энтропия изолированной системы не может убывать при любых происходящих в ней процессах 4) Невозможен процесс, единственным результатом которого является совершение работы за счёт охлаждения одного тела, то есть невозможен вечный двигатель второго рода

Верный ответ: 2

5.Тело движется по траектории произвольной формы. Вектор скорости направлен в данной точке траектории:

Ответы:

1) перпендикулярно к траектории в сторону вогнутости 2) перпендикулярно к траектории в сторону выпуклости 3) по касательной к траектории 4) под любым углом к траектории, в зависимости от характера движения

Верный ответ: 3

6. Что такое сила?

Ответы:

1) это мера инертности тела 2) это произведение массы на ускорение 3) это мера взаимодействия данного тела с другими телами, с полями 4) это мера, характеризующая способность тела сохранять свою скорость движения

Верный ответ: 3

7. Что такое момент инерции твердого тела?

Ответы

1) Это инертность тела в данный момент времени 2) Это мера взаимодействия тела с другими телами 3) Это мера инертности тела во вращательном движении 4) Это мгновенный отклик тела на внешнее взаимодействие, то есть это момент начала поворота тела после взаимодействия

Верный ответ: 3

8. Тело находится в поле консервативной силы. Положению устойчивого равновесия тела отвечает

Ответы:

1) минимум потенциальной энергии 2) максимум потенциальной энергии 3) минимум кинетической энергии 4) максимум кинетической энергии

Верный ответ: 1

9.Пушка, стоящая на рельсах, стреляет под углом к горизонту. Применим ли закон сохранения импульса для системы снаряд-пушка?

Ответы:

1) да, применим, т.к. система замкнута 2) нет, не применим, но сохраняется проекция импульса системы тел, на горизонтальное направление 3) да, применим, если выстрел производится под углом $<30^{\circ}$ 4) нет, не применим, т.к. нет третьего тела, которому система могла бы отдать избыток импульса

Верный ответ: 2

- 10. Два цикла имеют равные КПД. Можно утверждать, что для этих циклов одинаковы Ответы:
- 1) изменения внутренней энергии за цикл 2) подведенное тепло 3) работа газа за цикл 4) температуры нагревателей

Верный ответ: 1

II. Описание шкалы оценивания

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: Выставляется студенту, правильно выполнившему практическое задание, который показал при ответе на вопросы экзаменационного билета и на дополнительные вопросы, что владеет материалом изученной дисциплины, свободно применяет свои знания для объяснения различных явлений и решения задач

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Выставляется студенту, правильно выполнившему практическое задание и в основном правильно ответившему на вопросы экзаменационного билета и на дополнительные вопросы, но допустившему при этом непринципиальные ошибки

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Выставляется студенту, который в ответах на вопросы экзаменационного билета допустил существенные и даже грубые ошибки, но затем исправил их сам, а также не выполнил практическое задание из экзаменационного билета, но либо наметил правильный путь его выполнения, либо по указанию экзаменатора решил другую задачу из того же раздела дисциплины

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Выставляется студенту, который: а) не ответил на вопросы экзаменационного билета и не смог решить, либо наметить правильный путь решения задачи из билета; б) не смог решить, либо наметить правильный путь решения задачи из экзаменационного билета и другой задачи на тот же раздел дисциплины, выданной взамен нее; в) при ответе на дополнительные вопросы обнаружил незнание большого раздела экзаменационной программы

III. Правила выставления итоговой оценки по курсу

Оценка определяется в соответствии с Положением о балльно-рейтинговой системе для студентов НИУ «МЭИ» на основании семестровой и аттестационной составляющих.

2 семестр

Форма промежуточной аттестации: Экзамен

Пример билета

Теорема Гаусса для диэлектрика в дифференциальной форме, объемная плотность связанных зарядов.

По длинному прямому проводу течет ток 8 А. Вычислить энергию магнитного поля, созданного током, локализованную в цилиндрическом слое, коаксиальном с проводом. Длина слоя 2 м, внутренний радиус 5 см, внешний -10 см.

Процедура проведения

Устная форма

I. Перечень компетенций/индикаторов и контрольных вопросов проверки результатов освоения дисциплины

1. Компетенция/Индикатор: ИД-4_{ОПК-1} Демонстрирует понимание физических явлений и применяет законы механики, термодинамики, электричества и магнетизма

Вопросы, задания

- 1. Теорема Гаусса для диэлектрика в дифференциальной форме, объемная плотность связанных зарядов.
- 2.Постоянное магнитное поле в вакууме. Вектор индукции магнитного поля, сила Лоренца. Принцип суперпозиции.
- 3. Явление электромагнитной индукции. Вихревое электрическое поле, порождаемое переменным магнитным полем, циркуляция вектора напряженности электрического поля по замкнутому контуру.
- 4. Энергия магнитного поля. Энергия индуктивного контура с током. Энергия магнитного поля длинного соленоида. Плотность энергии магнитного поля.
- 5.Потенциал на поверхности равномерно заряженного по объему диэлектрического шара ($\epsilon = 3$) равен 650 В. Определить потенциал в центре шара, считая потенциал в бесконечно удаленной точке равным нулю.
- 6.Сферический конденсатор, радиусы обкладок которого равны 6 см и 12 см (ϵ = 2) подключен к источнику 1000 В. Найти энергию электростатического поля в сферическом слое, ограниченном сферами, радиусы которых равны 4 см и 10 см.
- 7.Замкнутый контур в виде рамки площадью 50 см2 равномерно вращается в однородном магнитном поле с индукцией 0,2 Тл вокруг неподвижной оси, перпендикулярной вектору индукции и совпадающей со стороной рамки. Рамка делает 14 об/сек. Определить закон изменения ЭДС в контуре и её максимальное значение. 8.По тонкому кольцу радиуса 6 см идет ток в 2 А. Найти магнитную индукцию, создаваемую током в точке, находящейся на оси кольца на расстоянии 8 см от него. Чему равен магнитный момент P_m кольца с током?

- 9.По длинному прямому проводу течет ток 8 А. Вычислить энергию магнитного поля, созданного током, локализованную в цилиндрическом слое, коаксиальном с проводом. Длина слоя 2 м, внутренний радиус 5 см, внешний 10 см.
- 10.Потенциал электростатического поля, потенциал поля точечного заряда, принцип суперпозиции для потенциала, эквипотенциальные поверхности.

Материалы для проверки остаточных знаний

1.От чего зависит индуктивность коаксиального кабеля?

Ответы:

1) от диэлектрической проницаемости вещества, заполняющего пространство между жилой и оплеткой 2) кабель не обладает индуктивностью, т.к. это не соленоид 3) от удельного сопротивления проводника (жилы и оплетки) 4) от длины кабеля и от соотношения между радиусами жилы и оплетки

Верный ответ: 4

2. Как изменится ёмкость металлического уединенного шара, если его поместить в безграничный однородный изотропный диэлектрик?

Ответы

1) уменьшится 2) не изменится 3) увеличится

Верный ответ: 3

Положительный точечный заряд q находится в точке A. Работа сил электростатического поля при перемещении заряда q из точки A в точку B:

Ответы:

1) больше нуля 2) меньше нуля 3) равна нулю

Верный ответ: 1

4.Положительный точечный заряд q находится в центре сферической поверхности. Если за пределы сферы поместить такой же заряд, то поток вектора напряженности электростатического поля через сферическую поверхность:

Ответы:

- 1) не изменится 2) увеличится в 2 раза 3) уменьшится в 2 раза 4) станет равным нулю Верный ответ: 1
- 5.Связанными называют заряды:

Ответы:

1) нарушающие электрическую нейтральность диэлектрика 2) способные перемещаться под действием сил поля на любые расстояния 3) входящие в состав молекул диэлектрика 4) нет правильного утверждения

Верный ответ: 3

6. Как ведут себя силовые линии электростатического поля вблизи поверхности проводника?

Ответы:

1) Огибают поверхность проводника, не пересекая её 2) Входят в поверхность проводника под прямым углом и заканчиваются (или начинаются) 3) Входят в поверхность проводника под прямым углом и проходят её насквозь 4) Входят в поверхность проводника под разными углами, в зависимости от формы проводника

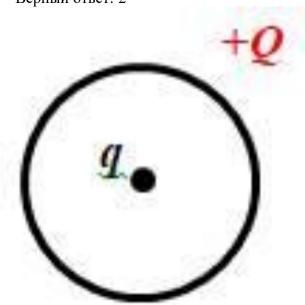
Верный ответ: 2

7.

Два параллельных прямых бесконечных проводника с током расположены перпендикулярно плоскости рисунка, направления токов в них показаны на рисунке. Укажите направление вектора магнитной индукции в точке A.

Ответы:

1) влево 2) вправо 3) вверх 4) вниз


Верный ответ: 4

8. Электрон и протон влетают в однородное магнитное поле перпендикулярно вектору магнитной индукции на некотором расстоянии друг от друга с одинаковыми скоростями. Отношение модулей сил, с которыми магнитное поле действует на частицы, в этот момент времени равно:

Ответы:

1) 0 2) 1 3) \approx 2000 4) \approx 1/2000

Верный ответ: 2

В центре тонкого кольца, равномерно заряженного зарядом +Q, в равновесии находится точечный заряд q. Определите величину и знак заряда q.

Ответы:

1) только q=+2Q 2) только q=-3Q 3) только q=0 4) любой Верный ответ: 4

10.Стержень вращается в однородном магнитном поле вокруг одного из своих концов в плоскости, перпендикулярной силовым линиям. Между концами стрежня возникает разность потенциалов. Она создается...

Ответы:

1) силой Лоренца, разделяющей заряды 2) вихревым электрическим полем, возникающим при вращении стержня 3) силой Ампера, действующей на стержень 4) сторонними силами, действующими на заряды, входящие в состав молекул вещества Верный ответ: 1

II. Описание шкалы оценивания

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: Выставляется студенту, правильно выполнившему практическое задание, который показал при ответе на вопросы экзаменационного билета и на дополнительные вопросы, что владеет материалом изученной

дисциплины, свободно применяет свои знания для объяснения различных явлений и решения залач

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Выставляется студенту, правильно выполнившему практическое задание и в основном правильно ответившему на вопросы экзаменационного билета и на дополнительные вопросы, но допустившему при этом непринципиальные ошибки

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Выставляется студенту, который в ответах на вопросы экзаменационного билета допустил существенные и даже грубые ошибки, но затем исправил их сам, а также не выполнил практическое задание из экзаменационного билета, но либо наметил правильный путь его выполнения, либо по указанию экзаменатора решил другую задачу из того же раздела дисциплины

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Выставляется студенту, который: а) не ответил на вопросы экзаменационного билета и не смог решить, либо наметить правильный путь решения задачи из билета; б) не смог решить, либо наметить правильный путь решения задачи из экзаменационного билета и другой задачи на тот же раздел дисциплины, выданной взамен нее; в) при ответе на дополнительные вопросы обнаружил незнание большого раздела экзаменационной программы

III. Правила выставления итоговой оценки по курсу

Оценка определяется в соответствии с Положением о балльно-рейтинговой системе для студентов НИУ «МЭИ» на основании семестровой и аттестационной составляющих.