Министерство науки и высшего образования РФ Федеральное государственное бюджетное образовательное учреждение высшего образования «Национальный исследовательский университет «МЭИ»

Направление подготовки/специальность: 02.03.02 Фундаментальная информатика и информационные технологии

Наименование образовательной программы: Технологии разработки интеллектуальных систем

Уровень образования: высшее образование - бакалавриат

Форма обучения: Очно-заочная

Оценочные материалы по дисциплине Схемотехника

> Москва 2025

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ РАЗРАБОТАЛ:

MON S	Подписано электронн	ой подписью ФГБОУ ВО «НИУ «МЭИ»
	Сведения о владельце ЦЭП МЭИ	
	Владелец	Вишняков С.В.
	Идентификатор	R35b26072-VishniakovSV-02810d9

СОГЛАСОВАНО:

Руководитель образовательной программы

Разработчик

o nocumentation	Подписано электронн	ой подписью ФГБОУ ВО «НИУ «МЭИ»
	Сведения о владельце ЦЭП МЭИ	
MOM	Владелец	Ионова Т.В.
	Идентификатор	R5ac51726-lonovaTV-b9dd3591

Т.В. Ионова

Вишняков

C.B.

Заведующий выпускающей кафедрой

NOSO NOSO	Подписано электронн	ой подписью ФГБОУ ВО «НИУ «МЭИ»
5 He 100 Transport #10 5	Сведен	ия о владельце ЦЭП МЭИ
	Владелец	Варшавский П.Р.
» <u>М≎И</u> «	Идентификатор	R9a563c96-VarshavskyPR-efb4bbd

П.Р. Варшавский

ОБЩАЯ ЧАСТЬ

Оценочные материалы по дисциплине предназначены для оценки достижения обучающимися запланированных результатов обучения по дисциплине, этапа формирования запланированных компетенций и уровня освоения дисциплины.

Оценочные материалы по дисциплине включают оценочные средства для проведения мероприятий текущего контроля успеваемости и промежуточной аттестации.

Формируемые у обучающегося компетенции:

- 1. ОПК-5 Способен инсталлировать и сопровождать программное обеспечение информационных систем и баз данных, в том числе отечественного происхождения, с учетом информационной безопасности
 - ИД-2 Устанавливает и инсталлирует программные комплексы, применяет основы сетевых технологий

и включает:

для текущего контроля успеваемости:

Форма реализации: Компьютерное задание

- 1. Комбинационные логические схемы (Лабораторная работа)
- 2. Комбинационные функциональные узлы и устройства (Лабораторная работа)

Форма реализации: Письменная работа

1. Проектирование схем (Лабораторная работа)

БРС дисциплины

8 семестр

Перечень контрольных мероприятий <u>текущего контроля</u> успеваемости по дисциплине:

- КМ-1 Комбинационные логические схемы (Лабораторная работа)
- КМ-2 Комбинационные функциональные узлы и устройства (Лабораторная работа)
- КМ-3 Проектирование схем (Лабораторная работа)

Вид промежуточной аттестации – Зачет с оценкой.

	Веса контрольных мероприятий, %			
Раздел дисциплины	Индекс	KM-1	KM-2	KM-3
газдел дисциплины	KM:			
	Срок КМ:	3	7	11
Комбинационные логические схемы				
Элементы КЛС		+		
Схемотехника КЛС		+		
Цифровые узлы				

Цифровые узлы комбинационного типа		+	
Цифровые узлы последовательного типа		+	
Проектирование схем			
Проектирование синхронных схем			+
Программируемые логические интегральные схемы (ПЛИС)			+
Арифметико-логические устройства			+
Bec KM:	30	30	40

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ТЕКУЩЕГО КОНТРОЛЯ

I. Оценочные средства для оценки запланированных результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций

Индекс	Индикатор	Запланированные	Контрольная точка
компетенции		результаты обучения по	
		дисциплине	
ОПК-5	ИД-20ПК-5 Устанавливает и	Знать:	КМ-1 Комбинационные логические схемы (Лабораторная работа)
	инсталлирует	алгоритмы проектирования	КМ-2 Комбинационные функциональные узлы и устройства
	программные комплексы,	схем	(Лабораторная работа)
	применяет основы сетевых	основы схемотехники	КМ-3 Проектирование схем (Лабораторная работа)
	технологий	Уметь:	
		проектировать синхронные	
		схемы	

II. Содержание оценочных средств. Шкала и критерии оценивания

КМ-1. Комбинационные логические схемы

Формы реализации: Компьютерное задание

Тип контрольного мероприятия: Лабораторная работа

Вес контрольного мероприятия в БРС: 30

Процедура проведения контрольного мероприятия: Тест проводится в системе Прометей.

Дается 3 попытки за 14 дней.

Краткое содержание задания:

Контрольная точка направленна на проверку освоения знаний по вопросам: комбинационные логические схемы

Контрольные вопросы/задания:

Контрольные вопросы/задания:		
Запланированные результаты	Вопросы/задания для проверки	
обучения по дисциплине		
обучения по дисциплине Знать: алгоритмы проектирования схем	1.Сколько элементов 2ИЛИ и НЕ понадобится, чтобы реализовать функцию А * В? 1.1-2ИЛИ 2.1-2ИЛИ и 2-НЕ 3.2-2ИЛИ и 1-НЕ 4.1-2ИЛИ и 3-НЕ Ответ: 4 2.Как можно увеличить коэффициент разветвления элемента по выходу? 1.Подать большее напряжение на данный элемент 2.Добавить буферный элемент на вход 3.Добавить буферный элемент на выход 4.Добавить буферный элемент на вход и на выход Ответ: 3 3.Каково назначение тристабильного выхода у элемента? 1.Для увеличения нагрузочной способности схем 2.Для организации связей типа монтажное И 3.Для организации связей типа общая шина 4.Для организации связей типа монтажное ИЛИ Ответ: 3	
	4. Что такое коэффициент разветвления элемента по выходу? 1. Число выходов элемента 2. Число входов и выходов элемента 3. Максимальное число элементов, которые можно подключить к выходу данного элемента 4. Число входов элемента Ответ: 3	
	5.Как правильно реализовать функцию 2И (У=А * В) на	

Запланированные результаты	Вопросы/задания для проверки
обучения по дисциплине	
	элементах НЕ и 2ИЛИ?
	1.У= не A или не B
	2.У= не (A или B)
	3.У= не (не A или не B)
	Ответ: 3

Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-2. Комбинационные функциональные узлы и устройства

Формы реализации: Компьютерное задание

Тип контрольного мероприятия: Лабораторная работа

Вес контрольного мероприятия в БРС: 30

Процедура проведения контрольного мероприятия: Тест проводится в системе Прометей.

Дается 3 попытки за 14 дней.

Краткое содержание задания:

Контрольная точка направленна на проверку освоения знаний по вопросам: цифровые узлы

Контрольные вопросы/задания:

Запланированные	Вопросы/задания для проверки
результаты	
обучения по	
дисциплине	
Знать: основы	1.Постройте модель вентиля НЕ(инвертор)
схемотехники	2.Определите задержку элемента
	3.Изучение функций логических элементов и их ДИИДС моделей
	4.Из скольких строк максимально состоит булевская таблица
	истинности логической функции от двух аргументов
	5. Моделирование в D–DcS ведется не в двоичном, а в
	четырехзначном алфавите. Сопоставьте таблицы функций И в
	двоичном и троичном алфавите
	6.Проведите синтез и минимизацию схемы, реализующей

Запланированные	Вопросы/задания для проверки
результаты	
обучения по	
дисциплине	
	простую логическую функцию F(X1,X2,X3),заданную таблицей
	истинности проверьте схему моделированием, определите
	максимальную задержку сигнала, получите vhdl код
	7.Выполните все пункты задания 3 для вашего варианта функции
	F. Постройте схему ,реализующую функцию F в базисе блоков
	диидс

Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-3. Проектирование схем

Формы реализации: Письменная работа

Тип контрольного мероприятия: Лабораторная работа

Вес контрольного мероприятия в БРС: 40

Процедура проведения контрольного мероприятия: Работа прикрепляется в системе

Прометей. На выполнение работы дается 14 дней.

Краткое содержание задания:

Контрольная точка направленна на проверку освоения умений по вопросам: проектирование схем

Контрольные вопросы/задания:

Запланированные	Вопросы/задания для проверки
результаты обучения по	
дисциплине	
Уметь: проектировать	1.Постройте и исследуйте схему триггера- номер варианта
синхронные схемы	соответствует вашему номеру в студенческой группе
	2.Динамический JK-триггер (JK FF)
	3.Изучение Динамического D-триггера
	4.D -Триггер защелка (статический D -Триггер ,D-Latch)
	5.Изучение синхронного RS-триггера(RS-Latch,
	синхронный RS триггер-защелка)

Запланированные	Вопросы/задания для проверки
результаты обучения по	
дисциплине	
	6.Изучить блок ДИИДС- модель RS триггера (<i>RS Latch</i>)
	7.Изучение работы RS триггера на элементах И-НЕ

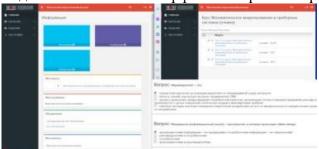
Описание шкалы оценивания:

Оценка: «зачтено»

Описание характеристики выполнения знания: Оценка "зачтено" выставляется если задание выполнено правильно или с незначительными недочетами

Оценка: «не зачтено»

Описание характеристики выполнения знания: Оценка "не зачтено" выставляется если задание не выполнено в отведенный срок или результат не соответствует заданию


СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

8 семестр

Форма промежуточной аттестации: Зачет с оценкой

Пример билета

Вид билета связан с интерфейсом сервиса "Прометей"

Процедура проведения

В тесте 20 вопросов встречаются вопросы следующих типов:

- 1. с одним вариантом ответа (в вопросах «один из многих», система сравнивает ответ слушателя с правильным ответом и автоматически выставляет за него назначенный балл)
- 2. с выбором нескольких вариантов ответов (в вопросах «многие из многих» система оценивает каждый ответ отдельно; есть возможность разрешить слушателю получить за вопрос 0,75 балла, если он выберет 3 правильных ответа из 4)
- 3. на соответствие слушатель должен привести в соответствие левую и правую часть ответа (в вопросах «соответствие» система оценивает каждый ответ отдельно; можно разрешить слушателю получить за вопрос 0,75 балла, если он выберет 3 правильных ответа из 4)
- 4. развернутый ответ, вводится в вручную в специально отведенное поле (ручная оценка преподавателем)

I. Перечень компетенций/индикаторов и контрольных вопросов проверки результатов освоения дисциплины

1. Компетенция/Индикатор: ИД-2_{ОПК-5} Устанавливает и инсталлирует программные комплексы, применяет основы сетевых технологий

Вопросы, задания

- 1. Что такое триггер
- 2. Какова разница между активным и пассивным фронтом синхросигнала на входе динамических триггеров?
- 3. Чем отличаются триггеры с потенциальным и динамическим управлением?
- 4. Что такое двухступенчатый триггер?
- 5.В чём заключается основное отличие синхронного RS-триггера и D-триггера
- 6. Что такое элемент типа LUT в ПЛИС типа FPGA
- 7. Что такое элемент типа макроячейка (macrocell) в ПЛИС типа CPLD
- 8. Чем отличается ПЛА от ПЛМ
- 9. Как получить дополнительный код положительного числа из прямого кода
- 10. Как в 16-тиричной системе представляются десятичные значения 10, 11, 12, 13, 14, 15
- 11. Какие признаки вырабатываются в АЛУ

Материалы для проверки остаточных знаний

1. Что такое логический элемент?

Ответы:

- 1. Это элемент теории булевой алгебры
- 2. Это часть электронной логической схемы, которая реализует элементарную логическую операцию
- 3. Это элемент теории логических высказываний

Верный ответ: 2

2. Что такое гонки сигналов в логических схемах?

Ответы:

- 1. Это задержка распространения сигнала от входа к выходу
- 2. Это временная характеристика логического элемента
- 3. Это распространение сигнала по двум или более трактам
- 4. Это кратковременная неоднозначность выходного сигнала при изменении сигнала на каком-либо из входов, вызванная конечным значением времени прохождения сигнала через логические элементы

Верный ответ: 4

3. Какие значения может принимать цифровой сигнал?

Ответы:

- 1.От 0.0V до 5.0V
- 2. От -1.0 до 1.0
- 3. -1 0 1
- 4.0и1

Верный ответ: 4

4. Можно ли соединить выходы двух базовых элементов (например, 2И)?

Ответы:

- 1.Да
- 2. Нет
- 3. Через резистор

Верный ответ: 2

5. Элементы одинакового типа из-за воздействия случайных факторов в процессе их изготовления имеют разные задержки. Какие задержки элементов обычно принято использовать при расчетах задержек в схемах?

Ответы:

- 1. Минимальные
- 2. Средние
- 3. Единичные
- 4. Максимальные

Верный ответ: 4

6. Что будет, если длительность входного сигнала на входе инвертора намного меньше времени задержки элемента?

Ответы:

- 1.Сигнал пройдет на выход без изменений
- 2. Сигнал пройдёт на выход с инверсией
- 3. Сигнал на выход не попадёт

Верный ответ: 3

7. Что такое коэффициент разветвления элемента по выходу?

Ответы:

- 1. Число выходов элемента
- 2. Число входов и выходов элемента
- 3. Максимальное число элементов, которые можно подключить к выходу данного

элемента

4. Число входов элемента

Верный ответ: 3

- 8.Сколько элементов 2ИЛИ и НЕ понадобится, чтобы реализовать функцию A * B? Ответы:
- 1.1-2ИЛИ
- 2. 1-2ИЛИ и 2-НЕ
- 3. 2-2ИЛИ и 1-НЕ
- 4. 1-2ИЛИ и 3-НЕ

Верный ответ: 4

9. Что такое полусумматор?

Ответы:

- 1. Это схема сложения двух одноразрядных двоичных кодов с учетом входного переноса из предыдущего разряда и выработкой разряда для переноса
- 2. Это схема сложения двух одноразрядных двоичных кодов без переноса в следующий разряд
- 3. Это схема, выполняющая функцию определения наличия переноса Верный ответ: 2
- 10. Что такое полный двоичный сумматор?

Ответы:

- 1. Это схема сложения двух одноразрядных двоичных кодов с учетом входного переноса из предыдущего разряда и выработкой разряда для переноса
- 2. Это схема сложения двух одноразрядных двоичных кодов без переноса в следующий разряд
- 3. Это схема, выполняющая функцию определения наличия переноса Верный ответ: 1

II. Описание шкалы оценивания

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Работа выполнена в рамках "продвинутого" уровня. Ответы даны верно, четко сформулированные особенности практических решений

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Работа выполнена в рамках "базового" уровня. Большинство ответов даны верно. В части материала есть незначительные недостатки

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Работа выполнена в рамках "порогового" уровня. Основная часть задания выполнена верно. на вопросы углубленного уровня

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Работа не выполнена или выполнена преимущественно неправильно

ІІІ. Правила выставления итоговой оценки по курсу

Оценка определяется в соответствии с Положением о балльно-рейтинговой системе для студентов НИУ «МЭИ» на основании семестровой и аттестационной составляющих.