Министерство науки и высшего образования РФ Федеральное государственное бюджетное образовательное учреждение высшего образования

«Национальный исследовательский университет «МЭИ»

Направление подготовки/специальность: 13.03.03 Энергетическое машиностроение

Наименование образовательной программы: Автоматизированные гидравлические и пневматические системы и агрегаты

Уровень образования: высшее образование - бакалавриат

Форма обучения: Очная

Рабочая программа дисциплины ТЕРМОДИНАМИКА И ТЕПЛО- И МАССООБМЕН

Блок:	Блок 1 «Дисциплины (модули)»
Часть образовательной программы:	Обязательная
№ дисциплины по учебному плану:	Б1.О.26
Трудоемкость в зачетных единицах:	4 семестр - 5;
Часов (всего) по учебному плану:	180 часов
Лекции	4 семестр - 32 часа;
Практические занятия	4 семестр - 32 часа;
Лабораторные работы	4 семестр - 16 часов;
Консультации	4 семестр - 2 часа;
Самостоятельная работа	4 семестр - 97,5 часа;
в том числе на КП/КР	не предусмотрено учебным планом
Иная контактная работа	проводится в рамках часов аудиторных занятий
включая: Домашнее задание Лабораторная работа	
Промежуточная аттестация:	
Экзамен	4 семестр - 0,5 часа;

Москва 2024

ПРОГРАММУ СОСТАВИЛ:

Преподаватель

NICE TO SO	Подписано электронн	ой подписью ФГБОУ ВО «НИУ «МЭИ»
2 11 100 100 100 100 100 100 100 100 100	Сведен	ия о владельце ЦЭП МЭИ
	Владелец	Макеев А.Н.
» <u>МЭИ</u> «	Идентификатор	Rde963724-MakeevAN-d54bbff2

СОГЛАСОВАНО:

Руководитель образовательной программы

Н.И. Почернина

А.Н. Макеев

Заведующий выпускающей кафедрой

NASO VE	Подписано электронной подписью ФГБОУ ВО «НИУ «МЭИ»												
THE PROPERTY AND S	Сведен	ия о владельце ЦЭП МЭИ											
-	Владелец	Волков А.В.											
» <u>М≎И</u> «	Идентификатор	R369593e9-VolkovAV-775a725f											

А.В. Волков

1. ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Цель освоения дисциплины: изучение основ термодинамики и теплопередачи; понимание и усвоение закономерностей превращения энергии, процессов переноса теплоты; освоение простейших инженерных методов расчета термодинамических процессов и процессов тепломассообмена, протекающих в энергетических и теплотехнологических устройствах

Задачи дисциплины

- изучение основ и закономерностей превращения энергии, термодинамических процессов перехода энергии в форме теплоты в форму работы и обратно, физико-математических моделей этих процессов;
- освоение простейших методов расчета термодинамических свойств рабочих тел, теплоты и работы для различных термодинамических процессов в энергетических и теплотехнологических установок;
- освоение простейших методов расчета термодинамических свойств рабочих тел, теплоты и работы для различных термодинамических процессов в энергетических и теплотехнологических установок;
- освоение принципов и методов расчета тепломассообмена в энергетических и теплотехнологических устройствах.

Формируемые у обучающегося компетенции и запланированные результаты обучения по дисциплине, соотнесенные с индикаторами достижения компетенций:

Код и наименование компетенции	Код и наименование индикатора достижения компетенции	Запланированные результаты обучения
ОПК-4 Способен применять в расчетах теоретические основы рабочих процессов в энергетических машинах и установках	ИД-1 _{ОПК-4} Демонстрирует понимание основных законов термодинамики, выполняет расчеты основных показателей термодинамических циклов и проводит анализ их эффективности	знать: - законы сохранения и превращения энергии в энергетических машинах и установках; - простейшие методы расчета термодинамических процессов в элементах энергетических машин, установок и устройств, а также схем энергетических машин, установок и устройств. уметь: - рассчитывать и находить термические и калорические свойства рабочих тел энергетических машин, установок и устройств; - проводить расчеты термодинамических процессов, протекающих в природе, технологических машинах, установках и устройствах.
ОПК-4 Способен применять в расчетах теоретические основы рабочих процессов в энергетических машинах и установках	ИД-3 _{ОПК-4} Демонстрирует понимание основных законов и способов переноса теплоты и массы, проводит исследования и расчет процессов тепломассообмена	знать: - методы расчета теплообменного оборудования; - законы и основные физико- математические модели процессов переноса теплоты и массы применительно к теплотехническим и

Код и наименование компетенции	Код и наименование индикатора достижения компетенции	Запланированные результаты обучения
	в соответствии с заданной	теплотехнологическим установкам и
	методикой	системам.
		уметь:
		- выполнять тепловой расчет
		теплообменного оборудования;
		- рассчитывать температурные поля и
		тепловые потоки в тепловых и
		теплотехнологических установках.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ ВО

Дисциплина относится к основной профессиональной образовательной программе Автоматизированные гидравлические и пневматические системы и агрегаты (далее – ОПОП), направления подготовки 13.03.03 Энергетическое машиностроение, уровень образования: высшее образование - бакалавриат.

Базируется на уровне среднего общего образования.

Результаты обучения, полученные при освоении дисциплины, необходимы при выполнении выпускной квалификационной работы.

3. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

3.1 Структура дисциплины Общая трудоемкость дисциплины составляет 5 зачетных единиц, 180 часов.

	D/	В			Распределение трудоемкости раздела (в часах) по видам учебной работы									
No	Разделы/темы дисциплины/формы	асод	стр				Конта	ктная раб	ота				CP	Содержание самостоятельной работы/
п/п	промежуточной	сего часон на раздел	Семестр				Консу	льтация	ИК	P		Работа в	Подготовка к	методические указания
	аттестации	Всего часов на раздел	C	Лек	Лаб	Пр	КПР	ГК	ИККП	ТК	ПА	семестре	аттестации /контроль	
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	Основные законы термодинамики. Термодинамические процессы и циклы идеальных газов	38	4	8	4	8	-	-	-	-	-	18	-	Подготовка к лабораторной работе: Лабораторная работа № 4 «Определение изобарной теплоемкости воздуха» Для выполнения заданий по лабораторной работе необходимо предварительно изучить тему и
1.1	Основные законы термодинамики	10		2	-	2	-	-	-	-	-	6	-	задачи выполнения лабораторной работы, а так же изучить вопросы вариантов
1.2	Термодинамические процессы и циклы идеальных газов	28		6	4	6	-	-	-		-	12	-	обработки результатов по изученному в разделе "Основные законы термодинамики. Термодинамические процессы и циклы идеальных газов" материалу. Подготовка к практическим занятиям: Изучение материала по разделу "Основные законы термодинамики. Термодинамические процессы и циклы идеальных газов" подготовка к выполнению заданий на практических занятиях Самостоятельное изучение теоретического материала: Изучение дополнительного материала по разделу "Основные законы термодинамики. Термодинамические процессы и циклы идеальных газов" Подготовка расчетных заданий: Студенты необходимо повторить теоретический материал, разобрать примеры решения аналогичных задач, провести расчеты по варианту задания и сделать выводы. Пример

													задания: Провести расчет термодинамического цикла. Рабочее тело - воздух. Определить термодинамические параметры рабочего тела в основных точках цикла. Найти удельную работу расширения, удельную располагаемую работу, изменение удельной внутренней энергии, удельной энтальпии, удельной энтропии для каждого процесса и для цикла в целом Изучение материалов литературных источников: [1], стр. 6-35, 42-53, 71-79, 187-200, 257-270 [5], стр. 34-80, 145-170
2	Реальные газы. Циклы паросиловых установок	38	8	4	8	-	-	1	-	1	18	-	Подготовка к лабораторной работе: Лабораторная работа № 7 «Истечение водяного пара через суживающееся сопло»
2.1	Реальные газы. Водяной пар	20	4	4	4	-	-	-	-	1	8	-	Для выполнения заданий по лабораторной работе необходимо предварительно изучить
2.2	Циклы паросиловых установок	18	4		4	-	-	1			10	-	тему и задачи выполнения лабораторной работы, а так же изучить вопросы вариантов обработки результатов по изученному в разделе "Реальные газы. Циклы паросиловых установок" материалу. Подготовка к практическим занятиям: Изучение материала по разделу "Реальные газы. Циклы паросиловых установок" подготовка к выполнению заданий на практических занятиях Самостоятельное изучение теоретического материала: Изучение дополнительного материала: Изучение дополнительного материала: "Реальные газы. Циклы паросиловых установок" Подготовка расчетных заданий: Задания ориентированы на решения минизадач по разделу "Реальные газы. Циклы паросиловых установок". Студенты необходимо повторить теоретический материал, разобрать примеры решения аналогичных задач, провести

												расчеты по варианту задания и сделать выводы. В задание входит три задачи. Пример задания: 1. Определите температуру, энтальпию, внутреннюю энергию и энтропию водяного пара при заданном давлении и температуре с помощью h-s диаграммы. 2. Определите температуру, энтальпию, внутреннюю энергию и энтропию водяного пара при заданном давлении и температуре с помощью таблиц воды и водяного пара. 3. Выполнить расчет обратимого цикла Ренкина для двух вариантов, считая в первом случае поступающий в турбину пар сухим насыщенным при давлении р1, а во втором случае — перегретым с давлением р1 и температурой t1. Давление отработанного пара р2 для обоих вариантов одинаковое. Расчетом определить количество теплоты, подведенной в цикле q1, работу цикла lц, термический КПД qt, потери теплоты в конденсаторе турбины q2 и удельный расход пара на выработку 1 кВт-ч электроэнергии d. Определить также степень сухости отработанного пара х2 в каждом варианте. Изучение материалов литературных источников: [1], стр. 170-191, 294-307 [2], стр. 15-90 [3], стр. 1
3	Основные понятия тепломассообмена. Теплопроводность	22	6 4	6	-	-	-	-	1	6	-	Подготовка к лабораторной работе: Лабораторные работы цикла «Стационарная теплопроводность» Для выполнения заданий
3.1	Основные понятия тепломассообмена. Теплопроводность	22	6 4	6	-	-	-	-	-	6	-	по лабораторной работе необходимо предварительно изучить тему и задачи выполнения лабораторной работы, а так же изучить вопросы вариантов обработки результатов по изученному в разделе "Основные понятия тепломассообмена.

						Теплопроводность" материалу.
						Подготовка к практическим занятиям:
						Изучение материала по разделу "Основные
						понятия тепломассообмена.
						Теплопроводность" подготовка к
						выполнению заданий на практических
						занятиях
						Самостоятельное изучение
						<i>теоретического материала:</i> Изучение
						дополнительного материала по разделу
						"Основные понятия тепломассообмена.
						Теплопроводность"
						<i>Подготовка расчетных заданий:</i> Задания
						ориентированы на решения минизадач по
						разделу "Основные понятия
						тепломассообмена. Теплопроводность".
						Студенты необходимо повторить
						теоретический материал, разобрать примеры
						решения аналогичных задач. провести
						расчеты по варианту задания и сделать
						выводы. Расчетное задание состоит из двух
						задач. Например: 1. Стены сушильной
						камеры выполнены из слоя красного
						кирпича толщиной 250 мм и слоя
						строительного войлока. Температура на
						внешней поверхности кирпичного слоя 110
						°С и на поверхности войлочного слоя 25°С.
						Коэффициенты теплопроводности
						материалов, соответственно, 0,7 Вт/(м·°С) и
						$0.0465 \mathrm{Br/(m\cdot {}^{\circ}\mathrm{C})}$. Вычислить температуру в
						плоскости соприкосновения слоев и толщину
						войлочного слоя при условии, что тепловые
						потери через 1 м2 стенки камеры не
						превышают 110 Вт/м2 2. По стальному
						(коэффициент теплопроводности 40
						Вт/(м·К)) неизолированному трубопроводу
						диаметром 76/63 мм течет хладагент,
						температура которого -20°С. Температура
						воздуха в помещении, где проходит
						трубопровод, 20°С. Коэффициент

													теплоотдачи со стороны воздуха 10 Вт/(м2·К), со стороны хладагента 1000 Вт/(м2·К). На сколько снизится потеря холода, если трубопровод покрыть слоем изоляции (коэффициент теплопроводности 0,05 Вт/(м·К)) толщиной 50 мм? Прочие условия считать неизменными Изучение материалов литературных источников: [4], стр. 125-130, 152-157, 182-192, 200-207, 222-226, 441-454 [5], стр. 6-23 [6], стр. 31-45
4	Конвективный теплообмен. Теплообменные аппараты	46	10	4	10	1	-	ı	-	ı	22	-	Подготовка к лабораторной работе: Лабораторные работы цикла «Внешняя задача конвективного теплообмена» Для выполнения заданий по лабораторной работе
4.1	Конвективный теплообмен	22	6	4	6	ı	-	-	-	1	6	-	необходимо предварительно изучить тему и задачи выполнения лабораторной работы, а
4.2	Теплообменные аппараты	24	4	-	4		-		-		16	-	так же изучить вопросы вариантов обработки результатов по изученному в разделе "Конвективный теплообмен. Теплообменные аппараты" материалу. Модготовка к практическим занятиям: Студенты необходимо повторить теоретический материал, разобрать примеры решения аналогичных задач, провести расчеты по варианту задания и сделать выводы. Пример задания: провести тепловой расчет змеевикового экономайзера, предназначенного для подогрева воды в количестве GB, кг/с от температуры на входе tв1,°C до температуры на выходе tв2 = °C. Массовый расход дымовых газов Gr, кг/с. Температура газов перед экономайзером tr1, °C. Вода движется внутри труб со скоростью wв, м/с. Газы движутся поперечным потоком снаружи труб. Скорость в узком сечении трубного пучка при средней температуре

Экзамен	36.0	-	-	_	-	2	_	-	0.5	-	33.5	газа wг, м/с. Поверхность нагрева экономайзера состоит из стальных труб диаметром d2/d1, мм, расположенных в шахматном порядке с относительным поперечным шагом S1/d2, и относительным продольным шагом S2/d2 Самостоятельное изучение теоретического материала: Изучение дополнительного материала по разделу "Конвективный теплообмен. Теплообменные аппараты" Подготовка расчетных заданий: Задания ориентированы на решения минизадач по разделу "Конвективный теплообмен. Теплообменные аппараты". Студенты необходимо повторить теоретический материал, разобрать примеры решения аналогичных задач. провести расчеты по варианту задания и сделать выводы. В качестве задания используются следующие упражнения: Изучение материалов литературных источников: [4], стр. 7-21, 24-40, 46-48, 74-92 [6], стр. 267-275, 286-294, 511-523
Всего за семестр	180.0	32	16	32	-	2	-	-	0.5	64	33.5	
Итого за семестр	180.0	32	16	32		2	-		0.5		97.5	
	200.0		1			_			٠			

Примечание: Лек – лекции; Лаб – лабораторные работы; Пр – практические занятия; КПР – аудиторные консультации по курсовым проектам/работам; ИККП – индивидуальные консультации по курсовым проектам/работам; ГК- групповые консультации по разделам дисциплины; СР – самостоятельная работа студента; ИКР – иная контактная работа; ТК – текущий контроль; ПА – промежуточная аттестация

3.2 Краткое содержание разделов

1. Основные законы термодинамики. Термодинамические процессы и циклы идеальных газов

1.1. Основные законы термодинамики

Формулировки и аналитические выражения Первого закона термодинамики для неподвижных систем и для потоков вещества, особенности их применения. Уравнения теплового (энергетического) баланса. Формулировки и аналитические выражения Второго закона термодинамики для обратимых и необратимых процессов. Основы эксергетического анализа термодинамических систем.

1.2. Термодинамические процессы и циклы идеальных газов

Использование Первого и Второго законов термодинамики при расчете термодинамических процессов идеальных газов. Расчет процессов идеального газа, теплоемкость которого зависит от температуры. Расчет циклов идеального газа. Термодинамический анализ циклов...

2. Реальные газы. Циклы паросиловых установок

2.1. Реальные газы. Водяной пар

Равновесие термодинамических систем. Фазовые переходы. Фазовая диаграмма вещества. Правило фаз Гиббса. Условия фазового равновесия. Уравнение Клайперона – Клаузиуса. Термодинамические свойства реальных веществ. Определение состояния и расчет процессов для реального газа (на примере воды и водяного пара)..

2.2. Циклы паросиловых установок

Циклы паро-турбинных установок (ПТУ). Способы повышения термического к.п.д. цикла ПТУ. Основные характеристики (технико-экономические показатели) ПТУ и тепловой электрической станции (ТЭС).

3. Основные понятия тепломассообмена. Теплопроводность

3.1. Основные понятия тепломассообмена. Теплопроводность

Способы переноса теплоты. Основные понятия теплообмена: температурное поле, градиент температуры, тепловой поток, плотность теплового потока. Вектор плотности теплового потока. Теплопроводность. Закон Фурье. Теплоотдача. Закон Ньютона-Рихмана. Дифференциальное уравнение теплопроводности. Условия однозначности. Перенос теплоты в плоской стенке и цилиндрической стенках при граничных условиях первого и третьего рода. Теплопередача. Термические сопротивления. Коэффициент теплопередачи. Нестационарные задачи теплопроводности. Температурное поле в процессе охлаждения (нагревания) бесконечной пластины, бесконечного цилиндра и тел конечных размеров.

4. Конвективный теплообмен. Теплообменные аппараты

4.1. Конвективный теплообмен

Математическое описание процесса конвективного теплообмена:. Условия однозначности. Уравнение теплоотдачи. Дифференциальные уравнения конвективного теплообмена в приближении пограничного слоя. Безразмерный вид математического описания конвективного теплообмена. Безразмерные комплексы: число Рейнольдса, число Грасгофа, число Релея, число Нуссельта. Теплоотдача при свободном и вынужденном

движении жидкости около тел (пластина, труба), находящихся в неограниченном объёме жидкости. Теплообмен при вынужденном движении теплоносителей в трубах и каналах.

4.2. Теплообменные аппараты

Классификация теплообменных аппаратов. Уравнения теплового баланса теплопередачи. Среднелогарифмический температурный напор. Прямоток, противоток, сложные схемы движения теплоносителей. Конструкторский и поверочный тепловые рекуперативного теплообменника. Сравнение прямотока расчеты И противотока. Гидравлическое сопротивление теплообменных аппаратов.

3.3. Темы практических занятий

- 1. Конструктивный расчет теплообменного аппарата;
- 2. Радиационный теплообмен;
- 3. Внешняя и внутренняя задача конвективного теплообмена;
- 4. Основные понятия тепломассообмена. Задачи стационарный теплопроводности в плоской и цилиндрической стенок при граничных условиях первого и третьего рода;
- 5. Циклы паросиловых установок;
- 6. Процессы реальных газов (водяной пар). Циклы паросиловых установок;
- 7. Термодинамические процессы и циклы идеальных газов;
- 8. Первый и второй законы термодинамики. Теплоемкость. Газовые смеси.

3.4. Темы лабораторных работ

- 1. Внешняя задача конвективного теплообмена;
- 2. Определение изобарной теплоемкости воздуха;
- 3. Стационарная теплопроводность;
- 4. Истечение водяного пара через суживающееся сопло.

3.5 Консультации

3.6 Тематика курсовых проектов/курсовых работ

Курсовой проект/ работа не предусмотрены

3.7. Соответствие разделов дисциплины и формируемых в них компетенций

5.7. Соответствие разделов дисциплины и формируемых в н	ил компстенци					
			мер ј			Оценочное средство
Запланированные результаты обучения по дисциплине	Коды		сцип.		`	(тип и наименование)
(в соответствии с разделом 1)	индикаторов	co	ответ		ис	
(в соответствии с разделом 1)			п.3	.1)		
		1	2	3	4	
Знать:						
простейшие методы расчета термодинамических процессов в						Лабораторная работа/Лабораторная
элементах энергетических машин, установок и устройств, а						работа № 7 «Истечение водяного пара
также схем энергетических машин, установок и устройств	XX 7 4					через суживающееся сопло»
	ИД-1 _{ОПК-4}		+			Домашнее задание/Определение
						параметров водяного пара. Расчет цикла
						паротурбинной установки
законы сохранения и превращения энергии в энергетических						Лабораторная работа/Лабораторная
машинах и установках						работа № 4 «Определение изобарной
Mammax II yourobkax	ΙЛΠ 1					теплоемкости воздуха
	ИД-1 _{ОПК-4}	+				·
						Домашнее задание/Расчет
						термодинамического цикла
законы и основные физико-математические модели процессов						Домашнее задание/Задачи стационарной
переноса теплоты и массы применительно к						теплопроводности
теплотехническим и теплотехнологическим установкам и	ИД-3 _{ОПК-4}			+		Лабораторная работа/Лабораторные
системам						работы цикла «Стационарная
						теплопроводность»
методы расчета теплообменного оборудования						Лабораторная работа/Лабораторные
						работы цикла «Внешняя задача
	ИД-3 _{ОПК-4}				+	конвективного теплообмена»
	JOHK-4				'	Домашнее задание/Расчет
						теплообменного аппарата
Уметь:						теплоооменного аппарата
						Лабораторная работа/Лабораторная
проводить расчеты термодинамических процессов,	ИД-1 _{ОПК-4}	+				работа № 4 «Определение изобарной
протекающих в природе, технологических процессах,						раоота лу 4 «Определение изобарной

энергетических машинах, установках и устройствах					теплоемкости воздуха Домашнее задание/Расчет
рассчитывать и находить термические и калорические свойства рабочих тел энергетических машин, установок и устройств	ИД-1 _{ОПК-4}	+			термодинамического цикла Лабораторная работа/Лабораторная работа № 7 «Истечение водяного пара через суживающееся сопло» Домашнее задание/Определение параметров водяного пара. Расчет цикла паротурбинной установки
рассчитывать температурные поля и тепловые потоки в тепловых и теплотехнологических установках	ИД-3опк-4		+		Домашнее задание/Задачи стационарной теплопроводности Лабораторная работа/Лабораторные работы цикла «Стационарная теплопроводность»
выполнять тепловой расчет теплообменного оборудования	ИД-3 _{ОПК-4}			+	Лабораторная работа/Лабораторные работы цикла «Внешняя задача конвективного теплообмена» Домашнее задание/Расчет теплообменного аппарата

4. КОМПЕТЕНТНОСТНО-ОРИЕНТИРОВАННЫЕ ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ КОНТРОЛЯ ОСВОЕНИЯ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ (ТЕКУЩИЙ КОНТРОЛЬ УСПЕВАЕМОСТИ, ПРОМЕЖУТОЧНАЯ АТТЕСТАЦИЯ ПО ДИСЦИПЛИНЕ)

4.1. Текущий контроль успеваемости

4 семестр

Форма реализации: Письменная работа

- 1. Задачи стационарной теплопроводности (Домашнее задание)
- 2. Определение параметров водяного пара. Расчет цикла паротурбинной установки (Домашнее задание)
- 3. Расчет теплообменного аппарата (Домашнее задание)
- 4. Расчет термодинамического цикла (Домашнее задание)

Форма реализации: Смешанная форма

- 1. Лабораторная работа № 4 «Определение изобарной теплоемкости воздуха (Лабораторная работа)
- 2. Лабораторная работа № 7 «Истечение водяного пара через суживающееся сопло» (Лабораторная работа)
- 3. Лабораторные работы цикла «Внешняя задача конвективного теплообмена» (Лабораторная работа)
- 4. Лабораторные работы цикла «Стационарная теплопроводность» (Лабораторная работа)

Балльно-рейтинговая структура дисциплины является приложением А.

4.2 Промежуточная аттестация по дисциплине

Экзамен (Семестр №4)

Оценка определяется в соответствии с Положением о балльно-рейтинговой системе для студентов НИУ «МЭИ» на основании семестровой и аттестационной составляющих.

В диплом выставляется оценка за 4 семестр.

Примечание: Оценочные материалы по дисциплине приведены в фонде оценочных материалов ОПОП.

5. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

5.1 Печатные и электронные издания:

- 1. Кириллин, В. А. Техническая термодинамика: учебник для вузов по направлению 140100 "Теплоэнергетика" / В. А. Кириллин, В. В. Сычев, А. Е. Шейндлин. 5-е изд., перераб. и доп. М.: Издательский дом МЭИ, 2008. 496 с. ISBN 978-5-383-00263-6. http://elib.mpei.ru/elib/view.php?id=4174;
- 2. Александров, А. А. Таблицы теплофизических свойств воды и водяного пара: Справочник : Рек. Гос. службой стандартных справочных данных ГСССД Р-776-98 / А. А. Александров, Б. А. Григорьев . М. : Изд-во МЭИ, 2003. 168 с. К 100-летию со дня рождения М.П. Вукаловича . ISBN 5-7046-0397-1 .;
- 3. Александров, А. А. h,s диаграмма для водяного пара (по справочнику "Таблицы теплофизических свойств воды и водяного пара") / А. А. Александров, Б. А. Григорьев . М. : Изд-во МЭИ, 1999 . 1 с.;

- 4. Исаченко, В. П. Теплопередача : Учебник для энергетических вузов и факультетов / В. П. Исаченко, В. А. Осипова, А. С. Сукомел . 4-е изд., перераб. и доп . М. : Энергоиздат, 1981 . 416 с.;
- 5. Цветков, Ф. Ф. Задачник по тепломассообмену : учебное пособие для вузов по направлению 140100 "Теплоэнергетика" / Ф. Ф. Цветков, Р. В. Керимов, В. И. Величко . 3-е изд., стер . М. : Издательский дом МЭИ, 2010 . 196 с. ISBN 978-5-383-00468-5 .;
- 6. Григорьев Б.А. , Цветков Ф.Ф. "Тепломассообмен", Издательство: "Издательский дом МЭИ", Москва, 2011 (562 с.)

http://e.lanbook.com/books/element.php?pl1_id=72294.

5.2 Лицензионное и свободно распространяемое программное обеспечение:

- 1. Office / Российский пакет офисных программ;
- 2. Windows / Операционная система семейства Linux;
- 3. SmathStudio.

5.3 Интернет-ресурсы, включая профессиональные базы данных и информационносправочные системы:

- 1. ЭБС Лань https://e.lanbook.com/
- 2. ЭБС "Университетская библиотека онлайн" -

http://biblioclub.ru/index.php?page=main ub red

- 3. Научная электронная библиотека https://elibrary.ru/
- 4. Национальная электронная библиотека https://rusneb.ru/
- 5. ЭБС "Консультант студента" http://www.studentlibrary.ru/
- 6. Электронная библиотека МЭИ (ЭБ МЭИ) http://elib.mpei.ru/login.php

6. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Тип помещения	Номер аудитории,	Оснащение
	наименование	
Учебные аудитории	Ж-120, Машинный	сервер, кондиционер
для проведения	зал ИВЦ	
лекционных занятий и	Т-420, Учебная	рабочее место сотрудника, стол, стул,
текущего контроля	аудитория	компьютерная сеть с выходом в Интернет,
		мультимедийный проектор, экран, доска
		маркерная, компьютер персональный,
		кондиционер
Учебные аудитории	Ж-120, Машинный	сервер, кондиционер
для проведения	зал ИВЦ	
практических занятий,	Т-420, Учебная	рабочее место сотрудника, стол, стул,
КР и КП	аудитория	компьютерная сеть с выходом в Интернет,
		мультимедийный проектор, экран, доска
		маркерная, компьютер персональный,
		кондиционер
Учебные аудитории	В-205, Учебная	рабочее место сотрудника, стол
для проведения	лаборатория	преподавателя, стол, шкаф для документов,
лабораторных занятий	технической	шкаф для одежды, компьютерная сеть с
	термодинамики	выходом в Интернет, компьютер
		персональный, инвентарь
		специализированный, стенд лабораторный,
		учебно-наглядное пособие
	В-205а/1, Учебная	рабочее место сотрудника, стол
	лаборатория	преподавателя, стол, стул, шкаф для

	технической	документов, шкаф для одежды,
	термодинамики	лабораторный стенд, инвентарь
	1	специализированный
Учебные аудитории	Ж-120, Машинный	сервер, кондиционер
для проведения	зал ИВЦ	
промежуточной	Т-420, Учебная	рабочее место сотрудника, стол, стул,
аттестации	аудитория	компьютерная сеть с выходом в Интернет,
		мультимедийный проектор, экран, доска
		маркерная, компьютер персональный,
		кондиционер
Помещения для	НТБ-201,	стол компьютерный, стул, стол
самостоятельной	Компьютерный	письменный, вешалка для одежды,
работы	читальный зал	компьютерная сеть с выходом в Интернет,
		компьютер персональный, принтер,
		кондиционер
Помещения для	В-209/2, Кабинет	кресло рабочее, рабочее место сотрудника,
консультирования	сотрудников каф.	стол, стул, шкаф для документов, тумба,
	"TOT"	компьютерная сеть с выходом в Интернет,
		многофункциональный центр, компьютер
		персональный, кондиционер
	В-209/3, Лаборатория	рабочее место сотрудника, стол, стул, шкаф
	каф. "ТОТ"	для документов, шкаф для одежды, шкаф
		для хранения инвентаря, компьютерная
		сеть с выходом в Интернет, компьютер
		персональный
Помещения для	В-417, Помещение	кресло рабочее, рабочее место сотрудника,
хранения	учебно-	стол, стул, шкаф для документов, шкаф для
оборудования и	вспомогательного	хранения инвентаря, компьютерная сеть с
учебного инвентаря	персонала каф. "ТОТ"	выходом в Интернет, доска маркерная,
		многофункциональный центр, компьютер
		персональный, принтер, кондиционер

БАЛЛЬНО-РЕЙТИНГОВАЯ СТРУКТУРА ДИСЦИПЛИНЫ

Термодинамика и тепло- и массообмен

(название дисциплины)

4 семестр

Перечень контрольных мероприятий текущего контроля успеваемости по дисциплине:

- КМ-1 Расчет термодинамического цикла (Домашнее задание)
- КМ-2 Лабораторная работа № 4 «Определение изобарной теплоемкости воздуха (Лабораторная работа)
- КМ-3 Определение параметров водяного пара. Расчет цикла паротурбинной установки (Домашнее задание)
- КМ-4 Лабораторная работа № 7 «Истечение водяного пара через суживающееся сопло» (Лабораторная работа)
- КМ-5 Задачи стационарной теплопроводности (Домашнее задание)
- КМ-6 Лабораторные работы цикла «Стационарная теплопроводность» (Лабораторная работа)
- КМ-7 Расчет теплообменного аппарата (Домашнее задание)
- КМ-8 Лабораторные работы цикла «Внешняя задача конвективного теплообмена» (Лабораторная работа)

Вид промежуточной аттестации – Экзамен.

Номер	Раздел	Индекс КМ:	KM- 1	KM- 2	KM- 3	KM- 4	KM- 5	KM-	KM- 7	KM- 8
раздела	дисциплины	Неделя КМ:	4	4	8	8	12	12	15	15
1	Основные законы термодинамики. Термодинамические процессы и циклы идеальных газов									
1.1	Основные законы термодинамики		+	+						
1.2	Термодинамические процессы и циклы идеальных газов		+	+						
2	Реальные газы. Циклы паросиловых установок									
2.1	Реальные газы. Водяной пар				+	+				
2.2	Циклы паросиловых установок				+	+				
3	Основные понятия тепломассообмена. Теплопроводность									
3.1	Основные понятия тепломассообмена. Теплопроводность						+	+		
4	Конвективный тепло Теплообменные аппа									

4.1	Конвективный теплообмен							+	+
4.2	Теплообменные аппараты							+	+
	Вес КМ, %:	15	10	15	10	10	10	20	10