Министерство науки и высшего образования РФ Федеральное государственное бюджетное образовательное учреждение высшего образования «Национальный исследовательский университет «МЭИ»

Направление подготовки/специальность: 27.03.04 Управление в технических системах

Наименование образовательной программы: Интеллектуальные технологии управления в технических

системах, обработка и анализ данных

Уровень образования: высшее образование - бакалавриат

Форма обучения: Очная

Оценочные материалы по дисциплине Электротехника

> Москва 2024

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ РАЗРАБОТАЛ:

 Подписано электронной подписью ФГБОУ ВО «НИУ «МЭИ»

 Сведения о владельце ЦЭП МЭИ

 Владелец
 Ковалева Т.Ю.

 Идентификатор
 R717191e9-KovalevaTY-25c12b9b

СОГЛАСОВАНО:

Разработчик

Руководитель образовательной программы

O HOUSE HOUSE	Подписано электронн	ой подписью ФГБОУ ВО «НИУ «МЭИ»
2 10 10 10 10 10 10 10 10 10 10 10 10 10	Сведен	ия о владельце ЦЭП МЭИ
	Владелец	Сидорова Е.Ю.
» <u>МэИ</u> «	Идентификатор	R0dee6ce9-SidorovaYY-923dc6a8

Е.Ю. Сидорова

Т.Ю.

Ковалева

Заведующий выпускающей кафедрой

OUCHE HORSE	Подписано электронн	ой подписью ФГБОУ ВО «НИУ «МЭИ»				
2 818 (1918)	Сведения о владельце ЦЭП МЭИ					
	Владелец	Бобряков А.В.				
» <mark>МЭ</mark> И «	Идентификатор	R2c90f415-BobriakovAV-70dec1fa				

А.В. Бобряков

ОБЩАЯ ЧАСТЬ

Оценочные материалы по дисциплине предназначены для оценки: достижения обучающимися запланированных результатов обучения по дисциплине, этапа формирования запланированных компетенций и уровня освоения дисциплины.

Оценочные материалы по дисциплине включают оценочные средства для проведения мероприятий текущего контроля успеваемости и промежуточной аттестации.

Формируемые у обучающегося компетенции:

- 1. ОПК-1 Способен анализировать задачи профессиональной деятельности на основе положений, законов и методов в области естественных наук и математики
 - ИД-3 Использует методы анализа и моделирования линейных и нелинейных цепей постоянного и переменного тока, цепей с распределенными параметрами, переходных процессов в электрических цепях

и включает:

для текущего контроля успеваемости:

Форма реализации: Письменная работа

- 1. Контрольная работа «Расчет параметров четырехполюсников» (Контрольная работа)
- 2. Контрольная работа «Расчет переходных процессов в цепях первого порядка с произвольными воздействиями с помощью интеграла Дюамеля» (Контрольная работа)
- 3. Контрольная работа «Расчет токов в электрических цепях с постоянными источниками с применением теоремы об активном двухполюснике и метода наложения» (Контрольная работа)
- 4. Контрольная работа «Расчет токов и напряжений в нелинейных цепях с постоянными источниками аналитическим методом» (Контрольная работа)
- 5. Контрольная работа «Расчет токов и напряжений в нелинейных цепях с постоянными источниками графическим методом» (Контрольная работа)
- 6. Контрольная работа «Расчет токов и напряжений в цепях второго порядка методом переменных состояния» (Контрольная работа)
- 7. Контрольная работа «Расчет установившихся процессов в длинных линиях без потерь в частотной области» (Контрольная работа)

Форма реализации: Смешанная форма

- 1. Защита лабораторной работы № 1. Защита лабораторной работы № 2 (Лабораторная работа)
- 2. Защита лабораторной работы № 10 (Лабораторная работа)
- 3. Защита лабораторной работы № 11 (Лабораторная работа)
- 4. Защита лабораторной работы № 3. Защита лабораторной работы № 5 (Лабораторная работа)
- 5. Защита лабораторной работы № 4 (Лабораторная работа)
- 6. Защита лабораторной работы № 6. Защита лабораторной работы № 7 (Лабораторная работа)
- 7. Защита лабораторной работы № 9 (Лабораторная работа)

Форма реализации: Соблюдение графика выполнения задания

- 1. Расчетное задание, часть 1: «Нелинейные цепи с источниками постоянных токов и эдс» (Расчетно-графическая работа)
- 2. Расчетное задание, часть 2: «Переходные процессы в длинных линиях». Выполнение домашнего задания (Расчетно-графическая работа)

БРС дисциплины

3 семестр

				ольны	х мероі	прияти	й, %		
Разпен писниннин і ' '		КМ-	КМ-	КМ-	КМ-	КМ-	КМ-	КМ-	КМ-
Раздел дисциплины КМ:		1	2	3	4	5	6	7	8
	Срок КМ:	4	8	10	12	13	14	15	16
Методы анализа электри	ческих								
цепей постоянного тока									
Методы анализа электри	ческих	+	+						
цепей постоянного тока		+	+						
Методы анализа электри	ческих								
цепей переменного тока									
Методы анализа электри	ческих			+					
цепей переменного тока									
Анализ электрических ц	епей с								
многополюсными элемен	нтами								
Анализ электрических ц	епей с			+	+				
многополюсными элементами					T				
Частотные характеристики и									
	передаточные функции								
четырехполюсников									
	Частотные характеристики и								
	передаточные функции					+			
четырехполюсника									
Анализ динамических режимов в									
линейных цепях первого порядка									
Анализ динамических режимов в							+	+	
1	линейных цепях первого порядка						1	'	
Анализ динамических режимов в									
	линейных цепях второго порядка								
Анализ динамических режимов в								+	+
линейных цепях второго									
	Bec KM:	10	10	10	10	10	15	15	20

4 семестр

		Bec	а контр	ольны	х мероі	прияти	й, %		
Donnar	Индекс	КМ-	КМ-	КМ-	КМ-	КМ-	КМ-	КМ-	КМ-
Раздел дисциплины	KM:	1	2	3	4	5	6	7	8
	Срок КМ:	4	7	8	9	12	13	14	16
Методы расчета нелиней	ных								
электрических цепей пос	и олоннкот								
переменного тока									
Методы расчета нелинейных									
электрических цепей постоянного и		+	+	+	+				
переменного тока									
Расчет переходных процессов в									
простейших нелинейных цепях									
постоянного тока									
Расчет переходных процессов в									
простейших нелинейных цепях						+			
постоянного тока									

Цепи с распределенными								
параметрами в установившемся								
режиме								
Цепи с распределенными								
параметрами в установившемся						+	+	
режиме								
Переходные процессы в длинных								
линиях								
Переходные процессы в длинных								
линиях								+
Трехфазные цепи								
Трехфазные цепи								+
Bec KM:	5	5	5	5	25	20	10	25

\$Общая часть/Для промежуточной аттестации\$

БРС курсовой работы/проекта

3 семестр

	Веса конт	Веса контрольных мероприятий, %			
Раздел дисциплины	Индекс	КМ-	КМ-	КМ-	КМ-
газдел дисциплины	KM:	1	2	3	4
	Срок КМ:	9	11	13	16
Расчет передаточной функции схемы аналитически	В				
канонической форме и расчет АЧХ и ФЧХ схемы с	помощью	+			
ЭВМ					
Оформление расчетно-пояснительной записки по первой части			1		
работы «Расчет частотных характеристик ARC-цепей»			+		
Расчет переходной характеристики цепи методом переменных					
состояния				+	
Оформление расчетно-пояснительной записки по второй части					
работы «Расчет временных характеристик ARC-цепей»					+
	Вес КМ:	5	45	10	40

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ТЕКУЩЕГО КОНТРОЛЯ

I. Оценочные средства для оценки запланированных результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций

Индекс	Индикатор	Запланированные	Контрольная точка
компетенции	1	результаты обучения по	1
		дисциплине	
ОПК-1	ИД-30ПК-1 Использует	Знать:	Контрольная работа «Расчет токов в электрических цепях с
	методы анализа и	законы, физико-	постоянными источниками с применением теоремы об активном
	моделирования линейных	математические модели и	двухполюснике и метода наложения» (Контрольная работа)
	и нелинейных цепей	методы анализа линейных	Контрольная работа «Расчет параметров четырехполюсников»
	постоянного и	цепей в установившихся	(Контрольная работа)
	переменного тока, цепей с	режимах в цепях с	Защита лабораторной работы № 4 (Лабораторная работа)
	распределенными	синусоидальными	Контрольная работа «Расчет переходных процессов в цепях первого
	параметрами, переходных	источниками	порядка с произвольными воздействиями с помощью интеграла
	процессов в электрических	методы анализа линейных	Дюамеля» (Контрольная работа)
	цепях	цепей второго порядка в	Контрольная работа «Расчет токов и напряжений в цепях второго
		динамических режимах	порядка методом переменных состояния» (Контрольная работа)
		основные требования и	Защита лабораторной работы № 9 (Лабораторная работа)
		методики проведения	Защита лабораторной работы № 10 (Лабораторная работа)
		измерений в электрических	Контрольная работа «Расчет токов и напряжений в нелинейных цепях
		цепях	с постоянными источниками графическим методом» (Контрольная
		методы анализа линейных	работа)
		цепей первого порядка в	Контрольная работа «Расчет токов и напряжений в нелинейных цепях
		динамических режимах	с постоянными источниками аналитическим методом» (Контрольная
		законы, физико-	работа)
		математические модели и	Расчетное задание, часть 1: «Нелинейные цепи с источниками
		методы анализа линейных	постоянных токов и эдс» (Расчетно-графическая работа)
		цепей в установившихся	Контрольная работа «Расчет установившихся процессов в длинных
		режимах в цепях с	линиях без потерь в частотной области» (Контрольная работа)
		многополюсными	Защита лабораторной работы № 11 (Лабораторная работа)
		элементами	Защита лабораторной работы № 1. Защита лабораторной работы № 2

свойства, физикоматематические модели и метолы анализа цепей с распределенными параметрами в установившихся режимах свойства, физикоматематические модели и методы анализа цепей с распределенными параметрами в динамических режимах законы, физикоматематические модели и методы анализа линейных цепей в установившихся режимах в цепях с постоянными источниками способы расчета частотных характеристик в линейных цепях с многополюсными элементами законы, физикоматематические модели и методы анализа нелинейных цепей в установившихся режимах законы, физикоматематические модели и методы анализа нелинейных цепей в динамических режимах

(Лабораторная работа)

Защита лабораторной работы № 6. Защита лабораторной работы № 7 (Лабораторная работа)

Расчетное задание, часть 2: «Переходные процессы в длинных линиях». Выполнение домашнего задания (Расчетно-графическая работа)

Защита лабораторной работы № 3. Защита лабораторной работы № 5 (Лабораторная работа)

Уметь: применять аналитические методы для расчета установившихся режимов линейных электрических цепей с синусоидальными источниками применять аналитические методы для расчета установившихся режимов линейных электрических цепей с постоянными источниками использовать стандартные пакеты прикладных программ для решения практических задач применять аналитические и численные методы для расчета динамических режимов линейных электрических цепей второго порядка применять аналитические методы для расчета линейных электрических цепей с многополюсными элементами применять аналитические методы для расчета частотных характеристик линейных электрических цепей

применять аналитические методы для расчета установившихся режимов в длинных линиях применять аналитические методы для расчета динамических режимов линейных электрических цепей первого порядка применять аналитические методы для расчета динамических режимов в длинных линиях рассчитывать параметры нелинейных резистивных элементов по их вольтамперным характеристикам (ВАХ) и строить общие ВАХ нелинейных схем применять аналитические и графические методы для расчета динамических режимов нелинейных электрических цепей применять аналитические методы для расчета установившихся режимов в трехфазных цепях

II. Содержание оценочных средств. Шкала и критерии оценивания

3 семестр

КМ-1. Защита лабораторной работы № 1. Защита лабораторной работы № 2

Формы реализации: Смешанная форма

Тип контрольного мероприятия: Лабораторная работа

Вес контрольного мероприятия в БРС: 10

Процедура проведения контрольного мероприятия: Выполняется индивидуальная защита выполненной лабораторной работы. В рамках защиты оценивается правильность выполнения экспериментальной части лабораторной работы студентом, полнота ответов на теоретические и практические вопросы. Защита проводится преподавателем. Время защиты составляет не более 15 минут на одного человека. На защиту представляется полностью оформленный протокол лабораторной работы.

Краткое содержание задания:

Защита лабораторной работы №1 и № 2 включает в себя представление обучающимся полностью оформленного отчета, ответы на вопросы и решение задачи.

Контрольные вопросы/задания:	
Знать: законы, физико-	1.Каким образом находят ЭДС и внутреннее
математические модели и	сопротивление реального источника напряжения?
методы анализа линейных цепей	2. Какие схемы замещения эквивалентного генератора
в установившихся режимах в	бывают?
цепях с постоянными	3.В чем суть принципа компенсации?
источниками	
Знать: основные требования и	1. Как включаются в цепь вольтметр и амперметр?
методики проведения измерений	2.Как пользоваться осциллографом?
в электрических цепях	
Уметь: применять аналитические	1.Пример задачи для защиты ЛР № 1:
методы для расчета	↑3 A
установившихся режимов	$\stackrel{3}{\longrightarrow}$ 2 OM $\stackrel{6}{\longrightarrow}$ B $\stackrel{12}{\longrightarrow}$ 1 OM $\stackrel{3}{\longrightarrow}$ 3 OM
линейных электрических цепей с	
постоянными источниками	1 - 0 - 1
	Figure 1 Найти напряжение U12
	2 Chanyayayaya zaanayay ah ayzayayay
	2. Сформулируйте теорему об активном двухполюснике.
	3.Пример задачи для защиты ЛР № 2:
	3.11pnмeр задачи для защиты эт ж 2.
	R_2 R_4 r_{BH}
	$R \bowtie R_1 \qquad \bigcap R_3 \qquad E \curvearrowright$
	"Д Џ" — Џ" — [" Ф [
	<u> </u>
	Figure 2 Найти параметры эквивалентного генератора относительно
	R2

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 100

Описание характеристики выполнения знания: Оценка "отлично" выставляется, если на все вопросы даны правильные ответы, без недочетов, задача решена верно, отчет по лабораторной работе оформлен аккуратно, выполнены все задания. Оценка "5" выставляется только в том случае, если за защиты обеих лабораторных работ получены оценки "отлично".

Оценка: 4

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Оценка "хорошо" выставляется, если на все вопросы даны ответы, при этом суммарно допущено не более двух ошибок, задача решена верно, отчет по лабораторной работе оформлен аккуратно, выполнены все задания.

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется, если не менее чем на половину вопросов даны правильные ответы либо при ответе часто допускались ошибки, задача решена верно, но не с первой попытки, отчет по лабораторной работе оформлен неаккуратно, выполнены все задания. Защита лабораторных работ происходит с опозданием от графика выполнения задания.

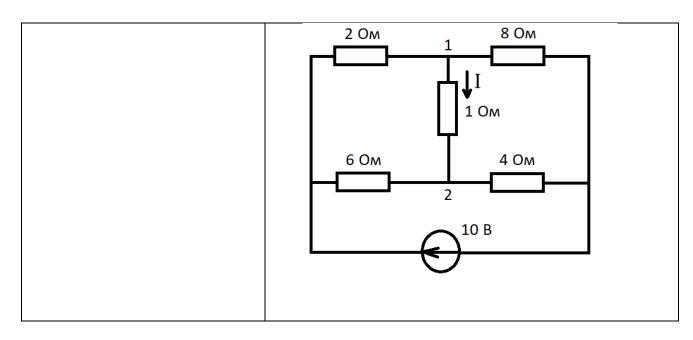
Оценка: 2

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется, если правильно даны ответы менее чем на половину вопросов, задача не решена, отчет по лабораторной работе оформлен неаккуратно, выполнены не все задания.

КМ-2. Контрольная работа «Расчет токов в электрических цепях с постоянными источниками с применением теоремы об активном двухполюснике и метода наложения»

Формы реализации: Письменная работа

Тип контрольного мероприятия: Контрольная работа


Вес контрольного мероприятия в БРС: 10

Процедура проведения контрольного мероприятия: Контрольная работа проводится в аудиторное время и содержит одну задачу. Время выполнения 40 минут.

Краткое содержание задания:

Контрольная точка направлена на оценку освоения компетенции по вопросам, связанным с расчетом электрических цепей при действии постоянных источников тока и напряжения.

Уметь: применять аналитические		алитические	1.Пример задачи:
методы для расчета		расчета	Найти напряжение Up, rBX активного
установившихся режимов		режимов	двухполюсника относительно узлов 1 и 2 и ток I.
линейных электрических цепей с		ких цепей с	
постоянными источниками			

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 100 Описание характеристики выполнения знания: оценка 5 («отлично») выставляется, если задача решена полностью и верно, без недочетов; у всех величин указана размерность.

Оценка: 4

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: оценка 4 («хорошо») выставляется, если задача решена в целом верно: либо не доделано не более 20 % задачи; либо присутствуют арифметические ошибки в вычислениях, искажающие результат не более чем в два раза; не у всех величин указана размерность.

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: оценка 3 («удовлетворительно») выставляется, если либо правильно решено не менее 50 % задачи, либо использованы правильные формулы, но при подстановке значений допущены ошибки, либо присутствуют арифметические ошибки, искажающие результат более чем в два раза.

Оценка: 2

Описание характеристики выполнения знания: оценка 2 («неудовлетворительно») выставляется, если правильно решено менее 50 % задачи.

КМ-3. Защита лабораторной работы № 3. Защита лабораторной работы № 5

Формы реализации: Смешанная форма

Тип контрольного мероприятия: Лабораторная работа

Вес контрольного мероприятия в БРС: 10

Процедура проведения контрольного мероприятия: Выполняется индивидуальная защита выполненной лабораторной работы. В рамках защиты оценивается правильность выполнения экспериментальной части лабораторной работы студентом , полнота ответов на теоретические и практические вопросы. Защита проводится преподавателем. Время защиты составляет не более 15 минут на одного человека. На защиту представляется полностью оформленный протокол лабораторной работы.

Краткое содержание задания:

Защита лабораторной работы № 3 и № 5 включает в себя представление обучающимся полностью оформленного отчета, ответы на вопросы и решение задачи.

Контрольные вопросы/задания:

Контрольные вопросы/задания:	
Знать: законы, физико-	1.Какие опыты необходимо проделать для
математические модели и	определения Z-параметров четырехполюсника?
методы анализа линейных цепей	2.Какие опыты необходимо проделать для
в установившихся режимах в	определения Ү-параметров четырехполюсника?
цепях с многополюсными	3. Какие методы расчета цепей с магнитно-
элементами	связанными катушками Вам известны?
Знать: законы, физико-	1.В чем суть символического метода расчета токов и
математические модели и	напряжений цепи переменного тока?
методы анализа линейных цепей	2. Что такое реактивное сопротивление цепи?
в установившихся режимах в	3. Что такое активное сопротивление цепи?
цепях с синусоидальными	
источниками	
Уметь: применять аналитические	1. Нарисуйте согласное (встречное) включение
методы для расчета линейных	катушек с магнитной связью.
электрических цепей с	2.Пример задачи для защиты ЛР № 5:
многополюсными элементами	x_m
	$X_{c_1} = X_L = 100 \mathrm{OM}$ $X_{c_2} = 200 \mathrm{OM}$ $X_{c_2} = 200 \mathrm{OM}$ $X_{m} = R = 50 \mathrm{OM}$ Figure 3 Рассчитать входное сопротивление схемы относительно источника напряжения
Уметь: применять аналитические	1.Пример задачи для защиты ЛР № 3:
методы для расчета установившихся режимов линейных электрических цепей с синусоидальными источниками	U _{V1} =60 В U _{V2} =40 В Найти U _{V3} - ? 2.Нарисуйте эквивалентную схему замещения цепи, входное сопротивление которой имеет активноемкостной характер.

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 100 Описание характеристики выполнения знания: Оценка "отлично" выставляется, если на все вопросы даны правильные ответы, без недочетов, задача решена верно, отчет по

лабораторной работе оформлен аккуратно, выполнены все задания. Оценка "5" выставляется только в том случае, если за защиты обеих лабораторных работ получены оценки "отлично".

Оценка: 4

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Оценка "хорошо" выставляется, если на все вопросы даны ответы, при этом суммарно допущено не более двух ошибок, задача решена верно, отчет по лабораторной работе оформлен аккуратно, выполнены все задания.

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется, если не менее чем на половину вопросов даны правильные ответы либо при ответе часто допускались ошибки, задача решена верно, но не с первой попытки, отчет по лабораторной работе оформлен неаккуратно, выполнены все задания. Защита лабораторных работ происходит с опозданием от графика выполнения задания.

Оценка: 2

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется, если правильно даны ответы менее чем на половину вопросов, задача не решена, отчет по лабораторной работе оформлен неаккуратно, выполнены не все задания.

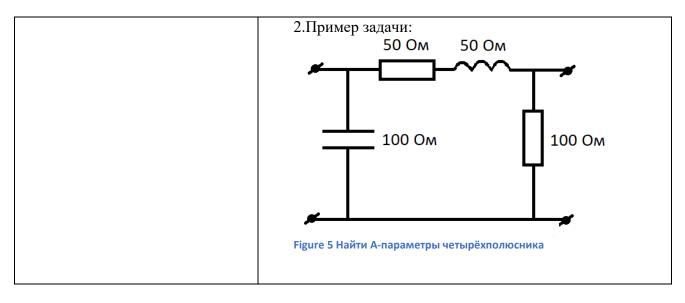
КМ-4. Контрольная работа «Расчет параметров четырехполюсников»

Формы реализации: Письменная работа

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 10

Процедура проведения контрольного мероприятия: Контрольная работа проводится в аудиторное время и содержит одну задачу. Время выполнения 40 минут.


Краткое содержание задания:

Контрольная точка направлена на оценку освоения компетенции по вопросам, связанным с расчетом электрических цепей с многополюсными элементами, в частности с четырехполюсниками.

Контрольные вопросы/задания:

Уметь: применять аналитические методы для расчета линейных электрических цепей с многополюсными элементами

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 100

Описание характеристики выполнения знания: Оценка "отлично" выставляется, если задача решена полностью и верно, без недочетов; у всех величин указана размерность.

Оценка: 4

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Оценка "хорошо" выставляется, если задача решена в целом верно: либо не доделано не более 20 % задачи; либо присутствуют арифметические ошибки в вычислениях, искажающие результат не более чем в два раза; не у всех величин указана размерность.

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется, если либо правильно решено не менее 50 % задачи, либо использованы правильные формулы, но при подстановке значений допущены ошибки, либо присутствуют арифметические ошибки, искажающие результат более чем в два раза.

Оценка: 2

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется, если правильно решено менее 50 % задачи.

КМ-5. Защита лабораторной работы № 4

Формы реализации: Смешанная форма

Тип контрольного мероприятия: Лабораторная работа

Вес контрольного мероприятия в БРС: 10

Процедура проведения контрольного мероприятия: Выполняется индивидуальная защита выполненной лабораторной работы. В рамках защиты оценивается правильность выполнения экспериментальной части лабораторной работы студентом , полнота ответов на теоретические и практические вопросы. Защита проводится преподавателем. Время защиты составляет не более 15 минут на одного человека. На защиту представляется полностью оформленный протокол лабораторной работы.

Краткое содержание задания:

Защита лабораторной работы № 4 включает в себя представление обучающимся полностью оформленного отчета, ответы на вопросы и решение задачи.

Контрольные вопросы/задания:

топтрольные вопросы/задания.	
Знать: способы расчета	1.Каков физический смысл АЧХ?
частотных характеристик в	2.Каков физический смысл ФЧХ?
линейных цепях с	3. Как связана комплексная передаточная функция с
многополюсными элементами	АЧХ и ФЧХ?
	4. Что такое добротность RLC контура?
	5. Что такое граничная частота фильтра?
Уметь: применять аналитические	1.Нарисуйте НЧ фильтр первого порядка.
методы для расчета частотных	2.Нарисуйте ВЧ фильтр первого порядка.
характеристик линейных	3.Пример задачи:
электрических цепей	\dot{U}_{BX} L C \dot{U}_{BblX} R ₁ = 100 Oм R ₂ = 200 Oм L=1 мГн C=10 мкФ

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 100

Описание характеристики выполнения знания: Оценка "отлично" выставляется, если на все вопросы даны правильные ответы, без недочетов, задача решена верно, отчет по лабораторной работе оформлен аккуратно, выполнены все задания.

Оценка: 4

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Оценка "хорошо" выставляется, если на все вопросы даны ответы, при этом суммарно допущено не более двух ошибок, задача решена верно, отчет по лабораторной работе оформлен аккуратно, выполнены все задания.

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется, если не менее чем на половину вопросов даны правильные ответы либо при ответе часто допускались ошибки, задача решена верно, но не с первой попытки, отчет по лабораторной работе оформлен неаккуратно, выполнены все задания.

Оценка: 2

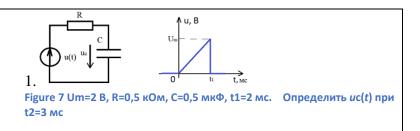
Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется, если правильно даны ответы менее чем на половину вопросов, задача не решена, отчет по лабораторной работе оформлен неаккуратно, выполнены не все задания.

КМ-6. Контрольная работа «Расчет переходных процессов в цепях первого порядка с произвольными воздействиями с помощью интеграла Дюамеля»

Формы реализации: Письменная работа

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 15


Процедура проведения контрольного мероприятия: Контрольная работа проводится в аудиторное время и содержит одну задачу. Время выполнения 60 минут.

Краткое содержание задания:

Контрольная точка направлена на оценку освоения компетенции по вопросам, связанным с расчетом переходных процессов в электрических цепях первого порядка при действии источников тока или напряжения произвольной формы.

Контрольные вопросы/задания:

Уметь: применять аналитические методы для расчета динамических режимов линейных электрических цепей первого порядка

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 100

Описание характеристики выполнения знания: Оценка "отлично" выставляется, если задача решена полностью и верно, без недочетов; у всех величин указана размерность.

Оценка: 4

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Оценка "хорошо" выставляется, если задача решена в целом верно: либо не доделано не более 20 % задачи; либо присутствуют арифметические ошибки в вычислениях, искажающие результат не более чем в два раза; не у всех величин указана размерность.

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется, если либо правильно решено не менее 50 % задачи, либо использованы правильные формулы, но при подстановке значений допущены ошибки, либо присутствуют арифметические ошибки, искажающие результат более чем в два раза.

Оценка: 2

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется, если правильно решено менее 50 % задачи.

КМ-7. Защита лабораторной работы № 6. Защита лабораторной работы № 7

Формы реализации: Смешанная форма

Тип контрольного мероприятия: Лабораторная работа

Вес контрольного мероприятия в БРС: 15

Процедура проведения контрольного мероприятия: Выполняется индивидуальная защита выполненной лабораторной работы. В рамках защиты оценивается правильность выполнения экспериментальной части лабораторной работы студентом , полнота ответов на теоретические и практические вопросы. Защита проводится преподавателем. Время защиты составляет не более 15 минут на одного человека. На защиту представляется полностью оформленный протокол лабораторной работы.

Краткое содержание задания:

Защита лабораторной работы № 6 и № 7 включает в себя представление обучающимся полностью оформленного отчета, ответы на вопросы и решение задачи.

Контрольные вопросы/задания:	
Знать: методы анализа линейных	1. Как получить корни характеристического
цепей второго порядка в	уравнения цепи второго порядка?
динамических режимах	2. Как с помощью осциллографа определить период
	свободных колебаний в цепях второго порядка?
Знать: методы анализа линейных	1. Что такое переходная функция?
цепей первого порядка в	2. Как с помощью осциллографа измерить
динамических режимах	постоянную времени?
Уметь: использовать	1.Получите с помощью ЭВМ переходную
стандартные пакеты прикладных	характеристику цепи второго порядка для случая
программ для решения	колебательного процесса.
практических задач	2.Получите с помощью ЭВМ переходную
	характеристику цепи второго порядка для случая
	апериодического процесса.
Уметь: применять аналитические	1.Запишите вид решения дифференциального
и численные методы для расчета	уравнения фильтра второго порядка,
динамических режимов	соответствующего колебательному процессу.
линейных электрических цепей	2.Пример задачи для защиты ЛР № 7:
второго порядка	0.05 45.00
	0,2 FH 15 OM
	8 Om
	♠ 60 B
	uc ==
	Ψ 0,5 мкФ
	$\mathbf{u}_{\mathrm{C}} = \mathbf{u}_{\mathrm{C}} = \mathbf{u}_{\mathrm{L}}$
	Найти $\frac{du_C}{dt}$ и $\frac{du_L}{dt}$
	$\alpha i \mid_0 \qquad \alpha i \mid_0$
Уметь: применять аналитические	1.Запишите вид решения дифференциального
методы для расчета	уравнения фильтра первого порядка.
динамических режимов	2.Пример задачи для защиты ЛР № 6:
линейных электрических цепей	10 Om \ 10 Om
первого порядка	
	'♥
	\perp $\uparrow_{40.5}$ \perp
	120 B 10 OM =
	Т 50 мкФ
	Figure 8 Рассчитать указанный ток <i>і</i> классическим методом
I I	

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 100

Описание характеристики выполнения знания: Оценка "отлично" выставляется, если на все вопросы даны правильные ответы, без недочетов, задача решена верно, отчет по лабораторной работе оформлен аккуратно, выполнены все задания. Оценка "5" выставляется только в том случае, если за защиты обеих лабораторных работ получены оценки "отлично".

Оценка: 4

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Оценка "хорошо" выставляется, если на все вопросы даны ответы, при этом суммарно допущено не более двух ошибок, задача решена верно, отчет по лабораторной работе оформлен аккуратно, выполнены все задания.

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется, если не менее чем на половину вопросов даны правильные ответы либо при ответе часто допускались ошибки, задача решена верно, но не с первой попытки, отчет по лабораторной работе оформлен неаккуратно, выполнены все задания. Защита лабораторных работ происходит с опозданием от графика выполнения задания.

Оценка: 2

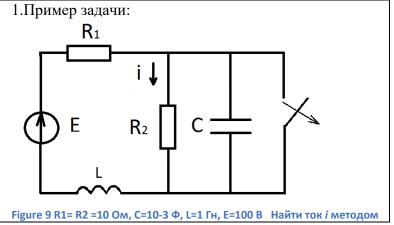
Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется, если правильно даны ответы менее чем на половину вопросов, задача не решена, отчет по лабораторной работе оформлен неаккуратно, выполнены не все задания.

КМ-8. Контрольная работа «Расчет токов и напряжений в цепях второго порядка методом переменных состояния»

Формы реализации: Письменная работа

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 20


Процедура проведения контрольного мероприятия: Контрольная работа проводится в аудиторное время и содержит одну задачу. Время выполнения 80 минут.

Краткое содержание задания:

Контрольная точка направлена на оценку освоения компетенции по вопросам, связанным с расчетом переходных процессов в электрических цепях второго порядка при действии постоянных источников тока или напряжения.

Контрольные вопросы/задания:

Уметь: применять аналитические и численные методы для расчета динамических режимов линейных электрических цепей второго порядка

•
составления уравнений состояния
Coolabilition (pasientini coolabiliti

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 100

Описание характеристики выполнения знания: Оценка "отлично" выставляется, если задача решена полностью и верно, без недочетов; у всех величин указана размерность.

Оценка: 4

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Оценка "хорошо" выставляется, если задача решена в целом верно: либо не доделано не более 20 % задачи; либо присутствуют арифметические ошибки в вычислениях, искажающие результат не более чем в два раза; не у всех величин указана размерность.

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется, если либо правильно решено не менее 50 % задачи, либо использованы правильные формулы, но при подстановке значений допущены ошибки, либо присутствуют арифметические ошибки, искажающие результат более чем в два раза.

Оценка: 2

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется, если правильно решено менее 50 % задачи.

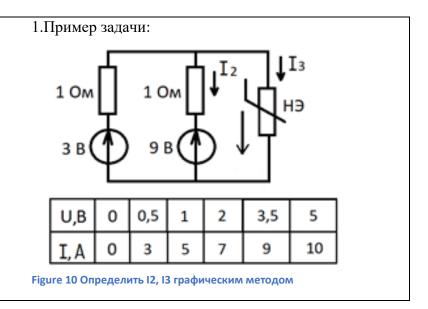
4 семестр

КМ-1. Защита лабораторной работы № 9

Формы реализации: Смешанная форма

Тип контрольного мероприятия: Лабораторная работа

Вес контрольного мероприятия в БРС: 5


Процедура проведения контрольного мероприятия: Выполняется индивидуальная защита выполненной лабораторной работы. В рамках защиты оценивается правильность выполнения экспериментальной части лабораторной работы студентом , полнота ответов на теоретические и практические вопросы. Защита проводится преподавателем. Время защиты составляет не более 15 минут на одного человека. На защиту представляется полностью оформленный протокол лабораторной работы.

Краткое содержание задания:

Защита лабораторной работы № 9 включает в себя представление обучающимся полностью оформленного отчета, ответы на вопросы и решение задачи.

Знать:	ать: законы, физико-		 Какие виды ВАХ нелинейных резистивных
математические модели и		модели и	элементов Вам известны?
методы	анализа	нелинейных	2. Как выглядят BAX идеального и реального диодов?
цепей	пей в установившихся		3.В чем заключается метод кусочно-линейной
режимах			аппроксимации?
			4. Что такое «метод пересечения»?
			5. Что такое общая ВАХ схемы?

Уметь: рассчитывать параметры нелинейных резистивных элементов по их вольтамперным характеристикам (BAX) и строить общие BAX нелинейных схем

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 100

Описание характеристики выполнения знания: Оценка "отлично" выставляется, если на все вопросы даны правильные ответы, без недочетов, задача решена верно, отчет по лабораторной работе оформлен аккуратно, выполнены все задания.

Оценка: 4

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Оценка "хорошо" выставляется, если на все вопросы даны ответы, при этом суммарно допущено не более двух ошибок, за-дача решена верно, отчет по лабораторной работе оформлен аккуратно, выполнены все задания.

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется, если не менее чем на половину вопросов даны правильные ответы либо при ответе часто допускались ошибки, задача решена верно, но не с первой попытки, отчет по лабораторной работе оформлен неаккуратно, выполнены все задания.

Оценка: 2

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется, если правильно даны ответы менее чем на половину вопросов, задача не решена, отчет по лабораторной работе оформлен неаккуратно, выполнены не все задания.

КМ-2. Защита лабораторной работы № 10

Формы реализации: Смешанная форма

Тип контрольного мероприятия: Лабораторная работа

Вес контрольного мероприятия в БРС: 5

Процедура проведения контрольного мероприятия: Выполняется индивидуальная защита выполненной лабораторной работы. В рамках защиты оценивается правильность выполнения экспериментальной части лабораторной работы студентом , полнота ответов на теоретические и практические вопросы. Защита проводится преподавателем. Время защиты составляет не более 15 минут на одного человека. На защиту представляется полностью оформленный протокол лабораторной работы.

Краткое содержание задания:

Защита лабораторной работы № 10 включает в себя представление обучающимся полностью оформленного отчета, ответы на вопросы и решение задачи.

Контрольные вопросы/задания:

топтроивные вопросы, задания.				
Знать: законы, физико-	1.Как выглядит ВАХ реального стабилитрона?			
математические модели и	2.Как выглядит электрическая схема			
методы анализа нелинейных	однополупериодного выпрямителя напряжения?			
цепей в установившихся	3. Что из себя представляет схема			
режимах	двухполупериодного выпрямителя напряжения?			
	4. Как рассчитывается активная мощность в схеме с			
	нелинейными резистивными элементами?			
Уметь: рассчитывать параметры	1.Пример задачи:			
нелинейных резистивных элементов по их вольтамперным характеристикам (BAX) и строить общие BAX нелинейных схем	r=100 Oм u ₁ =25sin(wt) В Найти: u ₂ (t) Задачу решить графически			

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 100

Описание характеристики выполнения знания: Оценка "отлично" выставляется, если на все вопросы даны правильные ответы, без недочетов, задача решена верно, отчет по лабораторной работе оформлен аккуратно, выполнены все задания.

Оценка: 4

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Оценка "хорошо" выставляется, если на все вопросы даны ответы, при этом суммарно допущено не более двух ошибок, за-дача решена верно, отчет по лабораторной работе оформлен аккуратно, выполнены все задания.

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется, если не менее чем на половину вопросов даны правильные ответы либо при ответе часто допускались ошибки, задача решена верно, но не с первой попытки, отчет по лабораторной работе оформлен неаккуратно, выполнены все задания.

Оценка: 2

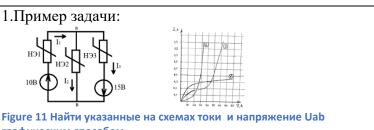
Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется, если правильно даны ответы менее чем на половину вопросов, задача не решена, отчет по лабораторной работе оформлен неаккуратно, выполнены не все задания.

КМ-3. Контрольная работа «Расчет токов и напряжений в нелинейных цепях с постоянными источниками графическим методом»

Формы реализации: Письменная работа

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 5


Процедура проведения контрольного мероприятия: Контрольная работа содержит одну задачу. Время выполнения 40 минут.

Краткое содержание задания:

Контрольная точка направлена на оценку освоения компетенции по вопросам, связанным с расчетом токов и напряжений в электрических цепях с нелинейными элементами при действии постоянных источников тока и напряжения графическим методом.

Контрольные вопросы/задания:

Уметь: рассчитывать параметры нелинейных резистивных элементов по их вольтамперным характеристикам (BAX) строить общие ВАХ нелинейных схем

графическим способом

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 100

Описание характеристики выполнения знания: Оценка "отлично" выставляется, если задача решена полностью и верно, без недочетов; все графические построения выполнены аккуратно и четко; у всех величин указана размерность.

Оценка: 4

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Оценка "хорошо" выставляется, если задача решена в целом верно: все графические построения выполнены аккуратно и четко; либо не доделано не более 20 % задачи; либо присутствуют арифметические ошибки в вычислениях, искажающие результат не более чем в два раза; не у всех величин указана размерность.

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется, если либо правильно решено не менее 50 % задачи, либо использованы правильные формулы, но при подстановке значений допущены ошибки, либо присутствуют арифметические ошибки, искажающие результат более чем в два раза; отдельные графические построения выполнены неаккуратно и нечетко.

Оценка: 2

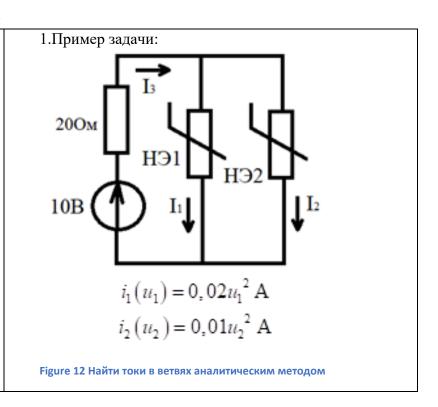
Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется, если правильно решено менее 50 % задачи.

КМ-4. Контрольная работа «Расчет токов и напряжений в нелинейных цепях с постоянными источниками аналитическим методом»

Формы реализации: Письменная работа

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 5


Процедура проведения контрольного мероприятия: Контрольная работа содержит одну задачу. Время выполнения 40 минут.

Краткое содержание задания:

Контрольная точка направлена на оценку освоения компетенции по вопросам, связанным с расчетом токов и напряжений в электрических цепях с нелинейными элементами при действии постоянных источников тока и напряжения аналитическим методом.

Контрольные вопросы/задания:

Уметь: рассчитывать параметры нелинейных резистивных элементов по их вольтамперным характеристикам (BAX) и строить общие BAX нелинейных схем

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 100

Описание характеристики выполнения знания: Оценка "отлично" выставляется, если задача решена полностью и верно, без недочетов; у всех величин указана размерность.

Оценка: 4

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Оценка "хорошо" выставляется, если задача решена в целом верно: либо не доделано не более 20 % задачи; либо присутствуют арифметические ошибки в вычислениях, искажающие результат не более чем в два раза; не у всех величин указана размерность.

Оиенка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется, если либо правильно решено не менее 50 % задачи, либо использованы правильные формулы, но при подстановке значений допущены ошибки, либо присутствуют арифметические ошибки, искажающие результат более чем в два раза.

Оценка: 2

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется, если правильно решено менее 50 % задачи.

КМ-5. Расчетное задание, часть 1: «Нелинейные цепи с источниками постоянных токов и эдс»

Формы реализации: Соблюдение графика выполнения задания Тип контрольного мероприятия: Расчетно-графическая работа

Вес контрольного мероприятия в БРС: 25

Процедура проведения контрольного мероприятия: Проверяется правильность выполнения расчетного задания, аккуратность оформления пояснительной записки и построения графиков. Срок выполнения всех пунктов задания - до 10 недели. Оценивается правильность выполнения пунктов в установленные сроки. Контрольное мероприятие предназначено для оценки достижения обучающимися части запланированных результатов обучения по дисциплине и этапа формирования запланированной компетенции. Проверка выполняется в течение трех дней с момента сдачи работы студентом.

Краткое содержание задания:

В рассматриваемых схемах с нелинейным резистивным элементом (полупроводниковым диодом) происходит замыкание ключа в одной из ветвей. 1. Графическим методом определить рабочий участок вольт-амперной характеристики нелинейного элемента (ВАХ НЭ) для анализа переходного процесса в заданной схеме. 2. Применяя метод кусочно-линейной аппроксимации (два отрезка ломаной линии на рабочем участке ВАХ НЭ), рассчитать ток і и напряжение и нелинейного элемента в переходном процессе. Построить зависимость u(t). 3. Аппроксимировать рабочий участок характеристики нелинейного элемента полиномом второй степени і=au+bu2 и определить коэффициенты аппроксимации по граничным точкам рабочего участка. 4. Рассчитать напряжение и нелинейного элемента методом аналитической аппроксимации. Рассчитать несколько значений t(u) и нанести их на график, построенный в п.2. Расчетная схема выдается преподавателем. Значения компонентов схемы следующие: E=0,5(N+20) B, J =4(N+40) мА, L=0,01(N+1) Гн, C=0,1N мкФ, где N - номер учебной группы, R=40 Ом, r =100 Ом. 3. Вольт-амперная характеристика нелинейного элемента задана в таблице 1 для всех схем.

U, B	0	2	3	4	5	6	7	8	9	10	11
I, MA	0	3	5	9	14	20	30	42	60	100	160

Figure 13 Таблица 1

контрольные вопросы/задании.	
Знать: законы, физико-	1. Что представляет из себя метод кусочно-линейной
математические модели и	аппроксимации?
методы анализа нелинейных	2.В чем суть метода аналитической аппроксимации?
цепей в динамических режимах	
Уметь: применять аналитические	1.Пример расчетной схемы
и графические методы для расчета динамических режимов	Схема 1
нелинейных электрических	r
цепей	C TA

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 100 Описание характеристики выполнения знания: Оценка "отлично" выставляется, если расчетное задание выполнено полностью верно без опоздания и не более чем со второй попытки.

Оценка: 4

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Оценка "хорошо" выставляется, если либо в расчете присутствуют ошибки в заключительных действиях, которые не влияют на последующие расчеты в данном пункте; либо неверно указаны размерности величин; либо размерности величин не указаны; либо расчетное задание сделано полностью верно с опозданием не более чем на одну неделю и не более чем со второй попытки.

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется, если расчетное задание сделано полностью верно с опозданием более чем на 2 недели или более чем с третьей попытки.

Оиенка: 2

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется, если в расчете присутствуют ошибки, влияющие на последующие расчеты во всем расчетном задании.

КМ-6. Контрольная работа «Расчет установившихся процессов в длинных линиях без потерь в частотной области»

Формы реализации: Письменная работа

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 20

Процедура проведения контрольного мероприятия: Контрольная работа содержит одну задачу. Время выполнения 80 минут.

Краткое содержание задания:

Контрольная точка направлена на оценку освоения компетенции по вопросам, связанным с расчетом токов и напряжений в длинных линиях без потерь при воздействии синусоидальных источников тока или напряжения в установившихся режимах.

коптрольные вопросы/задания.	
Уметь: применять аналитические	1.Пример задачи:
методы для расчета	3 1 2
установившихся режимов в	l ₁ l ₂ Дано:
длинных линиях	$\varepsilon(t) = 12\sqrt{2}\sin(\omega t) B,$
	$r = 300 \mathrm{Om}, Z_B = 400 \mathrm{Om},$
	$l_1 = \frac{\lambda}{4}, \ l_2 = \frac{\lambda}{8}, Z_{n,x} = Z_{nnp} = 0$
	e(t)
	<u>Ø</u>
	3 1 2
	Figure 14 Найти: <i>U(y), I(y)</i>
	1

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 100

Описание характеристики выполнения знания: Оценка "отлично" выставляется, если задача решена полностью и верно, без недочетов; все графические построения выполнены аккуратно и четко; у всех величин указана размерность.

Оценка: 4

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Оценка "хорошо" выставляется, если задача решена в целом верно: все графические построения выполнены аккуратно и четко; либо не доделано не более 20 % задачи; либо присутствуют арифметические ошибки в вычислениях, искажающие результат не более чем в два раза; не у всех величин указана размерность.

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется, если либо правильно решено не менее 50 % задачи, либо использованы правильные формулы, но при подстановке значений допущены ошибки, либо присутствуют арифметические ошибки, искажающие результат более чем в два раза; отдельные графические построения выполнены неаккуратно и нечетко.

Оценка: 2

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется, если правильно решено менее 50 % задачи.

КМ-7. Защита лабораторной работы № 11

Формы реализации: Смешанная форма

Тип контрольного мероприятия: Лабораторная работа

Вес контрольного мероприятия в БРС: 10

Процедура проведения контрольного мероприятия: Выполняется индивидуальная защита выполненной лабораторной работы. В рамках защиты оценивается правильность выполнения экспериментальной части лабораторной работы студентом , полнота ответов на теоретические и практические вопросы. Защита проводится преподавателем. Время защиты составляет не более 15 минут на одного человека. На защиту представляется полностью оформленный протокол лабораторной работы.

Краткое содержание задания:

Защита лабораторной работы № 11 включает в себя представление обучающимся полностью оформленного отчета, ответы на вопросы и решение задачи.

Знать:	свойства	і, физин	:o-	1. Чему равен критерий, по которому переходят к
матема	тические	модели	И	расчету электрических цепей как цепей с
методь	и анализа	цепей	c	распределенными параметрами?
распре	деленными п	араметрами	I В	2. Что такое длинные линии без потерь?
устано	вившихся рез	жимах		3. Какие виды волн напряжений и токов в длинных
				линиях Вам известны?
				4. Какие способы согласования в длинных линиях без
				потерь Вы знаете?
				5. Как рассчитывается входное сопротивление
				длинной линии без потерь?
				6. Что такое коэффициент отражения?

Уметь: применять аналитические методы для расчета установившихся режимов в длинных линиях

1.Пример задачи:

Для линии без потерь с ZB=200 Ом при длине волны $\lambda = 20$ м построить распределение U(y)

для ZH= -200j, Ом. Длина линии 1=15 м, напряжение на нагрузке $U_2 = 5 \angle 45^\circ\,$ В

Описание шкалы оценивания:

Оиенка: 5

Нижний порог выполнения задания в процентах: 100

Описание характеристики выполнения знания: Оценка "отлично" выставляется, если на все вопросы даны правильные ответы, без недочетов, задача решена верно, отчет по лабораторной работе оформлен аккуратно, выполнены все задания.

Оценка: 4

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Оценка "хорошо" выставляется, если на все вопросы даны ответы, при этом суммарно допущено не более двух ошибок, за-дача решена верно, отчет по лабораторной работе оформлен аккуратно, выполнены все задания.

Оиенка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется, если не менее чем на половину вопросов даны правильные ответы либо при ответе часто допускались ошибки, задача решена верно, но не с первой попытки, отчет по лабораторной работе оформлен неаккуратно, выполнены все задания.

Оценка: 2

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется, если правильно даны ответы менее чем на половину вопросов, задача не решена, отчет по лабораторной работе оформлен неаккуратно, выполнены не все задания.

КМ-8. Расчетное задание, часть 2: «Переходные процессы в длинных линиях». Выполнение домашнего задания

Формы реализации: Соблюдение графика выполнения задания **Тип контрольного мероприятия**: Расчетно-графическая работа **Вес контрольного мероприятия в БРС**: 25

Процедура проведения контрольного Проверяется мероприятия: правильность выполнения расчетного задания, аккуратность оформления пояснительной записки и построения графиков. Срок выполнения всех пунктов задания - до 15 недели. Оценивается правильность выполнения пунктов в установленные сроки. Контрольное мероприятие предназначено для оценки достижения обучающимися части запланированных результатов обучения по дисциплине и этапа формирования запланированной компетенции. Проверка выполняется в течение трех дней с момента сдачи работы студентом. Выполнение домашнего задания предназначено для оценки достижения обучающимися части результатов обучения этапа запланированных ПО дисциплине формирования запланированной компетенции. Проверка выполняется в течение двух дней с момента сдачи работы студентом.

Краткое содержание задания:

Две однородные линии без потерь сопряжены через четырёхполюсник, содержащий один реактивный элемент. Электрическая схема соединений приведена на рис. 1. Линии характеризуются данными: $11 = 50 \cdot 3N \text{ km} \cdot 1 = 3,0 \cdot 105 \text{ km/c}$ $12 = 15 \cdot 3N \text{ km} \cdot 2 = 1,5 \cdot 105 \text{ km/c}$ $10 = 10 \cdot 3N \text{ kBr} \cdot 0 = 25 \text{ Om B}$ этих данных N задается для каждой группы преподавателем. Другие данные выбираются из таблицы 2, где сопротивления указаны в

Омах, а порядковый номер соответствует номеру, под которым фамилия студента записана в групповом журнале. Требуется построить графики распределения напряжения и тока вдоль линии для одного момента времени после замыкания рубильника: t1=11/v1+12/2v2 Указания: рекомендуется отсчёт времени t начинать с момента начала движения со-ответствующей волны, а расстояния откладывать по направлению лвижения волны.

Контрольные вопросы/задания:

Знать:	свойства	, физик	0-		
математич	еские	модели	И		
методы	анализа	цепей	c		
распредел	енными п	араметрами	В		
динамических режимах					

- 1. Как выглядит схема замещения длинной линии в точках подключения нагрузки при расчете напряжения нагрузки?
- 2. Какие волны образуются на стыке двух длинных линий при расчете переходных процессов в длинных линиях?

Уметь: применять аналитические методы для расчета динамических режимов в плинных линиях

2. Таблина 2

№ п/п	ZBl	Zв2	Z1	Z2	Z3
1.	250	75	C=0.5•N мкФ	50	200
2.	250	75	50	C=0.75•N мкФ	200
3.	250	75	50	50	C=1.5•N мкФ
4.	250	75	L=50•N мГн	50	200
5.	250	75	50	L=30•N мГн	200
6.	250	75	50	50	L=15•N мГн
7.	300	50	C=0.4•N мкФ	100	150

Уметь: применять аналитические методы для расчета установившихся режимов в трехфазных цепях

1.Три индуктивные катушки, каждая из которых имеет сопротивление xL=20 Ом, присоединены звездой к трехфазной линии с линейным напряжением 380 В.

Определить токи катушек.

2.От трехфазной линии с линейным напряжением 380 В получают питание три одинаковых приемника, соединенных звездой. Сопротивление каждого приемника Z=8+6j Ом.

Найти токи приемников.

3.К трехфазному трансформатору присоединены треугольником три одинаковых приемника, сопротивление каждого из них Z=16+12j Ом. Обмотки трансформатора соединены звездой с

фазным напряжением 127 В.
Найти фазные и линейные токи.

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 100

Описание характеристики выполнения знания: Оценка "отлично" выставляется, если расчетное задание выполнено полностью верно без опоздания и не более чем со второй попытки. Домашнее задание выполнено верно и в срок.

Оценка: 4

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Оценка "хорошо" выставляется, если либо в расчете присутствуют ошибки в заключительных действиях, которые не влияют на последующие расчеты в данном пункте; либо неверно указаны размерности величин; либо размерности величин не указаны; либо расчетное задание сделано полностью верно с опозданием не более чем на одну неделю и не более чем со второй попытки. Домашнее задание выполнено верно и в срок.

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется, если расчетное задание сделано полностью верно с опозданием более чем на 2 недели или более чем с третьей попытки. Домашнее задание выполнено верно и в срок.

Оценка: 2

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется, если в расчете присутствуют ошибки, влияющие на последующие расчеты во всем расчетном задании. Домашнее задание выполнено неверно и с опозданием срока.

Для курсового проекта/работы

3 семестр

І. Описание КП/КР

Обучающемуся выдается индивидуальная расчетная схема для выполнения задания. Задание состоит из двух частей

II. Примеры задания и темы работы

Пример задания

1. АНАЛИЗ ЧАСТОТНЫХ ХАРАКТЕРИСТИК ЦЕПИ

1.1. Предполагая, что операционный усилитель (ОУ) идеальный, получить передаточную функцию $H(p)=H(j\mathbf{w})$ в виде:

$$H(p) = \frac{b_2 p^2 + b_1 p + b_0}{p^2 + \left(\frac{\omega_0}{O}\right) p + \omega_0^2} = H(\omega) e^{j\phi(\omega)}.$$

Рассчитать добротность Q, частоту w0 и коэффициенты b0, b1, b2. Вывести соотношения для амплитудно-частотной (AЧX) H(w) и фазочастотной (ФЧX) характеристик цепи.

- 1.2. Построить графики AЧХ и ФЧХ, выбрать частотный интервал для последующего анализа на ЭВМ в системе ORCAD.
- 1.3. Для заданной цепи составить и нарисовать эквивалентную схему, заменив реальный ОУ его низкочастотной схемой замещения с параметрами: rBX = 50 кОм, rBЫX = 0,2 кОм, k =250.
- 1.4. Рассчитать АЧХ и ФЧХ цепи с реальным ОУ на ЭВМ в системе ORCAD. Построить полученные зависимости.
 - 1.5. Сравнить полученные в п. 1.2 и 1.4 частотные характеристики.

2. АНАЛИЗ ВРЕМЕННЫХ ХАРАКТЕРИСТИК ЦЕПИ

- 2.1. Предполагая, что ОУ идеальный, вывести формулу для пере-ходной h(t) характеристики цепи:
 - а) с использованием уравнений состояния и их решения во временной области;
 - б) с применением преобразования Лапласа.
- 2.2. Построить на графике зависимость h(t) и выбрать временной интервал для анализа цепи на ЭВМ в системе ORCAD.
- 2.3. Провести расчёт переходной характеристики h(t) исходной цепи (с реальным ОУ) на ЭВМ в системе ORCAD при заданных параметрах элементов исходной схемы. Построить полученную характеристику.
- 2.4. Сравнить полученные в п. 2.2 и 2.3 временные характеристики.

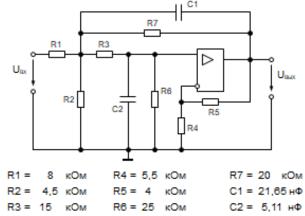


Figure 15 Пример расчетной схемы

Тематика КП/КР:

Расчёт частотных и временных характеристик ARC-цепей

КМ-1. Оценка выполнения раздела КР Описание шкалы оценивания

Оценка: зачтено

Описание характеристики выполнения знания:

Оценка: не зачтено

Описание характеристики выполнения знания:

КМ-2. Соблюдение графика выполнения КР и оценка выполнения раздела КР Описание шкалы оценивания

Оценка: зачтено

Описание характеристики выполнения знания:

Оценка: не зачтено

Описание характеристики выполнения знания:

КМ-3. Оценка выполнения раздела **КР** Описание шкалы оценивания

Оценка: зачтено

Описание характеристики выполнения знания:

Оценка: не зачтено

Описание характеристики выполнения знания:

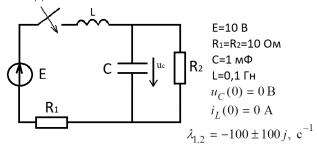
КМ-4. Соблюдение графика выполнения КР и качество оформления расчетнопояснительной записки Описание шкалы оценивания

Оценка: зачтено

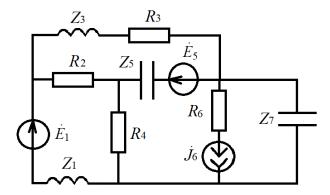
Описание характеристики выполнения знания:

Оценка: не зачтено

Описание характеристики выполнения знания:


СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

3 семестр


Форма промежуточной аттестации: Экзамен

Пример билета

- 1. Частотные характеристики последовательной RLC-цепи. Входное сопротивление, добротность.
- 2. Задачи:

Составить уравнения состояния и проверить корни характеристического уравнения

Написать уравнения по методу узловых потенциалов

Процедура проведения

Экзаменационный билет содержит один теоретический вопрос и практическую часть, состоящую из двух задач. Время подготовки обучающегося к ответу - 60 минут. Опрос проводится преподавателем в устой форме

I. Перечень компетенций/индикаторов и контрольных вопросов проверки результатов освоения дисциплины

1. Компетенция/Индикатор: ИД-3_{ОПК-1} Использует методы анализа и моделирования линейных и нелинейных цепей постоянного и переменного тока, цепей с распределенными параметрами, переходных процессов в электрических цепях

Вопросы, задания

1.1. Баланс комплексных мощностей. Передача мощности от активного двухполюсника к пассивному.

Две практические задачи следующих типов:

- расчет динамических режимов в электрических цепях первого порядка классическим методом;
- расчет параметров четырёхполюсников
- 2.1. Представление электрических сигналов во временной и частотной областях. Комплексная формула ряда Фурье.

Две практические задачи следующих типов:

- расчет динамических режимов в электрических цепях первого порядка при произвольном воздействии методом интеграла Дюамеля;
- составление системы уравнений по методу узловых потенциалов для электрических пепей
- 3.1. Принцип суперпозиции для линейной электрической цепи.

Две практические задачи следующих типов:

- расчет динамических режимов в электрических цепях первого порядка при произвольном воздействии методом интеграла Дюамеля;
- составление системы уравнений по методу узловых потенциалов для электрических пепей
- 4.1. Понятие о частотных электрических фильтрах (ФНЧ, ФВЧ, ППФ, ПЗФ). Условие передачи сигнала через фильтр без искажения. ВЧ-фильтры первого порядка. Две практические задачи следующих типов:
- расчет динамических режимов в электрических цепях второго порядка операторным методом;
- составление системы уравнений по методу узловых потенциалов для электрических цепей
- 5.1. Управляемые источники. Схемы замещения четырехполюсников с управляемыми источниками (на примере уравнений типа Н).

Две практические задачи следующих типов:

- расчет электрической цепи при действии синусоидальных источников напряжения и тока комплексным (символическим) методом расчета;
- расчет динамических режимов в электрических цепях второго порядка методом уравнений состояния
- 6.1. Обобщенная ветвь электрической цепи. Топологические матрицы графа (узловая А и контурная В).

Две практические задачи следующих типов:

- расчет динамических режимов в электрических цепях второго порядка классическим методом;
- расчет электрической цепи при действии постоянных источников напряжения и тока методом наложения
- 7.1. Четырехполюсные элементы, их уравнения и матрицы (типа Z, Y, H).

Две практические задачи следующих типов:

- расчет электрической цепи при действии синусоидальных источников напряжения и тока комплексным (символическим) методом расчета;
- расчет электрической цепи при действии постоянных источников напряжения и тока методом наложения
- 8.1. Теорема об активном двухполюснике (метод эквивалентного генератора).

Две практические задачи следующих типов:

- расчет динамических режимов в электрических цепях первого порядка классическим методом;
- расчет параметров четырёхполюсников
- 9.1. Частотные характеристики последовательной RLC-цепи. Рассмотреть на примере зависимости

$\dot{\mathbf{U}}_{\mathbf{B}\mathbf{b}\mathbf{I}\mathbf{X}} = \dot{\mathbf{U}}_{\mathbf{I}}$

Две практические задачи следующих типов:

- расчет электрических цепей со взаимной индуктивностью;
- составление системы уравнений по методу узловых потенциалов для электрических цепей
- 10.1. Решение уравнений состояния для случая постоянных источников тока и напряжения.

Две практические задачи следующих типов:

- расчет частотных характеристик в электрических цепях первого порядка;
- составление системы уравнений по методу узловых потенциалов для электрических цепей
- 11.1. Математические модели двухполюсных элементов цепи (во временной и частотной областях). Комплексные сопротивления и проводимости.

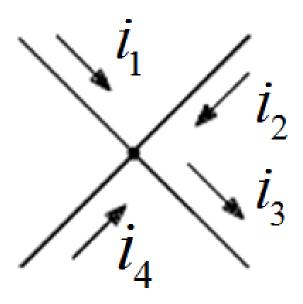
Две практические задачи следующих типов:

- расчет частотных характеристик в электрических цепях второго порядка;
- расчет электрической цепи при действии постоянных источников напряжения и тока методом наложения
- 12.1. Граф электрической цепи. Топологические и компонентные уравнения электрической цепи.

Две практические задачи следующих типов:

- расчет частотных характеристик в электрических цепях второго порядка;
- расчет электрической цепи при действии постоянных источников напряжения и тока методом наложения
- 13.1. Граф электрической цепи. Топологические матрицы графа (узловая A, контурная B). Закон Ома и законы Кирхгофа в матричной форме.

Две практические задачи следующих типов:


- расчет динамических режимов в электрических цепях первого порядка классическим методом;
- расчет частотных характеристик в электрических цепях второго порядка
- 14.1. Баланс мощности в цепи постоянного тока. Передача электроэнергии от активного двухполюсника к пассивному.

Две практические задачи следующих типов:

- расчет динамических режимов в электрических цепях первого порядка классическим методом;
- составление системы уравнений по методу узловых потенциалов для электрических цепей

Материалы для проверки остаточных знаний

1. Как записать уравнение по первому закону Кирхгофа для узла:

Ответы:

1. i3=i1+i2+i4 2. i3=-i1-i2-i4 3. i3+i1=i2+i4 4. i1-i2=i3+i4

Верный ответ: 1.

2. При последовательном соединении элементов в схеме одинаковым является:

Ответы:

- 1. мощность 2. напряжение 3. ток 4. сопротивление элементов Верный ответ: 3.
- 3. Как связаны ток и напряжение на индуктивности в цепи с синусоидальными источниками

Ответы:

1. равны между собой 2. ток опережает напряжение по фазе 3. их фазы совпадают 4. напряжение опережает ток по фазе

Верный ответ: 4.

- 4. Единицы измерения активной мощности в цепи с синусоидальными источниками Ответы:
- 1. Cm 2. Bt 3. BAP 4. BA

Верный ответ: 2.

5. Независимые начальные условия определяются:

Ответы

1. в установившемся режиме в цепях до коммутации 2. в установившемся режиме в цепях после коммутации 3. в первый момент времени после коммутации 4. через час после коммутации

Верный ответ: 1.

6.В чем заключаются законы коммутации

Ответы:

1. ток и напряжение на конденсаторе не меняются скачком 2. ток и напряжение на индуктивности не меняются скачком 3. ток на индуктивности и напряжение на конденсаторе не меняются скачком 4. мощности на резисторах не меняются скачком

Верный ответ: 3.

7. Каков физический смысл постоянной времени цепи

Ответы:

1. время включения источника 2. время отключения источника 3. время подсоединения конденсатора 4. скорость переходного процесса в цепях первого порядка

Верный ответ: 4.

8. Каков физический смысл АЧХ

Ответы:

- 1. фаза комплексной передаточной функции 2. активная часть характеристики 3. модуль комплексной передаточной функции 4. отношение мощностей активных элементов цепи Верный ответ: 3.
- 9. Баланс мощностей в электрических цепях это:

Ответы:

1. равенство мощностей источников напряжения мощностям источников тока 2. равенство мощностей всех источников мощностям всех потребителей 3. равенство мощностей резисторов мощностям конденсаторов 4. равенство мощностей резисторов мощностям индуктивных элементов

Верный ответ: 2.

- 10.Операторный метод расчета позволяет осуществлять расчет переходного процесса:
- 1. во временной области 2. в частотной области 3. в режиме согласованной нагрузки 4. с помощью операторов ЭВМ

Верный ответ: 2.

11. Какие опыты необходимо проделать для определения Z-параметров четырехполюсника

Ответы:

1. режимы короткого замыкания на входе и выходе четырехполюсника 2. режимы короткого замыкания на входе и разрыва на выходе четырехполюсника 3. режимы разрыва на входе и выходе четырехполюсника 4. режимы разрыва на входе и короткого замыкания на выходе четырехполюсника

Верный ответ: 3.

12. Фильтр низких частот пропускает:

Ответы:

1. сигналы в диапазоне изменения частоты от 0 до граничной частоты 2. сигналы в диапазоне изменения частоты от граничной частоты до бесконечности 3. сигналы в диапазоне изменения частоты от $\varpi 1$ до $\varpi 2$ 4. ток через себя

Верный ответ: 1.

13. Каково внутреннее сопротивление идеального амперметра

Ответы:

1. 100 Ом 2. 100 кОм 3. бесконечность 4. 0

Верный ответ: 4.

14. Колебательному процессу в цепях второго порядка соответствуют корни характеристического уравнения:

Ответы:

1. действительные разные 2. действительные равные 3. комплексно-сопряженные 4. равные нулю

Верный ответ: 3.

15.В электрических цепях возникают переходные процессы, если:

Ответы

1. резисторы меняют местами 2. в цепи действуют синусоидальные источники 3. в цепи с накопителями энергии происходит замыкание или размыкания ключа 4. в резистивных цепях отключают источник

Верный ответ: 3.

16. Каково внутреннее сопротивление идеального вольтметра

Ответы:

1. 0 2. бесконечность 3. 100 кОм 4. 100 Ом

Верный ответ: 2.

17. Чем определяется порядок электрического фильтра

Ответы:

1. количеством резисторов в схеме 2. количеством источников в схеме 3. количеством реактивных элементов в схеме 4. величиной мощности источников

Верный ответ: 3.

- 18. При параллельном соединении элементов в схеме одинаковым является: Ответы:
- 1. сопротивление элементов 2. ток 3. проводимость элементов 4. напряжение Верный ответ: 4.
- 19. Как связаны ток и напряжение на конденсаторе в цепи с синусоидальными источниками

Ответы:

1. равны между собой 2. ток отстаёт от напряжения по фазе 3. напряжение отстаёт от тока по фазе 4. их фазы совпадают

Верный ответ: 3.

20.В чем особенность магнитно-связанных катушек

Ответы:

1. всегда стоят рядом и соединены последовательно в любой цепи 2. всегда соединены параллельно между собой 3. токи через них протекают в разных направлениях 4. напряжение на катушках включает в себя две составляющие

Верный ответ: 4.

II. Описание шкалы оценивания

Оценка: 5

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: Выставляется оценка 5 («отлично»), если правильно выполнено практическое задание и при ответе на вопросы экзаменационного билета и на дополнительные вопросы обучающийся показал, что владеет материалом изученной дисциплины, свободно применяет свои знания для объяснения различных процессов и явлений или решения задач

Оценка: 4

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Выставляется оценка 4 («хорошо»), если правильно выполнено практическое задание или в нем допущено не более одной ошибки, которая была самостоятельно исправлена обучающимся, и при ответе на вопросы экзаменационного билета и на дополнительные вопросы обучающийся допускает негрубые ошибки

Оценка: 3

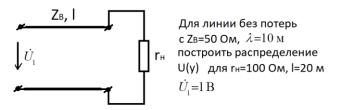
Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Выставляется оценка 3 («удовлетворительно»), если в выполненном практическом задании допущены грубые ошибки, которые затем исправлены обучающимся при участии экзаменатора или практическое задание не выполнено в полном объеме, но обучающийся смог довести решение до конца при участии экзаменатора, и в ответах на вопросы экзаменационного билета допущены ошибки

Оценка: 2

Описание характеристики выполнения знания: Выставляется оценка 2 («неудовлетворительно»), если практическое задание не выполнено или не даны ответы на вопросы экзаменационного билета и не выполнены критерии для оценки 3 («удовлетворительно»)

III. Правила выставления итоговой оценки по курсу


Оценка определяется в соответствии с Положением о балльно-рейтинговой системе для студентов НИУ «МЭИ» на основании семестровой и экзаменационной составляющих

4 семестр

Форма промежуточной аттестации: Экзамен

Пример билета

- 1. Задача ДЛ.
- 2. Применение численных методов для решения нелинейных цепей (метод простой итерации, метод Ньютона).

Процедура проведения

Экзаменационный билет содержит один теоретический вопрос и одну практическую задачу. Время подготовки обучающегося к ответу - 60 минут. Опрос проводится преподавателем в устой форме

I. Перечень компетенций/индикаторов и контрольных вопросов проверки результатов освоения дисциплины

1. Компетенция/Индикатор: ИД-3_{ОПК-1} Использует методы анализа и моделирования линейных и нелинейных цепей постоянного и переменного тока, цепей с распределенными параметрами, переходных процессов в электрических цепях

Вопросы, задания

1.1. Применение численных методов для решения нелинейных цепей (метод простой итерации, метод Ньютона).

Практическая задача следующего типа:

- расчет установившихся режимов в длинных линиях без потерь в частотной области
- 2.1. Первичные параметры длинных линий. Телеграфные уравнения длинной линии. Практическая задача следующего типа:
- графический способ расчета электрической цепи с нелинейными резистивными элементами
- 3.1. Первичные параметры длинных линий. Телеграфные уравнения длинной линии. Практическая задача следующего типа:
- графо-аналитический способ расчета электрической цепи с нелинейными резистивными элементами
- 4.1. Составление уравнений состояния для НЭЦ. Пример расчёта. Практическая задача следующего типа:
- расчет установившихся режимов в длинных линиях без потерь в частотной области

5.1. Методы расчёта нелинейных электрических цепей при постоянных токах и напряжениях (графический, с помощью кусочно-линейной аппроксимации).

Практическая задача следующего типа:

- расчет динамических режимов в длинных линиях без потерь
- 6.1. Анализ короткозамкнутой линии, разомкнутой линии.

Практическая задача следующего типа:

- аналитический способ расчета электрической цепи с нелинейными резистивными элементами
- 7.1. Соединение звездой и треугольником в трёхфазных цепях.

Практическая задача следующего типа:

- графо-аналитический способ расчета электрической цепи с нелинейными резистивными элементами
- 8.1. Трёхфазный генератор и трёхфазная нагрузка.

Практическая задача следующего типа:

- графический способ расчета электрической цепи с нелинейными резистивными элементами
- 9.1. Элементы нелинейной электрической цепи. Их характеристики. Аппроксимация характеристик нелинейных цепей.

Практическая задача следующего типа:

- расчет динамических режимов в длинных линиях без потерь
- 10.1. Согласование в длинных линиях.

Практическая задача следующего типа:

- графо-аналитический способ расчета электрической цепи с нелинейными резистивными элементами
- 11.1. Анализ короткозамкнутой линии, разомкнутой линии и линии, нагруженной на согласованное сопротивление.

Практическая задача следующего типа:

- графический способ расчета электрической цепи с нелинейными резистивными элементами
- 12.1. Анализ длинных линий в частотной области. Коэффициент отражения, входное сопротивление длинной линии, соотношения для токов и напряжений Практическая задача следующего типа:
- графический способ расчета электрической цепи с нелинейными резистивными элементами
- 13.1. Анализ переходных процессов в длинной линии. Расчёт прямых и обратных волн. Практическая задача следующего типа:
- аналитический способ расчета электрической цепи с нелинейными резистивными элементами
- 14.1. Составление узловых уравнений для нелинейных электрических цепей. Особенности решения нелинейных уравнений.

Практическая задача следующего типа:

- расчет динамических режимов в длинных линиях без потерь.
- 15.1. Метод дискретных линейных моделей нелинейных резистивных цепей.

Практическая задача следующего типа:

- расчет согласующего устройства в длинных линиях без потерь
- 16.1. Применение условной линеаризации нелинейного элемента и кусочно-линейной аппроксимации характеристик нелинейного элемента для расчёта динамических режимов в нелинейных цепях.

Практическая задача следующего типа:

- расчет установившихся режимов в длинных линиях без потерь в частотной области
- 17.1. Применение аналитической аппроксимации характеристик нелинейных элементов для расчёта динамических режимов.

Практическая задача следующего типа:

– расчет установившихся режимов в длинных линиях без потерь в частотной области 18.1. Метод дискретных линейных моделей нелинейных резистивных цепей.

Практическая задача следующего типа:

– расчет установившихся режимов в длинных линиях без потерь в частотной области 19.1. Составление узловых уравнений для нелинейных электрических цепей.

Особенности решения нелинейных уравнений.

Практическая задача следующего типа:

 – расчет установившихся режимов в длинных линиях без потерь в частотной области
 20.1. Решение уравнений длинной линии в операторной форме. Вторичные параметры длинной линии.

Практическая задача следующего типа:

 графический способ расчета электрической цепи с нелинейными резистивными элементами

Материалы для проверки остаточных знаний

1.ВАХ - это:

Ответы:

- 1. внешняя аналитическая характеристика 2. внутренняя аналитическая характеристика
- 3. возможная аналитическая характеристика 4. вольт-амперная характеристика Верный ответ: 4.
- 2.У нелинейных резисторов величина сопротивления:

Ответы:

- 1. постоянная 2. меняет своё значение 3. отрицательная 4. всегда равна нулю Верный ответ: 2.
- 3.Идеальный диод:

Ответы:

1. пропускает ток при отрицательных напряжениях 2. эквивалентен разрыву в цепи при положительных напряжениях 3. эквивалентен нулевому сопротивлению при положительных напряжениях 4. эквивалентен конденсатору при отрицательных напряжениях

Верный ответ: 3.

4.Для построения общей BAX схемы при последовательном соединении нелинейных элементов:

Ответы:

1. складываются токи при одинаковом напряжении 2. вычитаются токи при одинаковом напряжении 3. вычитаются напряжения при одинаковом токе 4. складываются напряжения при одинаковом токе

Верный ответ: 4.

5. Для построения общей BAX схемы при параллельном соединении нелинейных элементов:

Ответы:

1. вычитаются токи при одинаковом напряжении 2. складываются токи при одинаковом напряжении 3. вычитаются напряжения при одинаковом токе 4. складываются напряжения при одинаковом токе

Верный ответ: 2.

6.Схема двухполупериодного выпрямителя напряжения (мостовая) состоит из соединения:

Ответы:

1. трёх идеальных диодов 2. пяти идеальных диодов 3. четырёх идеальных диодов 4. шести идеальных диодов

Верный ответ: 3.

7. Какая электрическая цепь называется нелинейной

Ответы:

1. если в её составе содержится не менее трёх нелинейных резисторов 2. если в её составе содержится не менее двух нелинейных резисторов и один конденсатор 3. если в её составе содержится хотя бы один нелинейный элемент 4. если в её составе содержится не менее двух нелинейных резисторов и одна индуктивность

Верный ответ: 3.

8.Схема однополупериодного выпрямителя напряжения применяется для получения:

Ответы:

1. синусоидального напряжения 2. постоянного напряжения 3. прямоугольного напряжения 4. треугольного напряжения

Верный ответ: 2.

9. Что такое Zв

Ответы:

1. входное сопротивление длинной линии 2. волновое сопротивление длинной линии 3. входная проводимость длинной линии 4. входная мощность длинной линии

Верный ответ: 2.

10.В режиме согласованной нагрузки в длинной линии без потерь:

Ответы:

1. $Z_{BX} > Z_{B}$ 2. Z_{BX}

Верный ответ: 3.

11.В длинных линиях без потерь

Ответы:

1. напряжение равно сумме напряжений прямой и обратной волны 2. напряжение равно разности напряжений прямой и обратной волны 3. напряжение равно произведению напряжений прямой и обратной волны 4. напряжение равно частному напряжений прямой и обратной волны

Верный ответ: 1.

12. При Zн=0 в длинной линии без потерь

Ответы:

1. возникает бегущая волна напряжения 2. возникает стоячая волна напряжения 3. напряжение вдоль всей линии равно 0 4. ток вдоль всей линии равен 0

Верный ответ: 2.

13.В трёхфазных источниках

Ответы:

1. величины напряжений источников абсолютно одинаковые 2. величины напряжений источников отличаются в 3 раза 3. фазы всех источников одинаковые 4. модули напряжений одинаковые, а фазы отличаются на 120 градусов

Верный ответ: 4.

14.В длинных линиях:

Ответы:

1. величина тока и напряжения зависят от расстояния 2. величина тока и напряжения не зависят от расстояния 3. величина тока и напряжения постоянны 4. величина тока и напряжения равны нулю

Верный ответ: 1.

15. Что такое коэффициент отражения

Ответы:

- 1. отношение мощностей источника и нагрузки 2. отношение токов источника и нагрузки
- 3. отношение напряжений обратной и прямой волн в нагрузке 4. отношение напряжений обратной и прямой волн в точках подключения генератора

Верный ответ: 3.

II. Описание шкалы оценивания

Оценка: 5

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: Выставляется оценка 5 («отлично»), если правильно выполнено практическое задание и при ответе на вопросы экзаменационного билета и на дополнительные вопросы обучающийся показал, что владеет материалом изученной дисциплины, свободно применяет свои знания для объяснения различных процессов и явлений или решения задач

Оценка: 4

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Выставляется оценка 4 («хорошо»), если правильно выполнено практическое задание или в нем допущено не более одной ошибки, которая была самостоятельно исправлена обучающимся, и при ответе на вопросы экзаменационного билета и на дополнительные вопросы обучающийся допускает негрубые ошибки

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Выставляется оценка 3 («удовлетворительно»), если в выполненном практическом задании допущены грубые ошибки, которые затем исправлены обучающимся при участии экзаменатора или практическое задание не выполнено в полном объеме, но обучающийся смог довести решение до конца при участии экзаменатора, и в ответах на вопросы экзаменационного билета допущены ошибки

Оценка: 2

Описание характеристики выполнения знания: Выставляется оценка 2 («неудовлетворительно»), если практическое задание не выполнено или не даны ответы на вопросы экзаменационного билета и не выполнены критерии для оценки 3 («удовлетворительно»)

ІІІ. Правила выставления итоговой оценки по курсу

Оценка определяется в соответствии с Положением о балльно-рейтинговой системе для студентов НИУ «МЭИ» на основании семестровой и экзаменационной составляющих

Для курсового проекта/работы:

3 семестр

Форма проведения: Защита КП/КР

І. Процедура защиты КП/КР

На защите курсовой работы обучающемуся задаются теоретические и практические вопросы по представленной расчетно-пояснительной записке

II. Описание шкалы оценивания

Оценка: 5

Нижний порог выполнения задания в процентах: 100 Описание характеристики выполнения знания: Выставляется оценка 5 («отлично»), если на все вопросы даны правильные ответы, без недочетов. Расчетно-пояснительная записка оформлена аккуратно, все расчеты выполнены верно

Оценка: 4

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Выставляется оценка 4 («хорошо»), если на все вопросы даны ответы, при этом суммарно допущено не более двух ошибок. Расчетно-пояснительная записка оформлена аккуратно, все расчеты выполнены верно, однако возможны небольшие недочеты (не указаны размерности у величин) либо расчетно-пояснительная записка сдана с опозданием срока не более чем на неделю

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Выставляется оценка 3 («удовлетворительно»), если не менее чем на половину вопросов даны правильные ответы либо при ответе часто допускались ошибки. Расчетно-пояснительная записка оформлена неаккуратно, все расчеты выполнены верно, однако возможны небольшие недочеты (не указаны размерности у величин) либо расчетно-пояснительная записка сдана с опозданием срока более чем на неделю

Оценка: 2

Описание характеристики выполнения знания: Выставляется оценка 2 («неудовлетворительно»), если курсовая работа не выполнена или выполнена преимущественно неправильно

III. Правила выставления итоговой оценки по курсу

Оценка за курсовую работу определяется в соответствии с Положением о балльно-рейтинговой системе для студентов НИУ «МЭИ»