# Министерство науки и высшего образования РФ Федеральное государственное бюджетное образовательное учреждение высшего образования «Национальный исследовательский университет «МЭИ»

Направление подготовки/специальность: 27.03.04 Управление в технических системах

Наименование образовательной программы: Интеллектуальные технологии управления в технических

системах, обработка и анализ данных

Уровень образования: высшее образование - бакалавриат

Форма обучения: Очная

Оценочные материалы по дисциплине Электроника

> Москва 2024

# ОЦЕНОЧНЫЕ МАТЕРИАЛЫ РАЗРАБОТАЛ:

### СОГЛАСОВАНО:

Руководитель образовательной программы

| O HOUSE HOUSE                            | Подписано электронной подписью ФГБОУ ВО «НИУ «МЭИ» |                               |  |  |  |  |  |
|------------------------------------------|----------------------------------------------------|-------------------------------|--|--|--|--|--|
| 2 10 10 10 10 10 10 10 10 10 10 10 10 10 | Сведения о владельце ЦЭП МЭИ                       |                               |  |  |  |  |  |
|                                          | Владелец                                           | Сидорова Е.Ю.                 |  |  |  |  |  |
| » <u>МэИ</u> «                           | Идентификатор                                      | R0dee6ce9-SidorovaYY-923dc6a8 |  |  |  |  |  |

Е.Ю. Сидорова

М.П. Жохова

Заведующий выпускающей кафедрой

| - 45 NOBAYEN   | Полписано электрони          | ой подписью ФГБОУ ВО «НИУ «МЭИ» |  |  |  |  |
|----------------|------------------------------|---------------------------------|--|--|--|--|
| 1030           | Сведения о владельце ЦЭП МЭИ |                                 |  |  |  |  |
|                | Владелец                     | Бобряков А.В.                   |  |  |  |  |
| » <u>М≎И</u> « | Идентификатор                | R2c90f415-BobriakovAV-70dec1fa  |  |  |  |  |

А.В. Бобряков

#### ОБЩАЯ ЧАСТЬ

Оценочные материалы по дисциплине предназначены для оценки достижения обучающимися запланированных результатов обучения по дисциплине, этапа формирования запланированных компетенций и уровня освоения дисциплины.

Оценочные материалы по дисциплине включают оценочные средства для проведения мероприятий текущего контроля успеваемости и промежуточной аттестации.

Формируемые у обучающегося компетенции:

- 1. ОПК-7 Способен производить необходимые расчеты отдельных блоков и устройств систем контроля, автоматизации и управления, выбирать стандартные средства автоматики, измерительной и вычислительной техники при проектировании систем автоматизации и управления
  - ИД-1 Демонстрирует знание элементной базы, принципов действия и особенностей функционирования типовых электронных устройств и ЭВМ

#### и включает:

#### для текущего контроля успеваемости:

Форма реализации: Компьютерное задание

- 1. Защита лабораторной работы № 1 «Прохождение сигналов через линейные цепи, линейные усилители» (Тестирование)
- 2. Защита лабораторной работы № 2 «Линейный RC-усилитель» (Тестирование)
- 3. Защита лабораторной работы № 3 «Диод. ВАХ диода. Применение диода» (Тестирование)
- 4. Защита лабораторной работы № 5 «Полевой транзистор и усилительный каскад ОИ» (Тестирование)
- 5. Защита лабораторной работы № 6 «Ключевые элементы на транзисторах» (Тестирование)
- 6. Защита лабораторной работы № 7 «Схемы транзисторно-транзисторной логики» (Тестирование)
- 7. Защита лабораторной работы №4 «Биполярный транзистор и каскад ОЭ» (Тестирование)
- 8. Контрольная работа №1 «Линейные схемы» (Контрольная работа)
- 9. Контрольная работа №2 «Полупроводниковые приборы: диод, транзистор» (Контрольная работа)
- 10. Контрольная работа №3 «Операционные усилители» (Контрольная работа)
- 11. Контрольная работа №4 «Ключевые элементы на транзисторах и цифровые логические схемы» (Контрольная работа)

#### БРС дисциплины

# 4 семестр

# Перечень контрольных мероприятий <u>текущего контроля</u> успеваемости по дисциплине:

- КМ-1 Защита лабораторной работы № 1 «Прохождение сигналов через линейные цепи, линейные усилители» (Тестирование)
- КМ-2 Защита лабораторной работы № 2 «Линейный RC-усилитель» (Тестирование)

- КМ-3 Контрольная работа №1 «Линейные схемы» (Контрольная работа)
- КМ-4 Защита лабораторной работы № 3 «Диод. ВАХ диода. Применение диода» (Тестирование)
- КМ-5 Защита лабораторной работы №4 «Биполярный транзистор и каскад ОЭ» (Тестирование)
- КМ-6 Контрольная работа №2 «Полупроводниковые приборы: диод, транзистор» (Контрольная работа)
- КМ-7 Защита лабораторной работы № 5 «Полевой транзистор и усилительный каскад ОИ» (Тестирование)
- КМ-8 Защита лабораторной работы № 6 «Ключевые элементы на транзисторах» (Тестирование)
- КМ-9 Контрольная работа №3 «Операционные усилители» (Контрольная работа)
- КМ- Защита лабораторной работы № 7 «Схемы транзисторно-транзисторной логики»
- 10 (Тестирование)
- КМ- Контрольная работа №4 «Ключевые элементы на транзисторах и цифровые логические
- 11 схемы» (Контрольная работа)

### Вид промежуточной аттестации – Экзамен.

|              | Веса контрольных мероприятий, % |    |    |    |    |    |    |    |    |    |     |     |
|--------------|---------------------------------|----|----|----|----|----|----|----|----|----|-----|-----|
| Раздел       | Индек                           | КМ | КМ | КМ | КM | КМ | КM | КМ | КМ | КМ | КМ  | КМ  |
| дисциплин    | с КМ:                           | -1 | -2 | -3 | -4 | -5 | -6 | -7 | -8 | -9 | -10 | -11 |
| Ы            | Срок                            | 5  | 5  | 5  | 9  | 9  | 9  | 13 | 13 | 13 | 15  | 15  |
|              | KM:                             |    |    |    |    |    |    |    |    |    |     |     |
| Физические о | основы                          |    |    |    |    |    |    |    |    |    |     |     |
| полупроводн  | иковой                          |    |    |    |    |    |    |    |    |    |     |     |
| микроэлектр  | оники                           |    |    |    |    |    |    |    |    |    |     |     |
| Физические ( | основы                          |    |    |    |    |    |    |    |    |    |     |     |
| полупроводн  | иковой                          | +  | +  | +  |    |    |    |    |    |    |     |     |
| микроэлектр  | оники                           |    |    |    |    |    |    |    |    |    |     |     |
| Элементы     |                                 |    |    |    |    |    |    |    |    |    |     |     |
| полупроводн  | иковой                          |    |    |    |    |    |    |    |    |    |     |     |
| электроники  |                                 |    |    |    |    |    |    |    |    |    |     |     |
| Элементы     |                                 |    |    |    |    |    |    |    |    |    |     |     |
| полупроводн  |                                 |    |    | +  | +  | +  |    |    |    |    |     |     |
| электроники  |                                 |    |    |    |    |    |    |    |    |    |     |     |
| Аналоговые   |                                 |    |    |    |    |    |    |    |    |    |     |     |
| электронные  |                                 |    |    |    |    |    |    |    |    |    |     |     |
| устройства   |                                 |    |    |    |    |    |    |    |    |    |     |     |
| Аналоговые   |                                 |    |    |    |    |    |    |    |    |    |     |     |
| электронные  |                                 |    |    |    | +  | +  | +  | +  | +  | +  |     |     |
| устройства   |                                 |    |    |    |    |    |    |    |    |    |     |     |
| Интегральны  |                                 |    |    |    |    |    |    |    |    |    |     |     |
| операционны  | ie                              |    |    |    |    |    |    |    |    |    |     |     |
| усилители    |                                 |    |    |    |    |    |    |    |    |    |     |     |
| Интегральны  |                                 |    |    |    |    |    |    |    |    |    |     |     |
| операционнь  | ie                              |    |    |    |    |    | +  | +  | +  | +  |     |     |
| усилители    |                                 |    |    |    |    |    |    |    |    |    |     |     |
| Цифровая     |                                 |    |    |    |    |    |    |    |    |    |     |     |
| электроника  |                                 |    |    |    |    |    |    |    |    |    |     |     |
| Цифровая     |                                 |    |    |    |    |    |    |    | +  | +  | +   | +   |
| электроника  |                                 |    |    |    |    |    |    |    |    |    |     |     |
| Цифровые     | 0.0000                          |    |    |    |    |    |    |    |    |    |     |     |
| интегральны  | е схемы                         |    |    |    |    |    |    |    |    |    |     |     |
| Цифровые     | 0 0W0V47                        |    |    |    |    |    |    |    |    |    |     | +   |
| интегральны  | е схемы                         |    |    |    |    |    |    |    |    |    |     |     |

| Bec KM: | 5 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 5 |
|---------|---|----|----|----|----|----|----|----|----|----|---|

# БРС курсовой работы/проекта

### 4 семестр

# Перечень контрольных мероприятий <u>текущего контроля</u> успеваемости по курсовой работе:

- КМ-1 Оценка выполнения раздела КМ
- КМ-2 Соблюдение графика выполнения КР и оценка выполнения раздела КМ
- КМ-3 Оценка выполнения разделов КМ
- КМ-4 Соблюдение графика выполнения КР и оценка выполнения раздела КМ

### Вид промежуточной аттестации – защита КР.

|                                          | Веса контрольных мероприятий, % |      |      |      |      |  |
|------------------------------------------|---------------------------------|------|------|------|------|--|
| Возной именициим                         | Индекс                          | KM-1 | KM-2 | KM-3 | KM-4 |  |
| Раздел дисциплины                        | KM:                             |      |      |      |      |  |
|                                          | Срок КМ:                        | 8    | 9    | 12   | 15   |  |
| Анализ задания, выбор элементной базы    | +                               |      |      |      |      |  |
| Расчет по постоянному току               |                                 | +    |      |      |      |  |
| Расчет по переменному току, исследование |                                 |      |      | 1    |      |  |
| характеристик цепи                       |                                 |      | +    |      |      |  |
| Оформление пояснительной записки         |                                 |      |      |      | +    |  |
|                                          | Bec KM:                         | 25   | 25   | 25   | 25   |  |

# СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ТЕКУЩЕГО КОНТРОЛЯ

# I. Оценочные средства для оценки запланированных результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций

| Индекс      | Индикатор               | Запланированные          | Контрольная точка                                               |
|-------------|-------------------------|--------------------------|-----------------------------------------------------------------|
| компетенции | _                       | результаты обучения по   |                                                                 |
|             |                         | дисциплине               |                                                                 |
| ОПК-7       | ИД-10ПК-7 Демонстрирует | Знать:                   | КМ-1 Защита лабораторной работы № 1 «Прохождение сигналов через |
|             | знание элементной базы, | Ограничения и предельные | линейные цепи, линейные усилители» (Тестирование)               |
|             | принципов действия и    | режимы работы            | КМ-2 Защита лабораторной работы № 2 «Линейный RC-усилитель»     |
|             | особенностей            | полупроводниковых        | (Тестирование)                                                  |
|             | функционирования        | приборов                 | КМ-3 Контрольная работа №1 «Линейные схемы» (Контрольная        |
|             | типовых электронных     | Виды интегральных схем,  | работа)                                                         |
|             | устройств и ЭВМ         | их основные              | КМ-4 Защита лабораторной работы № 3 «Диод. ВАХ диода.           |
|             |                         | характеристики           | Применение диода» (Тестирование)                                |
|             |                         | Принципы расчета и       | КМ-5 Защита лабораторной работы №4 «Биполярный транзистор и     |
|             |                         | экспериментального       | каскад ОЭ» (Тестирование)                                       |
|             |                         | исследования электронных | КМ-6 Контрольная работа №2 «Полупроводниковые приборы: диод,    |
|             |                         | цепей при различных      | транзистор» (Контрольная работа)                                |
|             |                         | режимах работы           | КМ-7 Защита лабораторной работы № 5 «Полевой транзистор и       |
|             |                         | электронных приборов     | усилительный каскад ОИ» (Тестирование)                          |
|             |                         | Основные электронные     | КМ-8 Защита лабораторной работы № 6 «Ключевые элементы на       |
|             |                         | полупроводниковые        | транзисторах» (Тестирование)                                    |
|             |                         | приборы (диоды,          | КМ-9 Контрольная работа №3 «Операционные усилители»             |
|             |                         | биполярные и полевые     | (Контрольная работа)                                            |
|             |                         | транзисторы), режимы их  | КМ-10 Защита лабораторной работы № 7 «Схемы транзисторно-       |
|             |                         | работы                   | транзисторной логики» (Тестирование)                            |
|             |                         | Основы физики твердого   | КМ-11 Контрольная работа №4 «Ключевые элементы на транзисторах  |
|             |                         | тела и физики            | и цифровые логические схемы» (Контрольная работа)               |
|             |                         | полупроводников          |                                                                 |
|             |                         | Уметь:                   |                                                                 |
|             |                         | Осуществлять             |                                                                 |

| моделирование и         |
|-------------------------|
|                         |
| экспериментальное       |
| исследование аналоговых |
| и цифровых электронных  |
| цепей                   |
| Применять расчетные     |
| методы для анализа      |
| цифровых электронных    |
| цепей                   |
| Применять расчетные     |
| методы для анализа      |
| аналоговых электронных  |
| цепей                   |
| Проектировать типовые   |
| электронные цепи и      |
| осуществлять расчет     |
| режимов их работы       |

#### II. Содержание оценочных средств. Шкала и критерии оценивания

# КМ-1. Защита лабораторной работы № 1 «Прохождение сигналов через линейные цепи, линейные усилители»

**Формы реализации**: Компьютерное задание **Тип контрольного мероприятия**: Тестирование **Вес контрольного мероприятия в БРС**: 5

**Процедура проведения контрольного мероприятия:** Проводится в виде тестовых вопросов и индивидуальных заданий в автоматизированной системе контроля знаний Айрен МЭИ. Время, устанавливаемое на выполнение задания не более 30 минут. Предусмотрена автоматическая обработка результатов.

#### Краткое содержание задания:

Задание содержит тестовые вопросы и решение индивидуальных заданий, ориентированных на проверку знаний по теме лабораторной работы.

Пример тестового вопроса: "Какова длительность входного импульсного сигнала должна быть при снятии переходной характеристики в данной лабораторной работе при исследовании схемы с дифференцирующим конденсатором? Ответ в миллисекундах." Пример тестового задания: Выбрать осциллограмму, соответствующую схеме. В ответе указать номер осциллограммы.

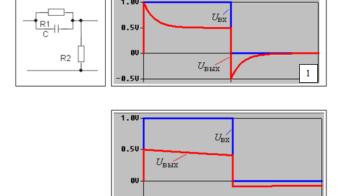



Figure 1 Рисунок к заданию

### Контрольные вопросы/задания:

| Запланированные результаты    | Вопросы/задания для проверки                 |
|-------------------------------|----------------------------------------------|
| обучения по дисциплине        |                                              |
| Знать: Основы физики твердого | 1. Какой формы сигнал надо подавать на вход  |
| тела и физики                 | четырехполюсника при снятии переходной       |
| полупроводников               | характеристики в данной лабораторной работе? |
|                               | • 1.синусоидальный                           |
|                               | • 2.прямоугольный                            |
|                               | • 3.треугольный                              |
|                               | <ul> <li>4.любой</li> </ul>                  |
|                               | • Ответ: 2                                   |
|                               |                                              |

#### Описание шкалы оценивания:

#### Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Тест считается выполненным на оценку «Отлично», если даны правильные ответы не менее чем на 80% вопросов теста

#### Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Тест считается выполненным на оценку «Хорошо», если даны правильные ответы не менее чем на 60% вопросов теста

### Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 40

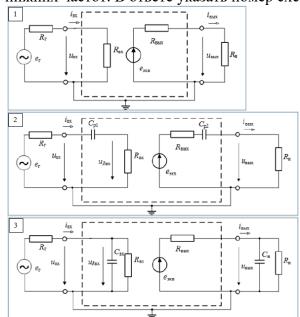
Описание характеристики выполнения знания: Тест считается выполненным на оценку «Удовлетворительно», если даны правильные ответы не менее чем на 40% вопросов теста

#### Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Тест считается выполненным на оценку «Неудовлетворительно» если студентом не выполнены условия, предполагающие оценку «Удовлетворительно»

#### КМ-2. Защита лабораторной работы № 2 «Линейный RC-усилитель»

Формы реализации: Компьютерное задание Тип контрольного мероприятия: Тестирование


Вес контрольного мероприятия в БРС: 10

**Процедура проведения контрольного мероприятия:** Проводится в виде тестовых вопросов и индивидуальных заданий в автоматизированной системе контроля знаний Айрен МЭИ. Время, устанавливаемое на выполнение задания не более 30 минут. Предусмотрена автоматическая обработка результатов.

#### Краткое содержание задания:

Задание содержит тестовые вопросы и решение индивидуальных заданий, ориентированных на проверку знаний по теме лабораторной работы.

Пример тестового вопроса: Выберите схему замещения линейного усилителя в области нижних частот. В ответе указать номер схемы.



Пример тестового задания: Определите по осциллограммам коэффициент усиления каскада Ku (входной сигнал — вверху, канал 1; выходной сигнал — внизу, канал 2).

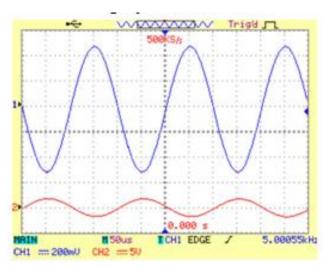



Figure 2 Рисунок к заданию

Контрольные вопросы/задания:

| топтрольные вопросы, задания.      |                                                  |
|------------------------------------|--------------------------------------------------|
| Запланированные результать         | Вопросы/задания для проверки                     |
| обучения по дисциплине             |                                                  |
| Знать: Основы физики твердого теля | а 1.Нижняя граничная частота линейного усилителя |
| и физики полупроводников           | определяется значениями емкостей                 |
|                                    | конденсаторов:                                   |
|                                    | 1.Ср1 и Ср2                                      |
|                                    | 2.Свх и Сн                                       |
|                                    | 3.Ср1 и Сн                                       |
|                                    | 4.Ср2 и Свх                                      |
|                                    | Ответ: 1                                         |

#### Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Тест считается выполненным на оценку «Отлично», если даны правильные ответы не менее чем на 80% вопросов теста

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Тест считается выполненным на оценку «Хорошо», если даны правильные ответы не менее чем на 60% вопросов теста

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 40

Описание характеристики выполнения знания: Тест считается выполненным на оценку «Удовлетворительно», если даны правильные ответы не менее чем на 40% вопросов теста

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Тест считается выполненным на оценку «Неудовлетворительно» если студентом не выполнены условия, предполагающие оценку «Удовлетворительно»

### КМ-3. Контрольная работа №1 «Линейные схемы»

Формы реализации: Компьютерное задание

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 10

**Процедура проведения контрольного мероприятия:** Проводится в виде решения индивидуальных задач в автоматизированной системе контроля знаний Айрен МЭИ. Время, устанавливаемое на выполнение задания не более 60 минут. Предусмотрена автоматическая обработка результатов.

#### Краткое содержание задания:

Контрольная точка направлена на оценку освоения компетенции по темам "Физические основы полупроводниковой микроэлектроники" и "Элементы полупроводниковой электроники".

Контрольные вопросы/задания:

| Контрольные вопрось  | изадания:                                                 |
|----------------------|-----------------------------------------------------------|
| Запланированные      | Вопросы/задания для проверки                              |
| результаты обучения  |                                                           |
| по дисциплине        |                                                           |
| Уметь: Применять     | 1.Для RC фильтра качественно построить амплитудно         |
| расчетные методы для | частотную характеристику. Построения подтверждать         |
| анализа аналоговых   | эквивалентными схемами и расчетами. Для этой же цепи      |
| электронных цепей    | качественно построить диаграмму выходного напряжения при  |
|                      | воздействии на входе импульса конечной длительности.      |
|                      | Считать, что длительность входного сигнала tu существенно |
|                      | больше времени переходного процесса.                      |
|                      | Figure 3 Расчетная схема                                  |

#### Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 85

Описание характеристики выполнения знания: Контрольная работа считается выполненной на оценку «Отлично», если задание выполнено на 85%.

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Контрольная работа считается выполненной на оценку «Хорошо», если задание выполнено на 70%.

Оиенка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Контрольная работа считается выполненной на оценку «Удовлетворительно», если задание выполнено на 50%.

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Контрольная работа считается выполненной на оценку «Неудовлетворительно», если задание выполнено на менее 50%.

### КМ-4. Защита лабораторной работы № 3 «Диод. ВАХ диода. Применение диода»

Формы реализации: Компьютерное задание Тип контрольного мероприятия: Тестирование Вес контрольного мероприятия в БРС: 10

**Процедура проведения контрольного мероприятия:** Проводится в виде тестовых вопросов и индивидуальных заданий в автоматизированной системе контроля знаний Айрен МЭИ. Время, устанавливаемое на выполнение задания не более 30 минут. Предусмотрена автоматическая обработка результатов.

# Краткое содержание задания:

Задание содержит тестовые вопросы и решение индивидуальных заданий, ориентированных на проверку знаний по теме лабораторной работы.

Пример тестового вопроса: Отметьте типы пробоя р-п перехода:

1.лавинный

2.тепловой

3. световой

4.туннельный

5.прямой

Ответ: 1,2,4

Пример тестового задания: Для схемы с заданными параметрами определить ток и напряжение диода (Iд и Uд), вольтамперная характеристика которого приведена ниже.




Figure 4 BAX диода

| контрольные вопросы/задания  | •                                            |
|------------------------------|----------------------------------------------|
| Запланированные результаты   | Вопросы/задания для проверки                 |
| обучения по дисциплине       |                                              |
| Знать: Ограничения и         | 1.Что такое прямое напряжение диода и как    |
| предельные режимы работы     | изменяется величина потенциального барьера в |
| полупроводниковых приборов   | результате его воздействия?                  |
| Знать: Основные электронные  | 1.Определите тип диода по характеристике     |
| полупроводниковые приборы    |                                              |
| (диоды, биполярные и полевые |                                              |
| транзисторы), режимы их      |                                              |
| работы                       |                                              |

| Запланированные результаты | Вопросы/задания для проверки                   |
|----------------------------|------------------------------------------------|
| обучения по дисциплине     |                                                |
|                            | I, мА 1 2 3 3 80 70 60 50 40 90,1 0,4 0,7 U, В |

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Тест считается выполненным на оценку «Отлично», если даны правильные ответы не менее чем на 80% вопросов теста

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Тест считается выполненным на оценку «Хорошо», если даны правильные ответы не менее чем на 60% вопросов теста

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 40

Описание характеристики выполнения знания: Тест считается выполненным на оценку «Удовлетворительно», если даны правильные ответы не менее чем на 40% вопросов теста

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Тест считается выполненным на оценку «Неудовлетворительно» если студентом не выполнены условия, предполагающие оценку «Удовлетворительно»

#### КМ-5. Защита лабораторной работы №4 «Биполярный транзистор и каскад ОЭ»

Формы реализации: Компьютерное задание

Тип контрольного мероприятия: Тестирование

Вес контрольного мероприятия в БРС: 10

**Процедура проведения контрольного мероприятия:** Проводится в виде тестовых вопросов и индивидуальных заданий в автоматизированной системе контроля знаний Айрен МЭИ. Время, устанавливаемое на выполнение задания не более 30 минут. Предусмотрена автоматическая обработка результатов.

#### Краткое содержание задания:

Задание содержит тестовые вопросы и решение индивидуальных заданий, ориентированных на проверку знаний по теме лабораторной работы.

Пример тестового вопроса: Укажите тип биполярного транзистора

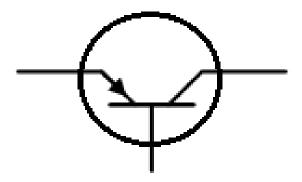



Figure 6 Биполярный транзистор

Пример тестового задания: Определить коэффициент усиления транзистора h21э, выходное сопротивление 1/h22э и входное сопротивление h11э по его выходной и входной характеристикам в рабочей точке (Uкэ=12 В, Iкэ=40 мА).

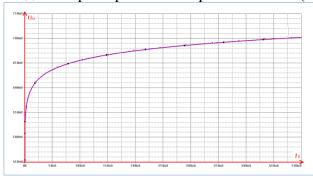



Figure 7 Входная характеристика

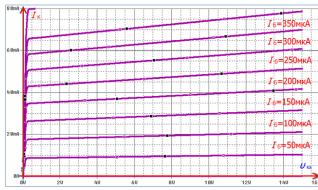



Figure 8 Выходные характеристики

| контрольные вопросы/задания.           |                                  |
|----------------------------------------|----------------------------------|
| Запланированные результаты обучения по | Вопросы/задания для проверки     |
| дисциплине                             |                                  |
| Знать: Ограничения и предельные режимы | 1.По входной характеристике      |
| работы полупроводниковых приборов      | транзистора определяют           |
|                                        | 1.коэффициент усиления базового  |
|                                        | тока                             |
|                                        | 2. дифференциальное входное      |
|                                        | сопротивление                    |
|                                        | 3. дифференциальное выходное     |
|                                        | сопротивление                    |
|                                        | 4.все характеристики транзистора |
|                                        | Ответ: 2                         |

| Запланированные | результаты    | обучения    | ПО   | Вопросы/задания для проверки       |
|-----------------|---------------|-------------|------|------------------------------------|
| дисциплине      |               |             |      |                                    |
| Знать: О        | сновные       | электрон    | ные  | 1.Коэффициент усиления базового    |
| полупроводников | ые прибој     | ры (ди      | оды, | тока и дифференциальная выходная   |
| биполярные и по | левые транзис | сторы), реж | имы  | проводимость                       |
| их работы       |               |             |      | 1. определяются по входной         |
|                 |               |             |      | характеристике                     |
|                 |               |             |      | 2. определяются по выходным        |
|                 |               |             |      | характеристикам                    |
|                 |               |             |      | 3.являются справочными параметрами |
|                 |               |             |      | транзистора                        |
|                 |               |             |      | Ответ: 2                           |

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Тест считается выполненным на оценку «Отлично», если даны правильные ответы не менее чем на 80% вопросов теста

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Тест считается выполненным на оценку «Хорошо», если даны правильные ответы не менее чем на 60% вопросов теста

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 40

Описание характеристики выполнения знания: Тест считается выполненным на оценку «Удовлетворительно», если даны правильные ответы не менее чем на 40% вопросов теста

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Тест считается выполненным на оценку «Неудовлетворительно» если студентом не выполнены условия, предполагающие оценку «Удовлетворительно»

# КМ-6. Контрольная работа №2 «Полупроводниковые приборы: диод, транзистор»

Формы реализации: Компьютерное задание

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 10

**Процедура проведения контрольного мероприятия:** Проводится в виде решения индивидуальных задач в автоматизированной системе контроля знаний Айрен МЭИ. Время, устанавливаемое на выполнение задания не более 60 минут. Предусмотрена автоматическая обработка результатов.

#### Краткое содержание задания:

Контрольная точка направлена на оценку освоения компетенции по темам "Элементы полупроводниковой электроники" и "Аналоговые электронные устройства" и "Интегральные операционные усилители".

| Запланированные     | Вопросы/задания для проверки |
|---------------------|------------------------------|
| результаты обучения |                              |
| по дисциплине       |                              |

| Запланированные результаты обучения | Вопросы/задания для проверки                                                                                                                                                      |
|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| по дисциплине                       |                                                                                                                                                                                   |
| Уметь: Применять                    | 1.Для схемы усилительного каскада ОЭ с параметрами: <i>Е</i> пит=10 В, <i>R</i> 1=8,4 кОм, <i>R</i> 2=1,6 кОм, <i>R</i> к=100 Ом, <i>R</i> э=25 Ом (задача 2)                     |
| расчетные методы для анализа        | рассчитать емкость Сэ, чтобы исключить отрицательную                                                                                                                              |
| цифровых                            | обратную связь по переменному току. Измерена нижняя                                                                                                                               |
| электронных цепей                   | граничная частота $f_H = 200$ Гц. Считая известными $h11$ = 250 Ом и $h21$ = 200 определить параметры ненагруженного усилителя при отсутствии обратной связи по переменному току. |

#### Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 85

Описание характеристики выполнения знания: Контрольная работа считается выполненной на оценку «Отлично», если задание выполнено на 85%.

#### Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Контрольная работа считается выполненной на оценку «Хорошо», если задание выполнено на 70%.

#### Оиенка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Контрольная работа считается выполненной на оценку «Удовлетворительно», если задание выполнено на 50%.

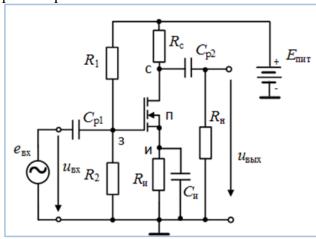
#### Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Контрольная работа считается выполненной на оценку «Неудовлетворительно», если задание выполнено на менее 50%.

# КМ-7. Защита лабораторной работы № 5 «Полевой транзистор и усилительный каскад ОИ»

Формы реализации: Компьютерное задание Тип контрольного мероприятия: Тестирование Вес контрольного мероприятия в БРС: 10

**Процедура проведения контрольного мероприятия:** Проводится в виде тестовых вопросов и индивидуальных заданий в автоматизированной системе контроля знаний Айрен МЭИ. Время, устанавливаемое на выполнение задания не более 30 минут. Предусмотрена автоматическая обработка результатов.


#### Краткое содержание задания:

Задание содержит тестовые вопросы и решение индивидуальных заданий, ориентированных на проверку знаний по теме лабораторной работы.

Пример тестового вопроса:

Какие схемы замещения полевого транзистора используется при анализе в режиме малого сигнала?

Пример тестового задания: Как изменится напряжение на транзисторе Ucи при обрыве резистора R2?



| Запланированные результаты        | Вопросы/задания для проверки            |
|-----------------------------------|-----------------------------------------|
| обучения по дисциплине            |                                         |
| Знать: Виды интегральных схем, их | 1.На рисунке приведена стоко-затворная  |
| основные характеристики           | характеристика полевого транзистора.    |
|                                   | Каким параметром характеризуется данная |
|                                   | характеристика?                         |
|                                   | 25mA                                    |
|                                   | -8.0V -4.0V 0V 4.0V 8.0V                |
|                                   | 1.Напряжение отсечки.                   |
|                                   | 2.Пороговое напряжение.                 |
|                                   | 3.Прямым напряжением                    |
|                                   | Ответ:1                                 |
| Знать: Основные электронные       |                                         |
| полупроводниковые приборы         |                                         |
| (диоды, биполярные и полевые      |                                         |
| транзисторы), режимы их работы    |                                         |

| Запланированные результаты | Вопросы/задания для проверки                                                                                                                                                                                                                                                                                                                                                                              |
|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| обучения по дисциплине     |                                                                                                                                                                                                                                                                                                                                                                                                           |
|                            | <ul> <li>1.МДП-транзистор со встроенным каналом р-типа.</li> <li>2.МДП-транзистор со встроенным каналом п-типа.</li> <li>3.МДП-транзистор с индуцированным каналом р-типа.</li> <li>4.МДП-транзистор с индуцированным каналом п-типа.</li> <li>5.Транзистор с управляющим р-п-переходом и каналом р-типа.</li> <li>6.Транзистор с управляющим р-п-переходом и каналом п-типа.</li> <li>Ответ:3</li> </ul> |

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Тест считается выполненным на оценку «Отлично», если даны правильные ответы не менее чем на 80% вопросов теста

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Тест считается выполненным на оценку «Хорошо», если даны правильные ответы не менее чем на 60% вопросов теста

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 40

Описание характеристики выполнения знания: Тест считается выполненным на оценку «Удовлетворительно», если даны правильные ответы не менее чем на 40% вопросов теста

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Тест считается выполненным на оценку «Неудовлетворительно» если студентом не выполнены условия, предполагающие оценку «Удовлетворительно»

#### КМ-8. Защита лабораторной работы № 6 «Ключевые элементы на транзисторах»

**Формы реализации**: Компьютерное задание **Тип контрольного мероприятия**: Тестирование **Вес контрольного мероприятия в БРС**: 10

**Процедура проведения контрольного мероприятия:** Проводится в виде тестовых вопросов и индивидуальных заданий в автоматизированной системе контроля знаний Айрен МЭИ. Время, устанавливаемое на выполнение задания не более 30 минут. Предусмотрена автоматическая обработка результатов.

#### Краткое содержание задания:

Задание содержит тестовые вопросы и решение индивидуальных заданий, ориентированных на проверку знаний по теме лабораторной работы. Пример тестового вопроса: Как расшифровать аббревиатуру 'КМОП'? Пример тестового задания: На передаточной характеристике МОП-инвертора с резистивной нагрузкой отметьте режимы работы полевого транзистора (соответствующие области на выходии у узрактеристиках транзистора)



| контрольные вопросы/задания.   |                                                                                                                                                                                                           |
|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Запланированные результаты     | Вопросы/задания для проверки                                                                                                                                                                              |
| обучения по дисциплине         |                                                                                                                                                                                                           |
| Знать: Виды интегральных схем, | 1. Как схемотехнически в схеме лабораторного                                                                                                                                                              |
| их основные характеристики     | макета обеспечивается режим ВЫКЛЮЧЕНО?                                                                                                                                                                    |
|                                | $U_{ex}$ $R_{I}$ $V_{T}$ $R_{2}$ $V_{T}$ $R_{2}$ $V_{T}$ $R_{2}$ $V_{CM}$ $R_{2}$ $R_{3}$ $R_{4}$ $R_{2}$ $R_{3}$ $R_{4}$ $R_{2}$ $R_{3}$ $R_{4}$ $R_{5}$ $R_{6}$ $R_{7}$ $R_{8}$ $R_{8}$ $R_{8}$ $R_{8}$ |

| Запланированные результаты обучения по дисциплине                                                                             | Вопросы/задания для проверки                                                                                                                                                                                |
|-------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                               | 3.3а счет величины увеличения сопротивления резистора R1 4.3а счет величины напряжения Uвх Ответ:1                                                                                                          |
| Знать: Основные электронные полупроводниковые приборы (диоды, биполярные и полевые транзисторы), режимы их работы             | $U_{ex}$ $R_1$ $V_T$ $R_2$ $V_T$ $R_2$ $V_T$                                                                                                                                                                |
|                                                                                                                               | 1.С помощью цепи R2-Есм 2.За счет уменьшения сопротивления резистора Rк 3.За счет величины увеличения сопротивления резистора R1 4.За счет величины напряжения Uвх Ответ:4                                  |
| Знать: Принципы расчета и экспериментального исследования электронных цепей при различных режимах работы электронных приборов | 1.В каком режиме должен работать транзистор VT, если транзистор как ключ ВКЛЮЧЕН ?                                                                                                                          |
|                                                                                                                               | <ul> <li>1.В режиме отсечки</li> <li>2. В режиме насыщения</li> <li>3. В активном инверсном режиме</li> <li>4. В активном режиме</li> <li>5. Зависит от соотношения параметров элементов Ответ:2</li> </ul> |

#### Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Тест считается выполненным на оценку «Отлично», если даны правильные ответы не менее чем на 80% вопросов теста

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Тест считается выполненным на оценку «Хорошо», если даны правильные ответы не менее чем на 60% вопросов теста

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 40

Описание характеристики выполнения знания: Тест считается выполненным на оценку «Удовлетворительно», если даны правильные ответы не менее чем на 40% вопросов теста

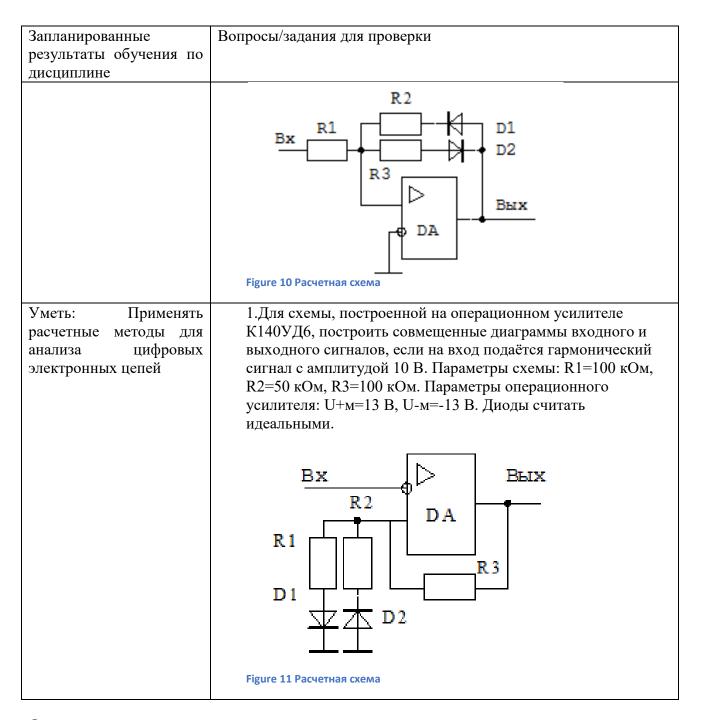
Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Тест считается выполненным на оценку «Неудовлетворительно» если студентом не выполнены условия, предполагающие оценку «Удовлетворительно»

#### КМ-9. Контрольная работа №3 «Операционные усилители»

Формы реализации: Компьютерное задание

Тип контрольного мероприятия: Контрольная работа


Вес контрольного мероприятия в БРС: 10

**Процедура проведения контрольного мероприятия:** Проводится в виде решения индивидуальных задач в автоматизированной системе контроля знаний Айрен МЭИ. Время, устанавливаемое на выполнение задания не более 60 минут. Предусмотрена автоматическая обработка результатов.

#### Краткое содержание задания:

Контрольная точка направлена на оценку освоения компетенции по темам "Аналоговые электронные устройства", "Интегральные операционные усилители" и "Цифровая электроника".

| Запланированные        | Вопросы/задания для проверки                            |
|------------------------|---------------------------------------------------------|
| результаты обучения по |                                                         |
| дисциплине             |                                                         |
| Уметь: Осуществлять    | 1.Для схемы, построенной на операционном усилителе      |
| моделирование и        | К140УД6, построить совмещенные диаграммы входного и     |
| экспериментальное      | выходного сигналов, если на вход подаётся гармонический |
| исследование           | сигнал с амплитудой 10 В. Параметры схемы: R1=100 кОм,  |
| аналоговых и цифровых  | R2=200 кОм, R3=500 кОм. Параметры операционного         |
| электронных цепей      | усилителя: U+м=13 B, U-м=-13 В. Диоды считать           |
|                        | идеальными.                                             |



Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 85

Описание характеристики выполнения знания: Контрольная работа считается выполненной на оценку «Отлично», если задание выполнено на 85%.

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Контрольная работа считается выполненной на оценку «Хорошо», если задание выполнено на 70%.

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Контрольная работа считается выполненной на оценку «Удовлетворительно», если задание выполнено на 50%.

#### Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Контрольная работа считается выполненной на оценку «Неудовлетворительно», если задание выполнено на менее 50%.

# КМ-10. Защита лабораторной работы № 7 «Схемы транзисторно-транзисторной логики»

**Формы реализации**: Компьютерное задание **Тип контрольного мероприятия**: Тестирование **Вес контрольного мероприятия в БРС**: 10

**Процедура проведения контрольного мероприятия:** Проводится в виде тестовых вопросов и индивидуальных заданий в автоматизированной системе контроля знаний Айрен МЭИ. Время, устанавливаемое на выполнение задания не более 30 минут. Предусмотрена автоматическая обработка результатов.

#### Краткое содержание задания:

Задание содержит тестовые вопросы и решение индивидуальных заданий, ориентированных на проверку знаний по теме лабораторной работы. Пример тестового вопроса: Укажите тип подложки для ИМС семейства n-МОП Пример тестового задания: Какое напряжение будет на выходе схемы, если Епит=5 В и Ux1=0 B, Ux2=5 B, Ux3=5 B?

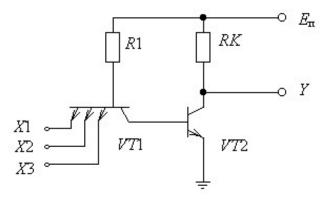



Figure 12 Схема ИЛЭ

| Запланированные                                              | результаты                                 | Вопросы/задания для проверки                                                                   |
|--------------------------------------------------------------|--------------------------------------------|------------------------------------------------------------------------------------------------|
| обучения по дисциплине                                       |                                            |                                                                                                |
| Знать: Принципы р экспериментального и электронных цепей при | асчета и сследования различных электронных | 1.По какой технологии сделана данная логическая схема ? $ R1                                 $ |
|                                                              |                                            | Figure 13 Схема ИЛЭ                                                                            |

| Запланированные        | результаты | Вопросы/задания для проверки |
|------------------------|------------|------------------------------|
| обучения по дисциплине |            |                              |
|                        |            | 1.По биполярной технологии   |
|                        |            | 2.По ТТЛ технологии          |
|                        |            | 3.По МОП технологии          |
|                        |            | 4.По n-МОП технологии        |
|                        |            | 5. По КМОП технологии        |
|                        |            | Ответ:1,2                    |

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Тест считается выполненным на оценку «Отлично», если даны правильные ответы не менее чем на 80% вопросов теста

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Тест считается выполненным на оценку «Хорошо», если даны правильные ответы не менее чем на 60% вопросов теста

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 40

Описание характеристики выполнения знания: Тест считается выполненным на оценку «Удовлетворительно», если даны правильные ответы не менее чем на 40% вопросов теста

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Тест считается выполненным на оценку «Неудовлетворительно» если студентом не выполнены условия, предполагающие оценку «Удовлетворительно»

# КМ-11. Контрольная работа №4 «Ключевые элементы на транзисторах и цифровые логические схемы»

Формы реализации: Компьютерное задание

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 5

**Процедура проведения контрольного мероприятия:** Проводится в виде решения индивидуальных задач в автоматизированной системе контроля знаний Айрен МЭИ. Время, устанавливаемое на выполнение задания не более 60 минут. Предусмотрена автоматическая обработка результатов.

#### Краткое содержание задания:

Контрольная точка направлена на оценку освоения компетенции по темам "Интегральные операционные усилители" и "Цифровая электроника".

| Запланированные        | Вопросы/задания для проверки                                             |
|------------------------|--------------------------------------------------------------------------|
| результаты обучения по |                                                                          |
| дисциплине             |                                                                          |
| Уметь: Осуществлять    | 1.Определить форму и параметры выходного сигнала, если на                |
| моделирование и        | вход устройства подан короткий одиночный отрицательный                   |
| экспериментальное      | импульс с параметрами: $t$ и вх $<<$ $RC$ , $U$ 1=10 $B$ , $U$ 0=0 $B$ . |
| исследование           | Построить совмещенные диаграммы напряжений в точках                      |
| аналоговых и цифровых  | <i>U</i> вх, <i>U</i> вых, 1 и 2.                                        |

| Запланированные результаты обучения по                                                | Вопросы/задания для проверки                                                                                                                                                                                                                                                                                                |
|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| дисциплине                                                                            |                                                                                                                                                                                                                                                                                                                             |
| электронных цепей                                                                     | Устройство собрано на интегральных микросхемах, изготовленных по КМОП технологии. $E \pi = 10$ В, $R = 100$ кОм, $C = 50$ нФ.                                                                                                                                                                                               |
| Уметь: Проектировать типовые электронные цепи и осуществлять расчет режимов их работы | 1.Определить форму и параметры выходного сигнала, если на вход устройства подан импульс прямоугольной формы длительностью tвх=10 мс. Построить совмещенные диаграммы напряжений во всех точках устройства . Устройство собрано на интегральных микросхемах, изготовленных по КМОП технологии. Епит=9 В, R=100 кОм, C=10 нФ. |

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 85

Описание характеристики выполнения знания: Контрольная работа считается выполненной на оценку «Отлично», если задание выполнено на 85%.

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Контрольная работа считается выполненной на оценку «Хорошо», если задание выполнено на 70%.

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Контрольная работа считается выполненной на оценку «Удовлетворительно», если задание выполнено на 50%.

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Контрольная работа считается выполненной на оценку «Неудовлетворительно», если задание выполнено на менее 50%.

# СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

#### 4 семестр

#### Форма промежуточной аттестации: Экзамен

#### Пример билета




Figure 14 Пример экзаменационного билета

#### Процедура проведения

Проводится в письменной форме по билетам. Время на выполнение экзаменационного задания/подготовку ответа -70 минут. Студент должен дать краткий информативный ответ по заданиям 1-4 и решить задачу задания 5.

# I. Перечень компетенций/индикаторов и контрольных вопросов проверки результатов освоения дисциплины

**1. Компетенция/Индикатор:** ИД-1<sub>ОПК-7</sub> Демонстрирует знание элементной базы, принципов действия и особенностей функционирования типовых электронных устройств и ЭВМ

#### Вопросы, задания

- 1.1. Частотные характеристики простых *RC*-цепей
- 2. Прохождение сигналов через линейные RC-цепи
- 3. Свойства полупроводников. Примесные полупроводники
- 4. Диффузионный и дрейфовый токи.
- 5. Электронно-дырочный переход.
- 6. Диод. ВАХ диода.
- 7. Емкостные свойства диода: диффузионная и барьерная емкость.
- 8. Схема замещения диода: полная и упрощенные.
- 9. Выпрямительные схемы.
- 10. Емкостной фильтр. Коэффициент пульсации.
- 11. Параметрический стабилизатор.
- 12. Источники вторичного электропитания питания, структура.

- 13. Биполярный транзистор, структура, режимы и принцип работы, основные соотношения для схемы ОБ.
- 14. Три схемы включения транзистора.
- 15. Схема включения ОЭ: основные соотношения для схемы включения ОЭ, эквивалентная схема замещения, ВАХ биполярного транзистора.
- 16. Простейший усилительный каскад ОЭ: графический расчет схемы, основные соотношения для токов и напряжений.
- 17. Схема замещения транзистора в режиме малого сигнала в h-параметрах.
- 18. Схема замещения транзистора в режиме малого сигнала в у-параметрах.
- 19. Связь h- и y-параметров с режимом работы транзистора.
- 20. Схема усилительного каскада ОЭ. Термостабилизация режима работы.
- 21. Расчет схемы усилительного каскада ОЭ по постоянному току.
- 22. Основные параметры усилительного каскада ОЭ: коэффициент усиления по напряжению, входное сопротивление, выходное сопротивление.
- 23. Усилительный каскад ОК. Расчет по постоянному току и определение его основных параметров: коэффициент усиления по напряжению, входное сопротивление, выходное сопротивление.
- 24. Полевые транзисторы с управляющим p-n-переходом: структура, принцип работы, ВАХ, схемы замещения, параметры.
- 25. Полевые транзисторы со структурой металл диэлектрик полупроводник (МДП) с индуцированным каналом: структура, принцип работы, ВАХ, схемы замещения, параметры.
- 26. Полевые транзисторы со структурой металл диэлектрик полупроводник (МДП) со встроенным каналом: структура, принцип работы, ВАХ, схемы замещения, параметры.
- 27. Малосигнальная схема замещения полевого транзистора в у-параметрах.
- 28. Сравнение свойств биполярных и полевых транзисторов: входное сопротивление, крутизна транзистора.
- 29. Усилительный каскад ОИ. Основные параметры: коэффициент усиления по напряжению, входное сопротивление, выходное сопротивление.
- 30. Усилительный каскад ОС (истоковый повторитель). Основные параметры: коэффициент усиления по напряжению, входное сопротивление, выходное сопротивление.
- 31. АЧХ *RC*–усилителя: неравномерность усиления, граничные частоты, полоса пропускания.
- 32. Амплитудная характеристика *RC*-усилителя. Причины нелинейности.
- 33. Обратные связи в усилителях: положительная и отрицательная обратная связь, последовательная и параллельная обратная связь, обратная связь по напряжению и по току.
- 34. Последовательная обратная связь по напряжению. Условие возбуждения (генерации) схемы.
- 35. Операционные усилители. Структура ОУ. Дифференциальный усилительный каскад.
- 36. Операционный усилитель. Обозначение. Основные характеристики и параметры операционного усилителя.
- 37. Основные правила расчета линейных схем.
- 38. Линейные схемы на операционном усилителе: инвертирующий усилитель, неинвертирующий усилитель, суммирующий усилитель, интегрирующий усилитель.
- 39. Нелинейные схемы на базе ОУ: компаратор, инвертирующий триггер Шмитта, симметричный мультивибратор на ОУ, ждущий мультивибратор на ОУ.
- 40. Ключи: основные свойства, классификация.
- 41. Ключи на биполярных транзисторах.
- 42. Ключ на биполярном транзисторе как логический элемент инвертор: передаточная характеристика, помехоустойчивость инвертора, коэффициент разветвления.

- 43. Переходные процессы в инверторе:зарядовая модель транзистора, переходные процессы при открывании ключа, переходные процессы при запирании ключа.
- 44. Повышение быстродействия ключа.
- 45. Ключ на полевом транзисторе с резистивной нагрузкой.
- 46. Ключ на полевом транзисторе с нелинейной нагрузкой (n-МОП технология):
- 47. КМДП инвертор:статический режим, передаточная характеристика, переходные процессы.
- 48. Логические интегральные схемы: классификация и основные параметры.
- 49. ТТЛ логический элемент с простым инвертором.
- 50. ТТЛ логический элемент со сложным инвертором. Статический режим, назначение элементов.
- 51. Основные характеристики ТТЛ элемента со сложным инвертором: передаточная характеристика, входная характеристика, выходные характеристики.
- 52. Схема ТТЛ с повышенной помехоустойчивостью.
- 53. Быстродействующая схема ТТЛШ.
- 54. Схема ТТЛ с открытым коллектором.
- 55. Схема ТТЛ с тремя состояниями.
- 56. Триггер Шмитта в схеме ТТЛ: триггер Шмитта на биполярных транзисторах: схема, входная и передаточная характеристика.
- 57. КМОП логические схемы И-НЕ.
- 58. КМОП логические схемы ИЛИ-НЕ.
- 59. КМОП логическая схема с тремя состояниями.
- 60. Логические схемы И-НЕ, ИЛИ-НЕ в п-МОП технологии.
- 61. Формирователи импульсов на основе логических схем КМОП: формирователь коротких импульсов на дифференцирующей RC-цепи, формирователь коротких импульсов на интегрирующей RC-цепи, формирователь длинных импульсов (одновибраторор).
- 62. Генератор прямоугольных импульсов (мультивибратор).

Задача 1. Для RC фильтра качественно построить амплитудно частотную характеристику. Построения подтверждать эквивалентными схемами и расчетами. Для этой же цепи качественно построить диаграмму выходного напряжения при воздействии на входе импульса конечной длительности. Считать, что длительность входного сигнала *t*и существенно больше времени переходного процесса.

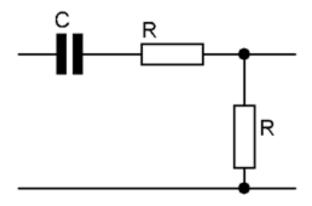
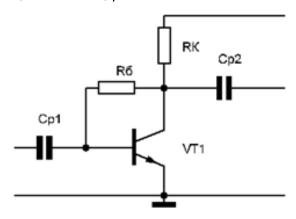
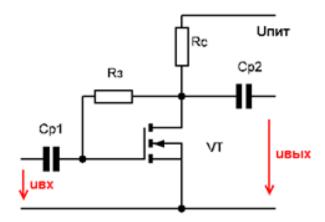



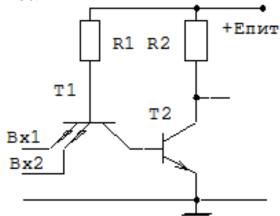

Figure 15 Расчетная схема


2.

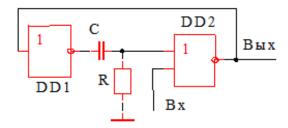
3.Задача 2. В схеме параметрического стабилиза-тора (см.задача 29) определить пределы измерения нагрузки RH, если UBX=30 B, UCT=13 B, ICT миH=1 мA, ICT макс=20 мA, R6=0,5 кОм.

4.Задача 3. Для усилительного каскада на биполярном транзисторе определить рабочий режим транзистора: коллекторный ток и напряжение на коллекторе.  $E\pi=10$  B,  $R\kappa=820$  Ом,  $R\delta=30$  кОм,  $\beta=50$ .




5.Задача 4. Для усилительного каскада на полевом транзисторе определить рабочий режим транзистора: ток стока и напряжение сток-исток. Uпит=10 B, Rc=1000 кОм, R3=500 кОм. Параметры транзистора: b = 25 мкА/BB, Uo = 4 B.




6.Задача 5.Для схемы, построенной на операционном усилителе К140УД6, построить совмещенные диаграммы входного и выходного сигналов, если на вход подаётся гармонический сигнал с амплитудой 6 В. Параметры схемы: R1=20 кОм, R2=100 кОм. Параметры операционного усилителя: U+м=13 B, U-м=-13 B.



7.3адача 6. Определить нагрузочную способность схемы ТТЛ в состоянии «включено» (Uвых=0), если Епит = 5 B, R1 = 4 кОм, R2 = 300 Ом, Uбн=0.7 B, Uкн=0.1 B, Uбк1=0.8 B, b2= 30.



8.Задача 7. Определить форму и параметры выходного сигнала, если на вход устройства подан короткий одиночный положительный импульс. Построить совмещенные диаграммы напряжений во всех точках устройства. Устройство собрано на интегральных микросхемах, изготовленных по КМОП технологии. Епит=9 В, R=20 кОм, C=50 нФ.



#### Материалы для проверки остаточных знаний

- 1.По входной характеристике транзистора определяют Ответы:
- 1) коэффициент усиления базового тока
- 2) дифференциальное входное сопротивление
- 3) дифференциальное выходное сопротивление
- 4) все характеристики транзистора

Верный ответ: 2

2. Дайте определение передаточной характеристики (ПХ) инвертора:

Ответы:

- 1) ПХ это зависимость выходного напряжения от входного напряжения
- 2)  $\Pi X$  это временная зависимость выходного сигнала при подаче на вход скачка напряжения 1 В
- 3) ПХ это зависимость выходного тока инвертора от приложенного на вход напряжения
- 4)  $\Pi X$  это временная зависимость выходного сигнала при подаче на вход прямоугольного импульса
- 5)  $\Pi X$  это зависимость входного тока инвертора от частоты приложенного к нему сигнала

Верный ответ: 1

3.Указать достоинства МОП- логических схем по сравнению с ИЛЭ на биполярных транзисторах:

Ответы:

- 1) меньшая стоимость
- 2) не нагружает источник входного сигнала

- 3)малое потребление от источника питания
- 4) высокое быстродействие

Верный ответ: 1,2,3

4. Наличие в инверторах диодов Шоттки позволяет

Ответы:

- 1) уменьшить потребление мощности
- 2) увеличить напряжение питания
- 3) увеличить быстродействие
- 4) избежать выхода транзисторов в насыщение

Верный ответ: 3

5.АЧХ идеального ОУ без обратной связи:

Ответы:

- 1) плоская
- 2) нулевая
- 3) нарастающая
- 4) спадающая

Верный ответ: 1

6.Операционный усилитель имеет:

Ответы:

- 1) дифференциальный вход
- 2) небольшой коэффициент усиления
- 3) большое выходное сопротивление
- 4) узкий частотный диапазон

Верный ответ: 1

7. Какие схемы замещения полевого транзистора используется при анализе в режиме малого сигнала?

Ответы:

- 1) схема замещения в Y-параметрах
- 2) схема замещения в Н-параметрах
- 3) модель Эберса-Молла
- 4) зарядовая модель

Верный ответ: 1

8.На выходе генератора меандра импульсы:

Ответы:

- 1) треугольной формы
- 2) прямоугольной формы
- 3) пилообразной формы
- 4) синусоидальной формы
- 5) любой формы

Верный ответ: 2

9.Зачем в схеме инвертора резистивную нагрузку меняют на динамическую?

Ответы:

- 1) для уменьшения площади чипа
- 2) для увеличения нагрузочной способности
- 3) для увеличения быстродействия
- 4) для снижения потребляемой мощности
- 5) для увеличения уровня логической 1 на выходе
- 6) для уменьшения уровня логического 0 на выходе

Верный ответ: 1

10.Отметьте типы пробоя р-п перехода:

Ответы:

1) лавинный

- 2) тепловой
- 3) световой
- 4) туннельный
- 5) прямой

Верный ответ: 1,2,4

11. Нижняя граничная частота линейного усилителя определяется значениями емкостей конденсаторов:

Ответы:

- 1) Cp1 и Cp2
- 2) Свх и Сн
- 3) Ср1 и Сн
- 4) Ср2 и Свх

Верный ответ: 1

12. Расчет частотной характеристики проводится:

Ответы:

- 1) комплексным методом, если на входе синусоидальный источник неизменной амплитуды, частота которого меняется в широком диапазоне
- 2) комплексным методом, если на входе синусоидальный источник неизменной частоты, амплитуда которого меняется в широком диапазоне
- 3) комплексным методом, если на входе источник в виде прямоугольного импульса
- 4) используя уравнения для мгновенных значений

Верный ответ: 1

13. Какой формы сигнал надо подавать на вход четырехполюсника при снятии переходной характеристики в данной лабораторной работе?

Ответы:

- 1) синусоидальный
- 2) прямоугольный
- 3) треугольный
- 4) любой

Верный ответ: 2

- 14. Амплитудно-частотная характеристика (АЧХ) четырехполюсника это:
- 1) зависимость отношения амплитуды сигнала на выходе четырехполюсника к амплитуде на входе от частоты входного сигнала при условии неизменности амплитуды входного сигнала
- 2) временная зависимость выходного сигнала при подаче на вход скачка напряжения 1 В
- 3) зависимость амплитуды тока на входе четырехполюсника от амплитуды входного напряжения при неизменной частоте
- 4) зависимость амплитуды выходного сигнала от амплитуды входного сигнала на разных частотах
- 5) временная зависимость выходного сигнала при подаче на вход прямоугольного импульса
- 6) зависимость тока на входе четырехполюсника от частоты входного напряжения при неизменной амплитуде входного напряжения

Верный ответ: 1

- 15.Коэффициент усиления базового тока и дифференциальная выходная проводимость Ответы:
- 1) определяются по входной характеристике
- 2) определяются по выходным характеристикам
- 3) являются справочными параметрами транзистора

Верный ответ: 2

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 85

Описание характеристики выполнения знания: Оценка «ОТЛИЧНО» выставляется студенту, правильно выполнившему 85 % задания и на все вопросы, предполагающие письменный ответ, студент дал правильный и полный ответ.

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 75

Описание характеристики выполнения знания: Оценка «ХОРОШО» выставляется студенту, правильно выполнившему 75 % задания и на все вопросы, предполагающие письменный ответ, студент дал правильный ответ, но допустил незначительные ошибки и не показал необходимой полноты.

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка «УДОВЛЕТВОРИТЕЛЬНО» выставляется студенту, который правильно выполнил 50 % задания и на все вопросы, предполагающие письменный ответ, дал непротиворечивый ответ, или при ответе допустил значительные неточности и не показал полноты.

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка «НЕУДОВЛЕТВОРИТЕЛЬНО» выставляется студенту, если он не выполнил условия, предполагающие оценку «Удовлетворительно».

#### III. Правила выставления итоговой оценки по курсу

Итоговая оценка выставляется в соответствии с оценкой промежуточной аттестации.

### Для курсового проекта/работы:

#### 4 семестр

Форма проведения: Защита КП/КР

#### І. Процедура защиты КП/КР

Защита Курсовой работы проводится в очном формате или с применением ЭО и ДОТ в виде собеседования по тематике Курсовой работы.

#### II. Описание шкалы оценивания

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: Оценка «ОТЛИЧНО» выставляется студенту, правильно выполнившему 90% задания, предоставившему пояснительную записку в соответствии с требованиями к оформлению и в сроки, определенные в БАРС для КР/КП и с учетом оценок за КМ.

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Оценка «ХОРОШО» выставляется студенту, правильно выполнившему 80% задания, предоставившему пояснительную записку в соответствии с требованиями к оформлению и в сроки, определенные в БАРС для КР/КП и с учетом оценок за КМ.

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 70 Описание характеристики выполнения знания: Оценка «УДОВЛЕТВОРИТЕЛЬНО»

описание характеристики выполнения знания: Оценка «Удовлетворительно» выставляется студенту, правильно выполнившему 70% задания, предоставившему пояснительную записку в соответствии с требованиями к оформлению и в сроки, определенные в БАРС для КР/КП и с учетом оценок за КМ.

Оиенка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка «НЕУДОВЛЕТВОРИТЕЛЬНО» выставляется студенту: правильно выполнившему менее 70% задания к дате защиты КР/КП; не предоставившему пояснительную записку в соответствии с требованиями к оформлению к дате защиты КР/КП; имеющему к неудовлетворительные оценки за КМ БАРС для КР/КП к дате защиты КР/КП.

#### III. Правила выставления итоговой оценки по курсу

Итоговая оценка выставляется в соответствии с оценкой промежуточной аттестации.