Министерство науки и высшего образования РФ Федеральное государственное бюджетное образовательное учреждение высшего образования «Национальный исследовательский университет «МЭИ»

Направление подготовки/специальность: 13.04.02 Электроэнергетика и электротехника

Наименование образовательной программы: Энергоустановки на основе возобновляемых источников

нергии

Уровень образования: высшее образование - магистратура

Форма обучения: Очная

Оценочные материалы по дисциплине Проектирование и эксплуатация ВЭС

Москва 2024

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ РАЗРАБОТАЛ:

 Подписано электронной подписью ФГБОУ ВО «НИУ «МЭИ»

 Сведения о владельце ЦЭП МЭИ

 Владелец
 Дерюгина Г.В.

 Идентификатор
 R8f4eb308-DeriuginaGV-abfb24a1

СОГЛАСОВАНО:

Руководитель образовательной программы

Разработчик

NGSO SE	Подписано электрон	ной подписью ФГБОУ ВО «НИУ «МЭИ»			
	Сведения о владельце ЦЭП МЭИ				
-	Владелец	Пугачев Р.В.			
* <u>M3N</u> *	Идентификатор	Rf46e5256-PugachevRV-eb46307e			

Р.В. Пугачев

Г.В. Дерюгина

Заведующий выпускающей кафедрой

iSo Ne	Подписано электронной подписью ФГБОУ ВО «НИУ «МЭИ»				
	Сведения о владельце ЦЭП МЭИ				
	Владелец		Шестопалова Т.А.		
<u>∍N</u> §	Идентификатор	R	a486bb1-ShestopalovaTA-2b9205		

Т.А. Шестопалова

ОБЩАЯ ЧАСТЬ

Оценочные материалы по дисциплине предназначены для оценки: достижения обучающимися запланированных результатов обучения по дисциплине, этапа формирования запланированных компетенций и уровня освоения дисциплины.

Оценочные материалы по дисциплине включают оценочные средства для проведения мероприятий текущего контроля успеваемости и промежуточной аттестации.

Формируемые у обучающегося компетенции:

- 1. ПК-2 Способен участвовать в проведении планирования и ведения режима работы энергоустановок на основе возобновляемых источников энергии
 - ИД-1 Демонстрирует понимание взаимосвязи задач проектирования и эксплуатации
 - ИД-2 Осуществляет планирование и ведение режима работы энергоустановок на основе возобновляемых источников энергии
- 2. РПК-1 Способен участвовать в проведении научно-исследовательских работ в области (сфере) профессиональной деятельности
 - ИД-1 Осуществляет научный поиск методов решения исследовательских задач в профессиональной области (сфере)
 - ИД-2 Применяет фундаментальные и прикладные знания для решения исследовательских задач в профессиональной области (сфере)

и включает:

для текущего контроля успеваемости:

Форма реализации: Письменная работа

- 1. Ветродизельные комплексы (Контрольная работа)
- 2. Выбор модели ВЭУ (Контрольная работа)
- 3. Задачи проектирования ВЭУ и ВЭС (Контрольная работа)
- 4. Задачи эксплуатации и управления ВЭУ и ВЭС (Контрольная работа)
- 5. Классификация и характеристики ВЭУ и ВЭС (Тестирование)
- 6. Моделирование переходных процессов в ВЭС (Тестирование)
- 7. Моделирование скорости ветра в заданной точке и на заданной высоте (Контрольная работа)
- 8. Основные положения строительства и ввода в эксплуатацию ВЭС (Тестирование)
- 9. Расчет выработки электроэнергии ВЭУ и ВЭС с учетом различных факторов (Контрольная работа)

Форма реализации: Устная форма

1. Лабораторные работы по разделу "Эксплуатация и управление ВЭУ и ВЭС" (Лабораторная работа)

БРС дисциплины

1 семестр

	Веса контрольных мероприятий, %						
Роздон низиминими	Индекс	КМ-	КМ-	КМ-	КМ-	КМ-	
Раздел дисциплины	KM:	1	2	3	4	5	
	Срок КМ:	4	8	12	14	16	
Классификация и характеристики ВЭУ и ВЭС							

Современное состояние и тенденции развития ветроэнергетики в мире и России. Классификация ВЭУ и ВЭС в мире и России	+				
Характеристики ВЭУ и ВЭС	+				
Эксплуатация и управление ВЭУ и ВЭС					
Эксплуатация и управление ВЭУ и ВЭС		+	+		
Надежность и экономичность функционирования ВЭС		+	+		
Ресурсы ветра и методы их расчета					
Ресурсы ветра и методы их расчета				+	
Вертикальный профиль ветра. Ветроизмерительные комплексы				+	
Основные задачи проектирования ВЭС					
Основные задачи проектирования ВЭС					+
Bec KM:	15	20	20	20	25

2 семестр

	Beca	контро	льных м	леропри	ятий, %	
Decrea weaveners	Индекс	КМ-	КМ-	КМ-	КМ-	КМ-
Раздел дисциплины	KM:	6	7	8	9	10
	Срок КМ:	4	6	8	12	16
Выбор моделей ВЭУ						
Выбор моделей ВЭУ		+				
Факторы, влияющие на энергетическую						
эффективность ВЭУ и ВЭС						
Факторы, влияющие на энергетическую			+			
эффективность ВЭУ и ВЭС			Т			
Моделирование переходных процессов (ПП) в ВЭС						
Моделирование переходных процессов	(ПП) в ВЭС			+		
Основные положения строительства и ввода в эксплуатацию ВЭС						
Основные положения строительства и ввода в эксплуатацию ВЭС					+	
ВЭС в составе ветродизельного комплекса (ВДЭК)						
ВЭС в составе ветродизельного комплен	сса (ВДЭК)					+
	Bec KM:	20	20	15	15	30

\$Общая часть/Для промежуточной аттестации\$

БРС курсовой работы/проекта

2 семестр

	Веса контрольных мероприятий,				í, %
Doo wood waxaayaa waxaa	Индекс	КМ-	КМ-	КМ-	КМ-
Раздел дисциплины	KM:	1	2	3	4
	Срок КМ:	4	8	12	16
ТЭК региона. Среднемноголетние энергетические					
характеристики ветра в рассматриваемом районе		+			
строительства ВЭС					
Выбор площадки ВЭС. Моделирование ряда скоро					
точки МС-аналога на площадку ВЭС			+		
Выбор модели ВЭУ по показателям энергоэффективности				+	
Расчет выработки ВЭС					+
	Bec KM:	20	30	30	20

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ТЕКУЩЕГО КОНТРОЛЯ

I. Оценочные средства для оценки запланированных результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций

Индекс	Индикатор	Запланированные	Контрольная точка
компетенции		результаты обучения по	
		дисциплине	
ПК-2	ИД-1 _{ПК-2} Демонстрирует	Знать:	Задачи проектирования ВЭУ и ВЭС (Контрольная работа)
	понимание взаимосвязи	методы моделирования	Моделирование переходных процессов в ВЭС (Тестирование)
	задач проектирования и	переходных процессов в	Ветродизельные комплексы (Контрольная работа)
	эксплуатации	ВЭС	
	-	способы и средства	
		решения задач	
		проектирования ВЭС	
		Уметь:	
		выполнять расчеты	
		режимов работы ВЭС для	
		электроснабжения	
		различных потребителей с	
		учетом различных	
		факторов	
ПК-2	$ИД-2_{\Pi K-2}$ Осуществляет	Знать:	Классификация и характеристики ВЭУ и ВЭС (Тестирование)
	планирование и ведение	назначение,	Задачи проектирования ВЭУ и ВЭС (Контрольная работа)
	режима работы	классификацию,	
	энергоустановок на основе	конструкции и физические	
	возобновляемых	основы работы основного	
	источников энергии	энергетического	
		оборудования ВЭС	
		Уметь:	
		использовать современное	
		отечественное и	
		зарубежное	

		информационное и	
		программное обеспечение	
		по ветровой энергетике	
РПК-1	ИД-1 _{РПК-1} Осуществляет	Знать:	Задачи эксплуатации и управления ВЭУ и ВЭС (Контрольная работа)
	научный поиск методов	характеристики и	Моделирование скорости ветра в заданной точке и на заданной высоте
	решения	основные влияющие	(Контрольная работа)
	исследовательских задач в	факторы на категории	Лабораторные работы по разделу "Эксплуатация и управление ВЭУ и
	профессиональной	энергетического	ВЭС" (Лабораторная работа)
	области (сфере)	потенциала ветровых	
		ресурсов с учетом	
		социально-экологических	
		факторов	
		Уметь:	
		анализировать	
		особенности	
		технологического процесса	
		и энергетические	
		характеристики ВЭС	
РПК-1	ИД-2 _{РПК-1} Применяет	Знать:	Классификация и характеристики ВЭУ и ВЭС (Тестирование)
	фундаментальные и	основные энергетические	Задачи проектирования ВЭУ и ВЭС (Контрольная работа)
	прикладные знания для	1 1	Выбор модели ВЭУ (Контрольная работа)
	решения	энергоустановок для	Расчет выработки электроэнергии ВЭУ и ВЭС с учетом различных
	исследовательских задач в	электроснабжения	факторов (Контрольная работа)
	профессиональной	различных потребителей	Основные положения строительства и ввода в эксплуатацию ВЭС
	области (сфере)	основные положения по	(Тестирование)
		строительству и вводу в	Ветродизельные комплексы (Контрольная работа)
		эксплуатацию ВЭС	
		основные критерии и	
		этапы выбора площадки	
		под размещение ВЭУ и ВЭС	
		основные критерии выбора	
		моделей ВЭУ	

d S. B	сновные влияющие ракторы на выработку лектроэнергии ВЭУ и ВЭС для лектроснабжения
B p	азличных потребителей Уметь: ыбирать площадку под азмещение ВЭУ и ВЭС для электроснабжения
р В о э.	азличных потребителей ыбирать параметры борудования ВЭС для лектроснабжения азличных потребителей

II. Содержание оценочных средств. Шкала и критерии оценивания

1 семестр

КМ-1. Классификация и характеристики ВЭУ и ВЭС

Формы реализации: Письменная работа

Тип контрольного мероприятия: Тестирование **Вес контрольного мероприятия в БРС:** 15

Процедура проведения контрольного мероприятия: Проводится в период аудиторных занятий. Работы выполняются индивидуально по вариантам заданий в письменной форме. Продолжительность выполнения 30 минут

Краткое содержание задания:

Контрольное мероприятие ориентировано на проверку знаний по разделу "Классификация и характеристики ВЭУ и ВЭС"

Контрольные вопросы/задания:	
Знать: назначение,	1. Укажите тенденцию развития ВЭУ в мире
классификацию, конструкции и	а) снижение высоты башни ВЭУ
физические основы работы	б) рост себестоимости электроэнергии от ВЭУ
основного энергетического	в) снижение срока службы
оборудования ВЭС	г) рост «технического» коэффициента использования
	установленной мощности
	д) увеличение капитальных вложений
	Ответ: г)
	2.Укажите компонент ВЭУ, влияющий на
	существенное различие экономических показателей
	береговых и оффшорных ВЭС
	а) фундамент
	б) башня
	в) ветроколесо
	г) гондола
	д) генератор
	Ответ: а)
	3.Преимущество ВЭУ с «рісh» регулированием по
	сравнению с ВЭУ со «stall» регулированием
	а) отсутствуют собственные нужды на систему
	регулирования
	б) форма лопасти может не иметь аэродинамического
	профиля
	в) позволяет осуществлять принудительное
	регулирование в соответствии с нагрузкой
	потребителя
	г) не требуются резервные аккумуляторы
	Ответ: в)
	4. Укажите правильные утверждения
	а) Ометаемая площадь ВК «крыльчатых» ВЭУ
	зависит от количества лопастей

б) Скорость ветра по высоте увеличивается

	в) Расчетная скорость ветра у ВЭУ ротора Савониуса близка к «1 м/с» г) максимальный КПД ветроколеса "крыльчатых" ВЭУ с увеличением количества лопастей снижается д) Быстроходность ВЭУ зависит от количества лопастей ВЭУ Ответ: б), д) 5.Укажите правильное утверждение а) Ометаемая площадь ВК «крыльчатых» ВЭУ
	зависит от количества лопастей ВК б) Ср зависит от количества лопастей ВК в) С увеличением количества лопастей ВК увеличивается диаметр ВК г) Быстроходность ВК не зависит от количества лопастей ВК
	Ответ: б)
Знать: основные энергетические	1.Укажите силу, вращающую ветроколесо
характеристики ветровых	«крыльчатых» ВЭУ
энергоустановок для	а) сила сопротивления
электроснабжения различных	б) подъемная сила
потребителей	в) сила гравитации
	г) сила давления
	д) сила реакции ротора
	Ответ: б)
	2. Укажите компонент ВЭУ, имеющий самый низкий
	КПД
	а) Рабочее колесо
	б) Редуктор
	в) Генератор
	г) Механизм ориентации по ветру
	д) Устройство регулирования угла разворота
	лопастей
	Ответ: а)
	3.Укажите последствие увеличение количества лопастей «крыльчатых» ВЭУ
	а) увеличению коэффициента использования ветраСр
	б) увеличению затрат на балансировку втулки ротора в) уменьшению диаметра ветроколеса г) увеличению высоты башни ВЭУ
	Ответ: а)
	4. Укажите при каких условиях приводится
	паспортная мощностная характеристика ВЭУ:
	а) средняя температура воздуха - 25 гр.С, высотная
	отметка над уровнем моря - 0 м
	б) средняя температура воздуха - 15 гр.С, высотная
	отметка от поверхности земли - 10 м
	в) средняя температура воздуха - 288 гр.К, высотная
	отметка над уровнем моря - 0 м
	г) средняя температура воздуха - 298 гр.С, высотная
	отметка от поверхности земли - 0 м
	Ответ: в)

5.Принцип действия пассивного «stall»
регулирования основан
а) на явлении срыв потока
б) на изменении угла установки лопасти
в) на явлении срыв потока и изменении угла
установки лопасти
г) нет правильного ответа
Ответ: а)
6.Принцип действия «рісh» регулирования основан
а) на явлении срыв потока
б) на изменении угла установки лопасти
в) на явлении срыв потока и изменении угла
установки лопасти
г) нет правильного ответа
Ответ: б)

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-2. Задачи эксплуатации и управления ВЭУ и ВЭС

Формы реализации: Письменная работа

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 20

Процедура проведения контрольного мероприятия: Проводится в период аудиторных занятий. Продолжительность контроля 45 минут. Работы выполняются индивидуально по вариантам заданий

Краткое содержание задания:

Контрольное мероприятие ориентировано на проверку умений анализировать особенности технологического процесса и энергетические характеристики ВЭС

Контрольные вопросы/задания:

Уметь: анализировать	1.Режим готовности к работе и пуск ВЭУ
особенности технологического	2.Особенности ВЭУ с синхронными генераторами
процесса и энергетические	3. Функциональные элементы системы управления
характеристики ВЭС	4.Типовые режимы работы ВЭУ

5.Базисная и пульсирующая мощность ВЭС
6.Ветрозарядные станции

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 80 Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание

выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-3. Лабораторные работы по разделу "Эксплуатация и управление ВЭУ и ВЭС"

Формы реализации: Устная форма

Тип контрольного мероприятия: Лабораторная работа

Вес контрольного мероприятия в БРС: 20

Процедура проведения контрольного мероприятия: Лабораторные работы выполняются на занятиях в учебной лаборатории кафедры. Фиксируются основные результаты и параметры. Проводится устный опрос по результатам

Краткое содержание задания:

Контрольное мероприятие ориентировано на проверку умений анализировать особенности технологического процесса и энергетические характеристики ВЭС

Контрольные вопросы/задания:

1. Чем определяется коэффициент мощности и его
предельное значение
2.Зависимости коэффициента мощности от
быстроходности для разных типов ВЭУ
3. Чем определяется оптимальный режим работы ВЭУ
4.Как коэффициент мощности зависит от угла
установки лопастей ветроколеса
5.В чём заключается свойство самовыравнивания
6. Расскажите про рабочие характеристики
ветроколеса (вращающего момента и мощности от
скорости вращения)
7.Применение АСГ в вертикально осевых ВЭУ
8. Гармоники ВЭУ с АСГ, влияние на параметры
энергосистемы

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 60 Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 50 Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оиенка: 2

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-4. Моделирование скорости ветра в заданной точке и на заданной высоте

Формы реализации: Письменная работа

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 20

Процедура проведения контрольного мероприятия: Проводится в период аудиторных занятий. Продолжительность контроля 45 минут. Работы выполняются индивидуально по вариантам заданий

Краткое содержание задания:

Контрольное мероприятие ориентировано на проверку знаний методов моделирования скорости ветра в заданной точке и на заданной высоте

Контрольные вопросы/задания:

Знать: характеристики и основные влияющие факторы на категории энергетического потенциала ветровых ресурсов с учетом социально-экологических факторов

1. Рассчитайте среднемноголетнюю скорость ветра в точке А на высоте 50 м по данным МС аналога. Географическая точка А расположена на ровной местности вдали от водных поверхностей и по всем основным восьми направлениям (румбам) от точки А местность открытая ровная. В точке МС-аналога среднемноголетняя скорость на высоте 10 м - 4,5 м/с; многолетняя роза ветров и классы открытости по румбам Кмс приведены в таблице; показатель степени ВПВ m=0,24 Таблица - Классы открытости и роза ветров в условиях МС

Румб	C	C3	3	ЮЗ	Ю	ЮВ	В	CB
Повторяемость направлений по румбу, %	23,49	4,84	3,61	2,18	41,45	11,7	5,84	6,9
Класс открытости МС Кмс	6	6	6	6	6	8	8	8

Ответ: 7,2 м/с

2.Определите в точке на высоте 80 м среднемноголетнюю скорость ветра по степенной зависимости вертикального профиля ветра, если известна многолетняя повторяемость скорости ветра по градациям на высоте 10 м (табл.) и

показатель степени m=0,16

Таблица - Повторяемость скорости ветра по диапазонам градаций на высоте 10 м

Диапазон градаций скорости	Повторяемость скорости
ветра, м/с	ветра,%
0-3	20
3-5	40
5-7	25
7-9	10
9-19	5

Ответ: на 10 м -4,9 м/с; на 80 м -6,8 м/с 3. Рассчитайте диапазон возможных значений среднемноголетней скорости ветра на площадке ВЭУ, расположенной в узкой горной долине, которая ориентирована вдоль направления преобладающих потоков ветра (продольная), по данным МС-аналога. Среднемноголетняя скорость ветра на площадке МС-аналога 4 м/с, МС-аналог расположена в условиях открытой ровной местности 4. Рассчитайте диапазон возможных значений среднемноголетней скорости ветра на площадке ВЭУ, расположенной в узкой горной долине, которая ориентирована вдоль направления преобладающих потоков ветра (продольная), по данным МС-аналога. Среднемноголетняя скорость ветра на площадке МС-аналога 4 м/с, МС-аналог расположена в условиях открытой ровной местности 5.Определите АМС аналог для построения модели ВПВ на площадке МС Гигант (Ростовская обл.)

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-5. Задачи проектирования ВЭУ и ВЭС

Формы реализации: Письменная работа

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 25

Процедура проведения контрольного мероприятия: Проводится в период аудиторных занятий. Продолжительность контроля 45 минут. Работы выполняются индивидуально по вариантам заданий

Краткое содержание задания:

Контрольное мероприятие ориентировано на проверку знаний основных способов и средств проектирования ВЭУ и ВЭС, особенно вопросов выбора площадки для размещения ВЭС и умений по использованию современного отечественного и зарубежного информационного и программного обеспечения при выборе площадки ВЭС

Контрольные вопросы/задания:

Контрольные вопросы/задания:	
Знать: способы и средства	1. Укажите этапы выбора площадки ВЭС, на которых
решения задач проектирования	применимы «Экологические методы оценки
ВЭС	ветровых ресурсов»
	2. Этапы проведения работ на выбранной площадке
	ВЭС
	3.Виды инженерных изысканий на площадке ВЭС
	4. Укажите особенности применения данных,
	представленных в Атласах Ветров
	5.Перечислите методы оценки ветровых ресурсов на
	разных этаапах проектирования ВЭС
	6.Статистические методы оценки ветровых ресурсов
	7. Экологические методы оценки ветровых ресурсов
Знать: основные критерии и	1. Основные этапы выбора площадки для размещения
этапы выбора площадки под	крупных ВЭС
размещение ВЭУ и ВЭС	2.Перечислите социальные аспекты,
	идентифицирующие непригодность площадки для
	размещения ВЭУ
	3.Подход и требования к выбору площадка ВЭС в
	существующих локальных системах
	4.Основные требования при выборе площадки под
	размещение оффшорных ВЭС
	5.Подход и требования к выбору площадки крупных
	береговых ВЭС, работающих в объединенной
	системе
	6.Проблемы, идентифицирующие непригодность
	площадки для размещения ВЭУ или ВЭС
Уметь: использовать	1.Доступные информационные источники по
современное отечественное и	ветровым ресурсам на территории России
зарубежное информационное и	2. Каким требованиям должны удовлетворять
программное обеспечение по	исходные данные при оценке ветровых ресурсов
ветровой энергетике	методом подобия
Уметь: выбирать площадку под	1.На каких этапах выбора площадки ВЭС применимы
размещение ВЭУ и ВЭС для	данные Атласа Ветров
электроснабжения различных	2.Приведите пример определения среднемноголетней
потребителей	скорости по «Экологическому методу оценки
	ветровых ресурсов»
	3. Как провести оценку ветровых ресурсов, используя
	данные Атласа ветров
	4. Как провести оценку ветровых ресурсов, используя
	экологические методы оценки

5.Дано: На опорной МС (ОМС) скорости ветра: среднемноголетняя - 4 м/с и среднегодовая - 4,4 м/с; на временной МС (ВМС) годовая повторяемость скорости ветра для того же года, что и среднегодовая на ОМС.

Таблица - Годовая повторяемость скорости ветра на BMC

Vгр, м/с	t(V),%
1	30
3	40
6	20
10	9
20	1

Определите среднемноголетнюю скорость ветра на BMC

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

2 семестр

КМ-6. Выбор модели ВЭУ

Формы реализации: Письменная работа

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 20

Процедура проведения контрольного мероприятия: Проводится в период аудиторных занятий. Продолжительность контроля 45 минут. Работы выполняются индивидуально по вариантам заданий

Краткое содержание задания:

Контрольное мероприятие ориентировано на проверку знаний нормативных документов общих требований и критериев выбора модели ВЭУ

Контрольные вопросы/задания:

Знать:	основные	критерии	1. Какие исходные данные необходимы для расчета	
--------	----------	----------	---	--

выбора моделей ВЭУ

экстремальной скорости ветра

2.Укажите № моделей ВЭУ из таблицы, которые **не могут** быть установлены по классу безопасности в точке A, где заданы ветровые условия на высоте оси ВК: Cv=0,5; среднемноголетняя скорость на высоте оси ВК 7,8 м/с; II5=0,16.

Таблица

No	Модель	Производитель	N уст,	D,	Класс	
34⊻	МОДСЛЬ	производитель	кВт	M	Kilacc	
1	31-20	Jacobs	20	31	III-A	
2	TML25	Turbowinds	25	12	II-A	
3	Жаворонок	ММЗ "Вперед"	30	15	II-A	
4	30	ЛЭМ3	30	14	II-A	
5	33	NG	33	13	II-A	
6	G-3120	Wind Power	35	19	II-A	
7	AOC15/50	AOC	50	15	II-B	
8	E-3120	Wind Power	50	19	II-A	
9	Northwind	Northarnpower	100	21	П-А	
9	100	Northernpower	100	41	п-А	
10	29-STALL-	Norwin	200	29	I-B	
10	200 kW	INOI WIII	200	29	I-D	

Ответ: № 1 и № 10

3.Какого класса безопасности могут быть установлены ВЭУ с высотой башни 120 м на площадке ВЭС, если на высоте 100 м: среднемноголетняя скорость ветра — 8,6 м/с; коэффициент вариации скорости ветра - 0,55; показатель степени ВПВ - 0,18

Ответ: только І класса

4.Укажите наиболее энергоэффективные модели ВЭУ из таблицы

Таблица - Параметры моделей ВЭУ и их годовые выработки в ветровых условиях площадки на высоте башни ВЭУ

No	Мо Можану	Nуст	Dвк,	Нб,	Эгод, МВт.ч
745	Модель		кВт	M	M
1	E82/2000	2000	80	100	5900
2	E82/2300	2300	90	90	6500
3	E82/3000	3000	100	90	8000
4	E101/3000	3000	110	100	8900
5	3.2M114	3200	100	90	9200

Ответ: № 1 и № 5

5. Рассчитайте экстремальную скорость ветра на 100 м, если на высоте 10 м: среднемноголетняя скорость ветра - 5 м/с; коэффициент вариации скорости ветра - 0,5; показатель степени ВПВ - 0,21

Ответ: 40,5 м/с

6.Определите подкласс безопасности вариантов ВЭУ мощностью около 1 МВт для установки в точке А по заданному ряду 10-и минутных значений средней скорости ветра и их среднеквадратичных отклонений

на высоте оси	ВК				
Таблица - Ряд 10-и минутных значений средней					
скорости ветра и их среднеквадратичных отклонений					
на высоте оси	ВК				
Скорость, м/с	Среднеквадратичное отклонение, м/с				
12	2,5				
15	1,5				
15,4	1,54				
20	3,2				
14	1,4				
10	1,5				
12,5	1,25				
8	2,5				
14,6	1,46				
15	2,25				
11	2,2				

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 80 Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 60 Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 50 Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-7. Расчет выработки электроэнергии ВЭУ и ВЭС с учетом различных факторов

Формы реализации: Письменная работа

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 20

Процедура проведения контрольного мероприятия: Проводится в период аудиторных занятий. Продолжительность контроля 45 минут. Работы выполняются индивидуально по вариантам заданий

Краткое содержание задания:

Контрольное мероприятие ориентировано на проверку знаний выявления влияющих факторов на показатели энергетической эффективности ВЭС и методов их учета

Контрольные вопросы/задания:

Знать:	основные	влияющие	1.Определите установленную мощность ВЭС,
факторы	на	выработку	состоящей из 10-и однотипных ВЭУ, если задана

электроэнергии ВЭУ и ВЭС для электроснабжения различных потребителей

годовая выработка каждой ВЭУ при условии изолированной работы - 9,0 млн. кВт.ч и Киумвэу - 0,32

Ответ: 32.1 МВт

2. Рассчитайте значение расчетной скорости ветра для фактических условий: высотная отметка над уровнем моря -500 м; среднемноголетняя температура — (-20 гр.С). Паспортная характеристика ВЭУ для стандартных условий приведена в таблице:

N, кВт	0	1	3	8	15	20	30	30	30	30	0
V, м/с	3	4	5	7	8	9	11	12		25	25

Ответ: 10,7 м/с

3.Определите выработку одиночной ВЭУ при условии изолированной работы. Дано: коэффициент аэродинамической эффективности ВЭС - 0,98 и годовые выработки трех ВЭУ Эвэу с учетом затенения

Таблица - Годовые выработки ВЭУ с учетом затенения

Вариант ВЭУ	Эвэу, млн.кВт.ч
ВЭУ1	9,8
ВЭУ2	9,55
ВЭУ3	9,6

Ответ: 9847 МВт.ч

4.Определите Киум единичной ВЭУ мощностью 3,2 МВт, если теоретическая годовая выработка ВЭС в составе 10-и однотипных ВЭУ- 90 млн.кВт.ч. и коэффициент аэродинамической эффективности ВЭС - 0,97 (Примечание: При определении теоретической выработки ВЭС не учитывать потери на собственные нужды и ремонт)

Ответ: 0,31

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-8. Моделирование переходных процессов в ВЭС

Формы реализации: Письменная работа

Тип контрольного мероприятия: Тестирование **Вес контрольного мероприятия в БРС:** 15

Процедура проведения контрольного мероприятия: Проводится в период аудиторных занятий. Работы выполняются индивидуально по вариантам заданий в письменной форме.

Продолжительность выполнения 20 минут

Краткое содержание задания:

Контрольное мероприятие ориентировано на проверку знаний методов моделирования переходных процессов в ВЭС

Контрольные вопросы/задания:			
Знать: методы моделирования	1. Что происходит со скоростью вращения вала ВЭУ в		
переходных процессов в ВЭС	первые моменты времени после возникновения КЗ		
	а) скорость вращения не изменяется		
	б) скорость вращения уменьшается		
	в) скорость вращения увеличивается		
	г) скорость вращения становится равной «0»		
	Ответ: в)		
	2. Для чего предназначен DC-chopper в ВЭУ с		
	генератором двойного питания		
	а) управление преобразователем со стороны сети		
	б) управление преобразователем со стороны		
	генератора		
	в) ограничение напряжения между		
	преобразователями в цепи ротора		
	г) для прерывания питания потребителя		
	Ответ: в)		
	3.С помощью каких элементов ВЭУ с генератором		
	двойного питания происходит управление её		
	активной мощностью		
	а) LSC - преобразователь со стороны сети		
	б) MSC - преобразователь со стороны генератора		
	в) Устройство разворота лопастей		
	г) Шунтирующее устройство		
	д) DC-chopper		
	Ответ: б), в)		
	4.При каких отклонениях напряжения в сети		
	требуется генерация емкостного реактивного тока		
	а) при повышении напряжения		
	б) при понижении напряжения		
	в) ни в одном из вышеназванных случаев		
	г) в любом из вышеназванных случаев		
	Ответ: б)		
	5. Что относится к понятию "обеспечение статической		
	устойчивости"		
	а) управление ВЭУ при возникновении короткого		
	замыкания		
	б) обеспечение механической устойчивости		
	основания башни ВЭУ		

в) управление ВЭУ при плановых изменениях
нагрузки
г) нет правильного ответа
Ответ: в)

Описание шкалы оценивания:

Оиенка: 5

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-9. Основные положения строительства и ввода в эксплуатацию ВЭС

Формы реализации: Письменная работа

Тип контрольного мероприятия: Тестирование

Вес контрольного мероприятия в БРС: 15

Процедура проведения контрольного мероприятия: Проводится в период аудиторных занятий. Работы выполняются индивидуально по вариантам заданий в письменной форме. Продолжительность выполнения 30 минут

Краткое содержание задания:

Контрольное мероприятие ориентировано на проверку знаний основных положений строительства и ввода в эксплуатацию ВЭС

Контрольные вопросы/задания:

Знать: основные положения п	о 1.Каким государственным документом определяется
строительству и вводу	в состав проектной документации
эксплуатацию ВЭС	а) нормы технологического проектирования (НТП)
	энергообъектов
	б) строительные нормы и правила (СНИП)
	в) градостроительный кодекс (ГСК РФ)
	г) Постановление правительства РФ №87
	Ответ: г)
	2. Какой раздел ПСД определяет календарный план
	строительства энергообъекта
	а) пояснительная записка (ПЗ)
	б) архитектурные решения (АР)
	в) проект организации строительства (ПОС)
	Ответ: в)
	3.Тип документации, передаваемой Заказчику при

вводе ВЭС в работу

- а) проектная документация
- б) сметная документация
- в) рабочая документация
- г) исполнительная документация
- д) эксплуатационная документация

Ответ: д)

- 4. Воздействие строительства ВЭС на окружающую среду от соответствующих показателей других объектов капитального строительства
- а) существенно не отличается;
- б) существенно отличается в лучшую сторону
- в) существенно отличается в худшую сторону Ответ: а)
- 5. Какой принцип используется при строительстве фундаментов ВЭУ на вечномерзлых арктических грунтах
- а) сохранения вечной мерзлоты,
- б) устранения вечной мерзлоты
- в) принцип выбирается в зависимости от инженерных изысканий

Ответ: в)

- 6.Главная задача создания приемочной комиссии
- а) принятие решения о вводе объекта в эксплуатацию
- б) предъявление ВЭС инвестору
- в) получение разрешения администрации н.п. на ввод ВЭС в работу

Ответ: а)

- 7. Что должно быть в составе исходно-разрешительной документации (ИРД) для строительства
- а) документация о праве собственности (аренды) на землю под строительство
- б) согласования строительства с контролирующими органами и службами
- в) техусловия (ТУ) на инженерное и коммуникационное обеспечение объекта и др.
- г) разрешение на строительство от орг. гос . власти (владельца земельного участка)
- Ответ: а), б), в)

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 50 Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-10. Ветродизельные комплексы

Формы реализации: Письменная работа

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 30

Процедура проведения контрольного мероприятия: Проводится в период аудиторных занятий. Продолжительность контроля 45 минут. Работы выполняются индивидуально по вариантам заданий

Краткое содержание задания:

Контрольная работа ориентирована на проверку умений по выбору параметров оборудования ВДЭК и расчетов режимов работы ВЭС в составе ВДЭК

Контрольные вопросы/задания:	
Уметь: выполнять расчеты	1.Дано: мощность потребителя -300 кВт;
режимов работы ВЭС для	максимально возможная мощность ВЭС,
электроснабжения различных	соответствующая скорости ветра -220 кВт;
потребителей с учетом	минимальная рабочая мощность ДЭС-120 кВт; ВЭС
различных факторов	в количестве 2-х ВЭУ без регулирования угла
	установки лопастей. Рассчитайте рабочие мощности
	ДЭС и ВЭС, свободную мощность от ВЭС (все
	потери на собственные нужды ВЭС и ДЭС принять «0»)
	Ответ: рабочие мощности ДЭС -190 кВт и ВЭС – 110
	кВт, свободная мощность от ВЭС – 110 кВт
	2.Дано: мощность потребителя -500 кВт;
	максимально возможная мощность ВЭС,
	соответствующая скорости ветра -350 кВт;
	минимальная рабочая мощность ДЭС-130 кВт; ВЭС
	в количестве 2-х ВЭУ с регулированием угла
	установки лопастей. Рассчитайте экономию топлива
	на ДЭС за 10 часов при удельном расходе ДЭС - 0,32
	кг/кВт.ч
	Ответ: 1120 кг
	3.Способы ограничения мощности ВЭС в составе ВДЭК
	4. Что понимается под свободной энергией ВДЭК:
	понятие (или определение), причины появления,
	способы реализации
	5.Как свободная энергия ВЭС в составе ВДЭК влияет
	на показатели энергетической эффективности ВЭС и
	ВДЭК в целом
	6. Что понимают под критерием совпадения графика
	потребления с графиком поступления ветрового
	pecypca

	аккумулирования энергии
	8. Уравнение баланса мощности ВДЭК с
	аккумулированием энергии
Уметь: выбирать параметры	1. Условия выбора оборудования ВЭС в составе
оборудования ВЭС для	ВДЭК
электроснабжения различных	2. Факторы, влияющие на состав и структуру ВД
потребителей	3. Условия выбора оборудования ДЭС в составе I
•	4 О ВПОИ

2.Факторы, влияющие на состав и структуру ВДК 3.Условия выбора оборудования ДЭС в составе ВДК 4.Определите вариант состава ВДЭК по критерию максимального значения коэффициента использования установленной мощности ВЭС Киум.вэс. Дано: годовое энергопотребление потребителя Эпот=19,5 млн.кВт.ч в год; варианты ВЛЭК при неизменном составе ЛЭС мошностью

7. Уравнение баланса мощности ВДЭК без

ВДЭК при неизменном составе ДЭС мощностью *N*уст.дэс=2900 кВт и разном составе ВЭС; для разных вариантов ВДЭК заданы коэффициенты использования установленной мощности ДЭС Киум.дэс

Таблица - Исходные данные по вариантам ВДЭК

Варианты ВДЭК	1	2	3	4	5
Установленная мощность единичной ВЭУ, кВт	250	300	500	500	750
Кол-во ВЭУ в составе ВЭС	5	4	2	3	2
Киум.дэс, о.е.	0,49	0,61	0,51	0,46	0,64

Ответ: Вариант 3 по предварительно рассчитанной таблице:

Варианты ВДЭК	1	2	3	4	5
Киум.вэс	0,64	0,38	0,75	0,59	0,25

5.Определите возможные варианты состава ВДЭК для заданного потребителя из заданных вариантов. Дано: доля ВЭС по мощности в составе ВДЭК составляет от 0,5 до 1,5; максимальная мощность потребителя -1800 кВт и минимальная мощность потребителя - 900 кВт; все варианты ДГУ имеют 30% минимальную загрузку от установленной мощности ДГУ (Nуст.дгу)

Таблица - Исходные данные по вариантам ВДЭК

Вариан состава		1	2	3	4	5
состав ВЭС	Установленная мощность ВЭУ (Nуст.вэу), кВт	250	300	500	500	750
	Количество ВЭУ	2	2	2	4	1
состав ДЭС	Установленная мощность ДГУ (Nycт.дгу), кВт	500	500	600	600	800
	Количество ДГУ	2	4	2	4	1

Ответ: только вариант 4

6.Перечислите факторы, влияющие на состав и структуру ВДЭК 7.Основные критерии выбора оптимального состава
вдэк
8.Факторы, влияющие на экономию топлива на ДЭС в составе ВДЭК
9.Как рассчитывается доля замещения ДЭС по
энергии и влияющие факторы на ее значение

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 80 Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 60 Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 50 Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

Для курсового проекта/работы

2 семестр

І. Описание КП/КР

Курсовой проект ориентирован на проверку знаний и умений основных вопросов проектирования ветровых электростанций (ВЭС), входящей в состав ОЭС. Задание выдается индивидуально. Исходные данные - регион, область или республика. При выполнении курсового проекта студенту предоставляются все информационные источники по ветровым ресурсам, оборудованию ВЭС, аэрологическим МС

II. Примеры задания и темы работы

Пример задания

Дано: регион - Ставропольский край

Состав задания:

1. Топливно-энергетический комплекс (ТЭК) региона. Среднемноголетние энергетические характеристики ветра в рассматриваемом районе строительства ВЭС 1.1. Дать краткое описание ТЭК региона, где планируется сооружение ВЭС: описание климатических условий (значения среднемесячной, минимальной и максимальной наблюдённой температуры воздуха за многолетний период); топографии местности (особенности местного рельефа, общая информация по местным грунтам); инфраструктура, транспортная доступность, схема ЛЭП, существующие подстанции и

характеристики; природоохранные зоны (Привести ссылки на источники: карты, литературу, сайты в Интернет)

- 1.2. Рассчитать основные многолетние характеристики ветра в районе по данным не менее 10-и наземных МС с сайта «Расписание Погоды»: скорость ветра; коэффициент вариации Cv; максимальную скорость; многолетнюю повторяемость скорости t(V) и направлений ветра; среднемноголетнюю удельную мощность и энергию ветра $\Im y\partial$;
- 1.3 Построить карты распределения ветровых ресурсов на рассматриваемой территории
- 2. Выбор площадки под размещение ВЭС. Моделирование ряда скорости ветра из точки МС-аналога на площадку ВЭС
- 2.1. Выбрать площадку ВЭС и МС-аналог с сайта «Расписание Погоды». Выбор проводится с учетом наличия свободной земли, транспортной доступности, возможности технического присоединения к сети, отсутствия экологических и социальных ограничений (Привести ссылки на источники: карты, литературу, сайты в Интернет. Показать на картах расположение площадок относительно ЛЭП, дорог и т.д.)
- 2.2. Рассчитать и проанализировать ветроэнергетический кадастр на площадке МС-аналога: коррекция многолетнего ряда наблюдений; расчет ветроэнергетического кадастра; выбор расчетного года: расчет годовой вариации скорости ветра, годовой повторяемости скорости и направлений ветра и сравнение с многолетними данными.
- 2.3. Провести моделирование годового ряда скорости ветра расчетного года на площадке ВЭС по данным МС-аналога
- 3. Выбор модели ВЭУ по показателям энергоэффективности
- 3.1. Разработка модели вертикального профиля ветра (ВПВ) или расчет матрицы значений показателя степени или параметра шероховатости. Модель ВПВ разрабатывается либо по данным аэрологической МС на территории России, либо по данным с сайта «Nasa» (либо другого источника) при условии данных на двух высотах измерений. Матрица значений показателя степени или параметра шероховатости разрабатывается по ряду наблюдений на двух высотах измерений.
- 3.2. Моделирование годового ряда (расчетного года) скорости ветра на площадке ВЭС на разной высоте по модели ВПВ (либо матрице значений показателя степени или параметра шероховатости)
- 3.3. Предварительный выбор энергоэффективных вариантов моделей ВЭУ: осуществить выбор вариантов (не менее 5-и) ВЭУ и их количества в составе ВЭС; определить основные энергетические показатели работы вариантов ВЭС разного состава и параметров. Провести анализ полученных результатов; осуществить выбор энергоэффективных вариантов ВЭУ (не менее 2)
- 4. Расчет выработки ВЭС
- 4.1. Выполнить предварительную оценку размещения ВЭУ в составе ВЭС. План размещения ВЭУ показать на карте местности
- 4.2. Провести оценку выработки ВЭС.
- 5. Составить итоговый отчёт по выполненной работе, включающий в свой состав: титульный лист, содержание, введение, расчётно-пояснительную записку, заключение, список использованной литературы, Приложения

Тематика КП/КР:

Выбор и обоснование ветроэлектрической станции, входящей в состав ОЭС

КМ-1. ТЭК региона. Среднемноголетние энергетические характеристики ветра в рассматриваемом районе строительства ВЭС Описание шкалы оценивания

Оценка: зачтено Описание характеристики выполнения знания:

Оценка: не зачтено *Описание характеристики выполнения знания:*

КМ-2. Выбор площадки ВЭС. Моделирование ряда скорости ветра из точки МСаналога на площадку ВЭС Описание шкалы оценивания

Оценка: зачтено

Описание характеристики выполнения знания:

Оценка: не зачтено

Описание характеристики выполнения знания:

КМ-3. Выбор модели ВЭУ по показателям энергоэффективности Описание шкалы оценивания

Оценка: зачтено

Описание характеристики выполнения знания:

Оценка: не зачтено

Описание характеристики выполнения знания:

КМ-4. Расчет выработки ВЭС Описание шкалы оценивания

Оценка: зачтено

Описание характеристики выполнения знания:

Оценка: не зачтено

Описание характеристики выполнения знания:

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

1 семестр

Форма промежуточной аттестации: Экзамен

Пример билета

1. Методы оценки ветровых ресурсов на разных этапах выбора площадки ВЭС. Экологические методы оценки ветровых ресурсов

- 2. Схемы подключения ВЭС в автономную систему
- 3. Практическое задание: Дано: На опорной МС (ОМС) скорости ветра: среднемноголетняя 4 м/с и среднегодовая 4,4 м/с; на временной МС (ВМС) годовая повторяемость скорости ветра для того же года, что и среднегодовая на ОМС.

Таблица - Годовая повторяемость скорости ветра на ВМС

Vгр, м/с	t(V),%
1	30
3	40
6	20
10	9
20	1

Определите среднемноголетнюю скорость ветра на ВМС

Процедура проведения

Устный опрос по билетам. Продолжительность подготовки к ответу 45 минут

I. Перечень компетенций/индикаторов и контрольных вопросов проверки результатов освоения дисциплины

1. Компетенция/Индикатор: ИД-2_{ПК-2} Осуществляет планирование и ведение режима работы энергоустановок на основе возобновляемых источников энергии

Вопросы, задания

- 1.Перечислите основные компоненты ВЭУ с горизонтальной осью вращения и их назначение
- 2.Основные требования к ветромониторингу. Требования к измеряемым данным, радиус их репрезентативности
- 3. Классификация ВЭУ по различным признакам

Материалы для проверки остаточных знаний

1.Укажите тенденцию развития ВЭУ в мире

Ответы:

а) снижение высоты башни ВЭУ б) рост себестоимости электроэнергии от ВЭУ в) снижение срока службы г) рост «технического» коэффициента использования установленной мощности д) увеличение капитальных вложений

Верный ответ: г)

2.Укажите силу, вращающую ветроколесо ВЭУ с горизонтальной осью вращения ("крыльчатого" типа)

Ответы:

а) сила сопротивления б) подъемная сила в) сила гравитации г) сила давления д) сила реакции ротора

Верный ответ: б)

- 3.Укажите компонент ВЭУ, имеющий самый низкий КПД Ответы:
- а) Рабочее колесо б) Редуктор в) Генератор г) Механизм ориентации по ветру д) Устройство регулирования угла разворота лопастей

Верный ответ: а)

4.Укажите силу, вращающую ветроколесо ротора Савониуса Ответы:

Укажите силу, вращающую ветроколесо ротора Савониуса а) подъемная сила б) сила сопротивления в) аэродинамическая сила г) сила давления д) сила реакции ротора Верный ответ: б)

5.Укажите компоненты ВЭУ, влияющие на существенное различие экономических показателей береговой и оффшорной ветроэнергетики

Ответы:

- а) фундамент б) башня в) ветроколесо г) гондола д) генератор Верный ответ: а)
- 6. Увеличение количества лопастей «крыльчатых» ВЭУ приводит к
- а) увеличению коэффициента использования ветра Ср б) увеличению затрат на балансировку втулки ротора в) уменьшению диаметра ветроколеса г) увеличению высоты башни ВЭУ

Верный ответ: а)

2. Компетенция/Индикатор: ИД-1_{РПК-1} Осуществляет научный поиск методов решения исследовательских задач в профессиональной области (сфере)

Вопросы, задания

- 1. Экологические методы оценки ветровых ресурсов
- 2. Методы расчета фактической и теоретической повторяемости скорости ветра
- 3. Моделирование ряда скорости ветра в заданной точке по данным метеостанции аналога (исходные данные, допущения, алгоритм)
- 4.Оптимальный режим работы ветроколеса по критерию максимума коэффициента мошности
- 5.Схемы подключения ВЭУ с различными типами генераторов в объединенную энергосистему
- 6.Статистические методы оценки ветровых ресурсов (требования к исходным данным, алгоритмы)
- 7. Требования к системам управления ВЭУ и ВЭС, их состав и функции
- 8. Этапы выбора площадки для размещения ВЭС в централизованных и децентрализованных системах энергоснабжения
- 9.Оптимальный режим работы ветроколеса по критерию максимума коэффициента мощности
- 10. Рабочие характеристики ВЭУ (Мвр(n, V), P(n, V))
- 11. Что понимается под коэффициентом мощности ВК и его зависимость от быстроходности $\mathrm{Cp}(Z)$
- 12.Способы ограничения крутящего момента (управление мощностью ВЭУ и скоростью вращения ротора)
- 13. Проблемы, идентифицирующие непригодность площадки ВЭС
- 14.Схемы подключения ВЭУ с различными типами генераторов в объединенную энергосистему
- 15. Математические зависимости вертикального профиля средней скорости ветра
- 16. Энергетическая характеристика ВЭУ для стандартных условий и метод ее получения

- 17.Обеспечение надежности снабжения потребителя при параллельной работе ВЭС и ДЭС в локальной энергосистеме
- 18.Основные энергетические характеристики ветра и методы их расчета
- 19. Требования к системам управления ВЭУ и ВЭС, их состав и функции
- 20. Схемы подключения ВЭС в автономную систему
- 21. Цепочка преобразование энергии в ВЭУ
- 22.Обеспечение надежности снабжения потребителя при параллельной работе ВЭС и ДЭС в локальной энергосистеме
- 23.Дано: Площадка ВЭС расположена на ровной местности вдали от водных поверхностей и по всем основным восьми направлениям (румбам) от площадки ВЭС местность открытая ровная, т.е. отсутствуют постройки и деревья на высоте флюгера. По МС-аналогу: среднемноголетняя скорость на высоте 10 м 4,5 м/c; многолетняя повторяемость направлений ветра и классы открытости по направлениям (см. табл.); показатель степени ВПВ m=0,24

Таблица - Классы открытости и повторяемость направлений ветра по направлениям на MC

Направление ветра (румб)	С	C3	3	ЮЗ	Ю	ЮВ	В	CB
Повторяемость направления ветра, %	23,49	4,84	3,61	2,18	41,45	11,7	5,84	6,9
Класс открытости	6	6	6	6	6	8	8	8

Рассчитайте среднемноголетнюю скорость ветра в точке A на высоте 50 м по данным MC аналога

24. Определите характерный год. Дано: годовые вариации сезонной скорости ветра для 3-х лет:

Сезон	год 1	год 2	год 3
зима	6,5	7	7,5
весна	4	5	4,5
лето	4	3,5	3
осень	5,5	4,5	5
Полнота ряда, %	100	99	95

25. Разработайте аналитическую зависимость (в виде степенной) между среднемесячными значениями показателя степени и скоростью ветра на высоте 10 м по данным:

Месяц	1	2	3	4	5	6	7	8	9	10	11	12
Среднемесячная скорость на 10 м, м/с	0,4	0,3	0,5	1,0	1,2	1,3	1,0	0,8	1,0	0,9	0,6	0,5
Среднемесячная скорость на 100 м, м/с	1,9	1,8	2,5	3,6	3,8	4,1	4,1	3,3	3,5	3,0	2,0	1,9

26. Рассчитайте удельную валовую энергию с площади 1 м2 в год, наиболее повторяемую скорость и наибольшую энергетическую скорость ветра по повторяемости скорости ветра t(V) по диапазонам на высоте 10 м:

Диапазоны скорости, м/с	<i>t</i> (<i>V</i>),%
0-2,5	30
3,5-6,5	40
7,5 – 11,5	20
12,5 – 16,5	10

Материалы для проверки остаточных знаний

1. Укажите правильное утверждение

Ответы:

а) порывистость ветра с ростом высоты от поверхности земли уменьшается б) интенсивность турбулентности с увеличением скорости ветра увеличивается в) порывистость ветра с ростом высоты от поверхности земли увеличивается г) интенсивность турбулентности с ростом высоты увеличивается

Верный ответ: а)

2.Укажите климатические данные, влияющие на величину удельной мощности ветрового потока

Ответы:

- а) направление ветра б) скорость ветра в) слой осадков г) температура воздуха Верный ответ: б), г)
- 3.Укажите элемент ВЭУ, обеспечивающий контроль механического вращающего момента ВЭУ

Ответы:

- а) Устройство регулирования угла разворота лопастей б) Рабочее колесо ветротурбины
- в) Генератор г) Трансформатор д) Механизм ориентации по ветру

Верный ответ: а)

4. Найдите правильное утверждение

Ответы:

а) плотность воздуха с увеличением температуры снижается δ) скорость ветра по высоте снижается ϵ) плотность воздуха при снижении высотной отметки над уровнем моря снижается ϵ) скорость ветра по высоте не меняется

Верный ответ: а)

5.ВЭУ с асинхронными генераторами

Ответы:

а) вырабатывают реактивную мощность б) вырабатывают активную мощность в) потребляют реактивную мощность г) потребляют активную мощность

Верный ответ: б), в)

6.Укажите может ли ВЭС иметь гарантированную мощность

Ответы:

а) нет б) да, если ВЭС занимает большую территорию в) да, благодаря инерции ротора г) да, если высокие скорости ветра

Верный ответ: б)

7. Как работает система разворота гондолы

Ответы:

а) непрерывно б) с выдержкой по времени в) с выдержкой по времени при малых отклонениях направления ветра Γ) с выдержкой по времени при больших отклонениях направления ветра

Верный ответ: в)

II. Описание шкалы оценивания

Оценка: 5

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Работа выполнена в рамках "продвинутого" уровня. Ответы даны верно, четко сформулированные особенности практических решений

Оценка: 4

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Работа выполнена в рамках "базового" уровня. Большинство ответов даны верно. В части материала есть незначительные недостатки

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Работа выполнена в рамках "порогового" уровня. Основная часть задания выполнена верно. на вопросы углубленного уровня

Оценка: 2

Описание характеристики выполнения знания: Работа не выполнена или выполнена преимущественно неправильно

III. Правила выставления итоговой оценки по курсу

Оценка определяется в соответствии с Положением о балльно-рейтинговой системе для студентов НИУ «МЭИ» на основании семестровой и аттестационной составляющих.

2 семестр

Форма промежуточной аттестации: Экзамен

Пример билета

- 1. Критерии выбора единичной мощности ВЭУ в ОЭС
- 2. Алгоритм расчёта режима работы ВДЭК без аккумулирования
- 3. Практическое задание: Укажите вариант ВЭУ из таблицы, для которого можно получить максимально возможную проектную мощность ВЭС при условии размещения ВЭУ на доступной площади $20 \text{ км}2 \,$ рядами на одинаковом расстоянии ($10 \times D$ вк):

Вариант	Установленная мощность ВЭУ, МВт	Диаметр рабочего колеса, м
1	3	90
2	5	120
3	7	130

Процедура проведения

Устный опрос по билетам. Продолжительность подготовки 45 минут

I. Перечень компетенций/индикаторов и контрольных вопросов проверки результатов освоения дисциплины

1. Компетенция/Индикатор: ИД- $1_{\Pi K-2}$ Демонстрирует понимание взаимосвязи задач проектирования и эксплуатации

Вопросы, задания

- 1. Критерии выбора модели ВЭУ в составе ОЭС
- 2.Выбор варианта ВЭУ по критериям энергоэффективности
- 3. Метод расчета экстремальной скорости ветра при выборе класса безопасности ВЭУ
- 4.Метод построения натурной мощностной характеристики и требования к исходным данным для ее построения
- 5.Определите выработку одиночной ВЭУ при условии ее изолированной работы. Дано: коэффициент аэродинамической эффективности ВЭС 0,98 и годовые выработки трех ВЭУ (Эвэу) с учетом затенения:

Номер ВЭУ Э	вэу, млн.кВт.ч
---------------	----------------

ВЭУ1	9,8
ВЭУ2	9,55
ВЭУ3	9,6

6.Определите значение расчетной скорости ветра для фактических условий (отметка над уровнем моря - 500 м; среднемноголетняя температура — (-20 гр.С), если задана паспортная характеристика ВЭУ для стандартных условий:

Nвэу, кВт										
V, M/c	3	4	5	7	8	9	11	12	 25	25

7.Определите значение мощности ВЭУ при скорости ветра 4,5 м/с по натурной мощностной характеристике, построенной методом «бинов» с шагом 1 м/с по заданному ряду 10-и минутных наблюдений за скоростью ветра и мощностью ВЭУ:

V, м/c	3	4	4,5	3,5	5	6	4,5
Nвэу, кВт	20	40	80	30	120	150	100

- 8. Алгоритм расчёта режима работы ВДЭК без аккумулирования
- 9.Выбор структуры и оборудования ВДЭК
- 10.Эффект «затенения» массива ВЭУ в составе ВЭС
- 11. Методика определения выработки энергии ветроэнергетической станции
- 12. Факторы, учитываемые при выборе схемы размещения ВЭУ в составе ВЭС
- 13.Дано: мощность потребителя -300 кВт; максимально возможная мощность ВЭС, соответствующая скорости ветра -220 кВт; минимальная рабочая мощность ДЭС-120 кВт; ВЭС в количестве 2-х ВЭУ без регулирования угла установки лопастей.

Рассчитайте рабочие мощности ДЭС и ВЭС, свободную мощность от ВЭС (все потери на собственные нужды ВЭС и ДЭС принять «0»)

14.Дано: мощность потребителя -500 кВт; максимально возможная мощность ВЭС, соответствующая скорости ветра -350 кВт; минимальная рабочая мощность ДЭС-130 кВт; ВЭС в количестве 2-х ВЭУ с регулированием угла установки лопастей. Рассчитайте экономию топлива на ДЭС за 10 часов при удельном расходе ДЭС - 0,32 кг/кВт.ч

Материалы для проверки остаточных знаний

1.Укажите, как изменяется коэффициент аэродинамической эффективности ВЭС при уменьшении расстояния между ВЭУ на площадке ВЭС

Ответы:

- а) увеличивается б) уменьшается в) не меняется Верный ответ: б)
- 2.Укажите каким требованиям должны соответствовать исходные данные для построения натурной мощностной характеристики

Ответы:

а) среднечасовые данные, соответствующие нормальному рабочему режиму ВЭУ б) 10-и минутные данные, соответствующие всем режимам работы ВЭУ в) среднечасовые данные, соответствующие рабочему диапазону ВЭУ г) 10-и минутные данные, соответствующие нормальному рабочему режиму ВЭУ

Верный ответ: г)

- 3.Укажите последствие дополнения ВДК аккумулирующим устройством
- а) увеличение доли по среднегодовой выработке ДЭС б) снижение рассогласованности графиков потребления электроэнергии и прихода ресурса ветра в) увеличение расхода топлива на ДЭС г) увеличение доли замещения среднегодовой выработки ДЭС

Верный ответ: г)

4.Укажите за счет чего может быть снижена свободная энергия от ВЭС в составе ВДЭК

Ответы:

а) за счет увеличения мощности единичной ВЭУ при той же мощности ВЭС б) за счет балластного устройства в) за счет снижения мощности единичной ВЭУ при той же мощности ВЭС Γ) за счет дополнения ВДК аккумулирующим устройством

Верный ответ: г)

- 5.Укажите основное назначение ВЭС при интеграции в состав ВДЭК Ответы:
- а) увеличение установленной мощности энергокомплекса б) увеличение гарантированной мощности энергокомплекса в) снижение расхода топлива на ДЭС г) повышение надежности энергоснабжения потребителя

Верный ответ: в)

- 6.В проекте ВДЭК следует стремиться Ответы:
- а) минимизации степени замещения по энергии б)стабилизации степени замещения по энергии в) максимизации степени замещения по энергии г) нет правильного ответа Верный ответ: в)
- 7. Какую роль выполняет система накопления в крупном ВДЭК Ответы:
- а) перераспределение энергии во времени для долговременного обеспечения работы потребителей б) для кратковременного обеспечения работы потребителей в) используется для увеличения Киум ВЭС г) нет правильного ответа

Верный ответ: б)

2. Компетенция/Индикатор: ИД-2_{РПК-1} Применяет фундаментальные и прикладные знания для решения исследовательских задач в профессиональной области (сфере)

Вопросы, задания

1.Укажите наиболее энергоэффективные модели ВЭУ из таблицы Таблица - Параметры моделей ВЭУ и их годовые выработки в ветровых условиях площадки на высоте башни ВЭУ

No	Модолг	Уст. мощность ВЭУ	Диаметр ВК	Высота башни	Годовая выработка, МВт.ч
745	Модель		кВт	M	M
1	E82/2000	2000	80	100	5900
2	E82/2300	2300	90	90	6500
3	E82/3000	3000	100	90	8000
4	E101/3000	3000	110	100	8900
5	3.2M114	3200	100	90	9200

2.Определите подкласс безопасности вариантов ВЭУ мощностью около 1 МВт для установки в точке А по заданному ряду 10-и минутных значений средней скорости ветра и их среднеквадратичных отклонений на высоте оси ВК

Таблица - Ряд 10-и минутных значений средней скорости ветра и их среднеквадратичных отклонений на высоте оси ВК

Скорость, м/с	Среднеквадратичное отклонение, м/с
12	2,5
15	1,5
15,4	1,54
20	3,2
14	1,4
10	1,5
12,5	1,25
8	2,5
14,6	1,46

15	2,25
11	2,2

- 3. Метод расчета турбулентности при выборе подкласса безопасности ВЭУ
- 4.Класс безопасности ВЭУ
- 5. Моделирование переходных процессов в ВЭУ
- 6.Структурные схемы ВДЭК
- 7. Подготовка и организация строительства ВЭС
- 8.Организация эксплуатации ВЭС
- 9.Стадии разработки проектно-сметной документации (ПСД)
- 10.Потери выработки ВЭУ, вызванные обледенением
- 11.Особенности работы ВЭУ в условиях холодного климата
- 12.Влияние параметров моделей вертикального профиля ветра (показателя степени, параметра шероховатости) на энергетические показатели ВЭУ
- 13.Влияние параметров ВЭУ (диаметра ВК и высоты башни) на энергетические показатели ВЭУ
- 14.Влияние различных реальных условий на энергетические показатели ВЭУ
- 15. Модельные и натурные мощностные характеристики ВЭУ и их особенности
- 16. Условие и методика коррекции паспортной мощностной характеристики ВЭУ

Материалы для проверки остаточных знаний

1.От чего зависит коэффициент использования установленной мощности ВЭУ в заданной точке

Ответы:

а) единичной мощности ВЭУ б) диаметра ветроколеса в) веса ветроколеса г) высоты башни ВЭУ

Верный ответ: г)

2.Укажите характеристики ветра, учитываемые при определении класса безопасности ВЭУ

Ответы:

а) среднемноголетняя скорость ветра б) экстремальная скорость ветра в) коэффициент вариации скорости ветра г) коэффициент порывистости ветра

Верный ответ: б)

3.Выбор вариантов ВЭУ по критериям энергоэффективности следует производить среди вариантов

Ответы:

а) с одинаковой мощностью б) с одинаковым диаметром ВК в) с одинаковой площадью ометания ВК г) с одинаковой высотой башни

Верный ответ: г)

- 4. Укажите условия коррекции паспортной мощностной характеристики Ответы:
- а) плотность воздуха отличается от стандартной более, чем на 4% б) температура воздуха отличается от стандартной более, чем на 10% в) температура воздуха отличается от стандартной более, чем на 5 гр.С г) высотная отметка над уровнем моря выше 50 м

Верный ответ: а)

5. Укажите последствия обледенения ВЭУ

Ответы

а) снижение лобового сопротивления б) снижение выходной мощности в) увеличение подъемной силы г) увеличение лобового сопротивления

Верный ответ: б), г)

6. Укажите последствия увеличения высоты башни конкретной модели ВЭУ

Ответы:

а) уменьшение коэффициента использования установленной мощности ВЭУ б) увеличение ометаемой площади ВК в) увеличение коэффициента использования установленной мощности ВЭУ г) увеличение ометаемой площади ВК д) увеличение выработки ВЭУ

Верный ответ: в), д)

7. Укажите какой период времени составляет жизненный цикл (ж/ц) строительного объекта

Ответы:

а) в течение которого объект эксплуатируется б) от момента зарождения инвестиционного замысла до ликвидации объекта в) в течение которого объект существует как объект управления г) период времени от начала строительства до ввода в эксплуатацию

Верный ответ: б)

- 8.Укажите что входит в состав проектной подготовки строительства ВЭС Ответы:
- а) мониторинг и расчеты ветропотенциала местности б) результаты инженерных изысканий в) разработка проектной документации г) варианты основного оборудования ВЭС д) разработка сметной документации

Верный ответ: б), в), д)

- 9.Какой раздел ПСД определяет календарный план строительства энергообъекта Ответы:
- а) пояснительная записка (Π 3) б) архитектурные решения (Λ P) в) проект организации строительства (Π OC)

Верный ответ: в)

II. Описание шкалы оценивания

Оценка: 5

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Работа выполнена в рамках "продвинутого" уровня. Ответы даны верно, четко сформулированные особенности практических решений

Оценка: 4

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Работа выполнена в рамках "базового" уровня. Большинство ответов даны верно. В части материала есть незначительные недостатки

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Работа выполнена в рамках "порогового" уровня. Основная часть задания выполнена верно. на вопросы углубленного уровня

Оценка: 2

Описание характеристики выполнения знания: Работа не выполнена или выполнена преимущественно неправильно

ІІІ. Правила выставления итоговой оценки по курсу

Оценка определяется в соответствии с Положением о балльно-рейтинговой системе для студентов НИУ «МЭИ» на основании семестровой и аттестационной составляющих.

Для курсового проекта/работы:

2 семестр

Форма проведения: Защита КП/КР

І. Процедура защиты КП/КР

Устный опрос

II. Описание шкалы оценивания

Оценка: 5

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Работа выполнена в рамках "продвинутого" уровня, четко сформулированы особенности практических решений. Ответы на вопросы даны верно

Оценка: 4

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Работа выполнена в рамках "базового" уровня, в части материала есть незначительные недостатки и не четко сформулированы особенности практических решений. Ответы на большинство вопросов даны верно

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Работа выполнена в рамках "порогового" уровня, основная часть задания выполнена верно. Ответы на большинство вопросов даны верно, но не раскрыты

Оценка: 2

Описание характеристики выполнения знания: Работа не выполнена или выполнена преимущественно неправильно

ІІІ. Правила выставления итоговой оценки по курсу

Оценка определяется в соответствии с Положением о балльно-рейтинговой системе для студентов НИУ «МЭИ» на основании семестровой и аттестационной составляющих.