Министерство науки и высшего образования РФ Федеральное государственное бюджетное образовательное учреждение высшего образования «Национальный исследовательский университет «МЭИ»

Направление подготовки/специальность: 02.03.02 Фундаментальная информатика и информационные технологии

Наименование образовательной программы: Технологии разработки интеллектуальных систем

Уровень образования: высшее образование - бакалавриат

Форма обучения: Очно-заочная

Оценочные материалы по дисциплине Цифровая обработка сигналов

> Москва 2025

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ РАЗРАБОТАЛ:

MON MEM	Подписано электронн	ой подписью ФГБОУ ВО «НИУ «МЭИ»
	Сведения о владельце ЦЭП МЭИ	
	Владелец	Вишняков С.В.
	Идентификатор	R35b26072-VishniakovSV-02810d9

СОГЛАСОВАНО:

Руководитель образовательной программы

Разработчик

o no naso	Подписано электронн	ой подписью ФГБОУ ВО «НИУ «МЭИ»
MOM	Сведения о владельце ЦЭП МЭИ	
	Владелец	Ионова Т.В.
	Идентификатор	R5ac51726-lonovaTV-b9dd3591

Т.В. Ионова

Вишняков

C.B.

Заведующий выпускающей кафедрой

NOSO NOSO	Подписано электронн	ой подписью ФГБОУ ВО «НИУ «МЭИ»
5 He 100 Transport	Сведен	ия о владельце ЦЭП МЭИ
MOM	Владелец	Варшавский П.Р.
	Идентификатор	R9a563c96-VarshavskyPR-efb4bbd

П.Р. Варшавский

ОБЩАЯ ЧАСТЬ

Оценочные материалы по дисциплине предназначены для оценки достижения обучающимися запланированных результатов обучения по дисциплине, этапа формирования запланированных компетенций и уровня освоения дисциплины.

Оценочные материалы по дисциплине включают оценочные средства для проведения мероприятий текущего контроля успеваемости и промежуточной аттестации.

Формируемые у обучающегося компетенции:

- 1. ОПК-1 Способен применять фундаментальные знания, полученные в области математических и (или) естественных наук, и использовать их в профессиональной деятельности
 - ИД-2 Использует базовые знания и методы математических наук для решения прикладных задач
- 2. ОПК-5 Способен инсталлировать и сопровождать программное обеспечение информационных систем и баз данных, в том числе отечественного происхождения, с учетом информационной безопасности
 - ИД-1 Использует техническое сопровождение информационных систем и баз данных ИД-2 Устанавливает и инсталлирует программные комплексы, применяет основы
 - сетевых технологий

и включает:

для текущего контроля успеваемости:

Форма реализации: Компьютерное задание

- 1. Базовые понятия теории сигналов (Тестирование)
- 2. Дискретные модели сигналов во временной и частотной областях (Тестирование)

Форма реализации: Письменная работа

1. Задание по Matlab/Scilab (Контрольная работа)

БРС дисциплины

9 семестр

Перечень контрольных мероприятий <u>текущего контроля</u> успеваемости подисциплине:

- КМ-1 Базовые понятия теории сигналов (Тестирование)
- КМ-2 Дискретные модели сигналов во временной и частотной областях (Тестирование)
- КМ-3 Задание по Matlab/Scilab (Контрольная работа)

Вид промежуточной аттестации – Зачет с оценкой.

Раздел дисциплины	Веса ко	Веса контрольных мероприятий, %		
	Индекс	KM-1	KM-2	KM-3
	KM:			
	Срок КМ:	6	9	12

Элементы теории сигналов			
Основные термины и понятия	+		
Частотное и временное представление сигналов	+		
Дискретизация и квантование сигналов			
Дискретизация и квантование		+	
Анализ сигналов		+	
Системы обработки сигналов			
Дискретные цифровые системы			+
Практические вопросы цифровой обработки сигналов			+
Bec KM:	30	35	35

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ТЕКУЩЕГО КОНТРОЛЯ

I. Оценочные средства для оценки запланированных результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций

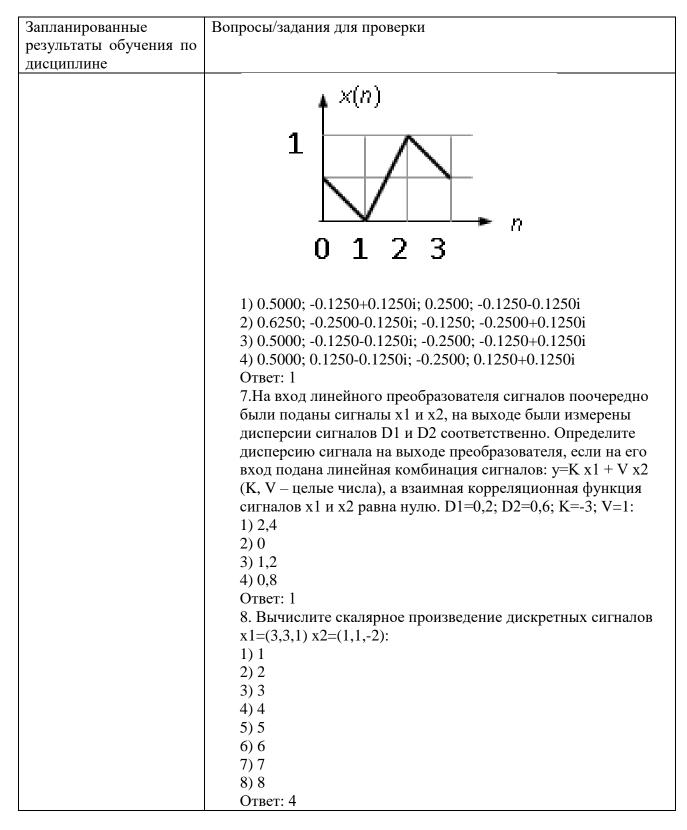
Индекс	Индикатор	Запланированные	Контрольная точка
компетенции	_	результаты обучения по	
		дисциплине	
ОПК-1	ИД-20ПК-1 Использует	Знать:	КМ-1 Базовые понятия теории сигналов (Тестирование)
	базовые знания и методы	принципы и технологию	
	математических наук для	решения задач на основе	
	решения прикладных	применения типовых	
	задач	методов и алгоритмов	
		цифровой обработки	
		сигналов	
ОПК-5	ИД-10ПК-5 Использует	Уметь:	КМ-3 Задание по Matlab/Scilab (Контрольная работа)
	техническое	производить описание	
	сопровождение	аналоговых, дискретных и	
	информационных систем и	цифровых сигналов, а	
	баз данных	также систем их обработки	
		во временной и частотной	
		областях	
ОПК-5	ИД-20ПК-5 Устанавливает и	Знать:	КМ-2 Дискретные модели сигналов во временной и частотной
	инсталлирует	проблематику	областях (Тестирование)
	программные комплексы,	корреляционного и	
	применяет основы сетевых	спектрального анализа	
	технологий	сигналов при применении	
		типовых алгоритмов	
		обработки	

II. Содержание оценочных средств. Шкала и критерии оценивания

КМ-1. Базовые понятия теории сигналов

Формы реализации: Компьютерное задание **Тип контрольного мероприятия**: Тестирование **Вес контрольного мероприятия в БРС**: 30

Процедура проведения контрольного мероприятия: Технология проверки связана с выполнением контрольного теста по изученной теме. Тестирование проводится с использованием СДО "Прометей". К тестированию допускается пользователь, изучивший материалы, авторизованный уникальным логином и паролем.


Краткое содержание задания:

Тестирование по базовым вопросам, связанным с теорией сигналов, описанием цифровых сигналов. Понятие ортогональности сигналов

Контрольные вопросы/задания:

Контрольные вопросы/з	адания:
Запланированные	Вопросы/задания для проверки
результаты обучения по	
дисциплине	
Знать: принципы и	1.Определить скалярное произведение заданных сигналов
технологию решения	x1(t) и x2(t):
задач на основе	$x_1(t) = \sin nbsp; (\omega t)x_2(t) = \sin nbsp; (2\omega t)$
применения типовых	1) 0
методов и алгоритмов	2) >0
цифровой обработки	3) <0
сигналов	4) недостаточно данных
	Ответ: 1
	2.Вычислить четырехточечное дискретное преобразование
	Фурье (ДПФ) заданного сигнала:
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	1) 0.5000; -0.1250-0.1250i; 0.2500; -0.1250+0.1250i
	2) 0.6250; -0.1250-0.2500i; 0.1250; -0.1250+0.2500i 3) 0.5000; -0.1250+0.1250i; 0.2500; -0.1250-0.1250i
	4) 0.6250; -0.2500-0.1250i; -0.1250; -0.2500+0.1250i
	4) 0.0230; -0.2300-0.12301; -0.1230; -0.2300+0.12301 Ответ: 1
	3.На вход линейного преобразователя сигналов поочередно
	5. па вход линеиного преооразователя сигналов поочередно были поданы сигналы x1 и x2, на выходе были измерены
	дисперсии сигналов D1 и D2 соответственно. Определите
	дисперсии сигналов от и ог соответственно. Определите

Запланированные	Вопросы/задания для проверки
результаты обучения по	Бопросы задания для проверки
дисциплине	
дисциплине	дисперсию сигнала на выходе преобразователя, если на его вход подана линейная комбинация сигналов: y=K x1 + V x2 (K, V – целые числа), а взаимная корреляционная функция сигналов x1 и x2 равна нулю. D1=0,3; D2=0,5; K=2; V=-1: 1) 1,7 2) 0,1 3) 1,1 4) 0,8 Ответ: 1 4.Вычислите скалярное произведение дискретных сигналов x1=(3,1,2) x2=(2,2,-2): 1) -2 2) -1 3) 0 4) 1 5) 2 6) 3 7) 4 8) 5 Ответ: 7 5.Вычислить четырехточечное дискретное преобразование Фурье (ДПФ) заданного сигнала:
	1
	1) 0.6250; -0.1250-0.2500i; 0.1250; -0.1250+0.2500i 2) 0.5000; -0.1250+0.1250i; 0.2500; -0.1250-0.1250i 3) 0.6250; -0.2500-0.1250i; -0.1250; -0.2500+0.1250i 4) 0.5000; -0.1250-0.1250i; -0.2500; -0.1250+0.1250i Ответ: 1 6.Вычислить четырехточечное дискретное преобразование Фурье (ДПФ) заданного сигнала:

Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 85

Описание характеристики выполнения знания: оценка "отлично" выставляется, если задание выполнено в установленном объеме в соответствии со шкалой

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 75

Описание характеристики выполнения знания: оценка "хорошо" выставляется, если задание выполнено в установленном объеме в соответствии со шкалой

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: оценка "удовлетворительно" выставляется, если задание выполнено в установленном объеме в соответствии со шкалой

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: оценка "неудовлетворительно" выставляется, если задание выполнено ниже порогового уровня, установленного шкалой

КМ-2. Дискретные модели сигналов во временной и частотной областях

Формы реализации: Компьютерное задание Тип контрольного мероприятия: Тестирование Вес контрольного мероприятия в БРС: 35

Процедура проведения контрольного мероприятия: Технология проверки связана с выполнением контрольного теста по изученной теме. Тестирование проводится с использованием СДО "Прометей". К тестированию допускается пользователь, изучивший материалы, авторизованный уникальным логином и паролем.

Краткое содержание задания:

Тестирование по моделям дискретным моделям сигналов во временной и частотной областях

Контрольные вопросы/задания:

Контрольные вопросы/задания:	,
Запланированные результаты обучения	Вопросы/задания для проверки
по дисциплине	
Знать: проблематику корреляционного и	1.Укажите сигналы при частотном анализе
спектрального анализа сигналов при	которых (длина выборки N=128 отсчетов,
применении типовых алгоритмов	ts=0.1) наблюдается эффект наложения
обработки	спектра:
	1) $s(k)=\sin(3 \text{ pi } k \text{ ts}) + 0.08\cos(11 \text{ pi } k \text{ ts})$
	2) $s(k)=\sin(2 \text{ pi } k \text{ ts}-0.2) + 0.1\cos(3 \text{ pi } k \text{ ts})$
	3) $s(k)=\sin(2 \text{ pi } k \text{ ts}) + 0.5\cos(4 \text{ pi } k \text{ ts}-0.1)$
	Ответ: 1
	2. Укажите сигналы при частотном анализе
	которых (длина выборки N=128 отсчетов,
	ts=0.1) наблюдается эффект наложения
	спектра:
	1) $s(k)=\sin(3 \text{ pi } k \text{ ts}) + 0.08\cos(11 \text{ pi } k \text{ ts})$
	2) $s(k)=\sin(2 \text{ pi } k \text{ ts}) + 0.5\cos(4 \text{ pi } k \text{ ts}-0.1)$
	3) $s(k)=\sin(4 \text{ pi } k \text{ ts}) + 0.4\cos(7 \text{ pi } k \text{ ts})$
	Ответ: 1
	3. Укажите сигналы при частотном анализе
	которых (длина выборки N=128 отсчетов,
	ts=0.1) наблюдается эффект наложения
	спектра:
	1) $n(3 \text{ pi k ts}) + 0.08\cos(11 \text{ pi k ts})$
	2) $n(2 \text{ pi k ts}) + 0.5\cos(4 \text{ pi k ts} + 0.1)$
	3) $n(3 \text{ pi k ts}+0.5) + 0.2\cos(9 \text{ pi k ts})$
	Ответ: 1
	4.Укажите сигналы при частотном анализе

Запланированные результаты обучения	Вопросы/задания для проверки
по дисциплине	
	которых (длина выборки N=150 отсчетов,
	ts=0.1) наблюдается эффект размытия (утечка)
	спектра:
	1) $s(k)=\sin(4 \text{ pi } k \text{ ts}) + 0.08\cos(8 \text{ pi } k \text{ ts}-0.5)$
	2) $s(k)=\sin(2 \text{ pi } k \text{ ts-0.2}) + 0.1\cos(3 \text{ pi } k \text{ ts})$
	3) $s(k)=\sin(2 \text{ pi } k \text{ ts}) + 0.5\cos(4 \text{ pi } k \text{ ts}-0.1)$
	4) $s(k)=\sin(4 \text{ pi } k \text{ ts}) + 0.4\cos(7 \text{ pi } k \text{ ts})$
	Ответ: 2, 4
	5.Укажите сигналы при частотном анализе
	которых (длина выборки N=150 отсчетов,
	ts=0.1) наблюдается эффект размытия (утечка)
	спектра:
	1) $s(k)=\sin(4 \text{ pi } k \text{ ts}) + 0.08\cos(8 \text{ pi } k \text{ ts}-0.5)$
	2) $s(k)=\sin(2 \text{ pi } k \text{ ts}) + 0.5\cos(4 \text{ pi } k \text{ ts}-0.1)$
	3) $s(k)=\sin(4 \text{ pi k ts}) + 0.4\cos(7 \text{ pi k ts})$
	4) $s(k)=\sin(3 \text{ pi } k \text{ ts}+0.5) + 0.2\cos(9 \text{ pi } k \text{ ts})$
	Ответ: 3 ,4
	6.Укажите сигналы при частотном анализе
	которых (длина выборки N=150 отсчетов,
	ts=0.1) наблюдается эффект размытия (утечка)
	спектра:
	1) $s(k)=\sin(2 \text{ pi k ts}-0.2) + 0.1\cos(3 \text{ pi k ts})$
	2) $s(k)=\sin(4 \text{ pi } k \text{ ts}) + 0.4\cos(7 \text{ pi } k \text{ ts})$
	3) $s(k)=\sin(3 \text{ pi k ts}+0.5) + 0.2\cos(9 \text{ pi k ts})$
	4) $s(k)=\sin(2 \text{ pi k ts}) + 0.5\cos(4 \text{ pi k ts}-0.1)$
	Ответ: 1, 2, 3 7.Под термином "белый шум" понимается
	(выберите правильные утверждения):
	(выоерите правильные утверждения). 1) любой стационарный случайный сигнал
	2) детерминированный сигнал
	3) случайный сигнал, плотность мощности
	которого является константой
	4) случайный сигнал, автокорреляционная
	функция которого есть функция Дирака
	Ответ: 3,4
	8.Укажите сигнал, имеющий минимальную
	базу:
	1) гауссов импульс
	2) синусоидальной формы
	3) прямоугольной формы
	4) треугольной формы
	Ответ: 1
	9.Укажите сигналы при частотном анализе
	которых (длина выборки N=150 отсчетов,
	ts=0.1) наблюдается эффект размытия (утечка)
	спектра:
	1) $s(k) = \sin(2 \text{ pi k ts}) + 0.5\cos(4 \text{ pi k ts} - 0.1)$
	2) $s(k)=\sin(4 \text{ pi } k \text{ ts}) + 0.08\cos(8 \text{ pi } k \text{ ts}-0.5)$
	3) $s(k)=\sin(3 \text{ pi } k \text{ ts}+0.5) + 0.2\cos(9 \text{ pi } k \text{ ts})$
	4) $s(k)=\sin(2 \text{ pi } k \text{ ts-0.2}) + 0.1\cos(3 \text{ pi } k \text{ ts})$

Запланированные результаты обучения	Вопросы/задания для проверки
по дисциплине	
	Ответ: 3, 4
	10.Под термином "белый шум" понимается
	(выберите правильные утверждения):
	1) случайный сигнал, плотность мощности
	которого является константой
	2) детерминированный сигнал
	3) случайный сигнал, автокорреляционная
	функция которого линейна
	4) любой стационарный случайный сигнал
	Ответ: 1

Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 85

Описание характеристики выполнения знания: оценка "отлично" выставляется, если задание выполнено в установленном объеме в соответствии со шкалой

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 75

Описание характеристики выполнения знания: оценка "хорошо" выставляется, если задание выполнено в установленном объеме в соответствии со шкалой

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: оценка "удовлетворительно" выставляется, если задание выполнено в установленном объеме в соответствии со шкалой

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: оценка "неудовлетворительно" выставляется, если задание выполнено ниже порогового уровня, установленного шкалой

КМ-3. Задание по Matlab/Scilab

Формы реализации: Письменная работа

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 35

Процедура проведения контрольного мероприятия: Выполненное задание отправляется в

СДО "Прометей" в рамках функционала "Письменная работа".

Краткое содержание задания:

Расчетное задание на свободно распространяемой системе моделирования SciLAB

Контрольные вопросы/задания:

	Tron' postibilité bonpoebi/oudumine		
Запланированные	Вопросы/задания для проверки		
результаты обучения по			
дисциплине			
Уметь: производить	1.Изучить работу источников сигналов:		
описание аналоговых,	STEP_FUNCTION, PULSE_SC, GENSIN_f и RAND_m		
дискретных и цифровых	(группа Sources), осциллографа CSCOPE (группа Sinks,		
сигналов, а также систем их	здесь придется добавить источник CLOCK_с для		
обработки во временной и	синхронизации осциллографа). Методические указания:		
частотной областях	следует установить длительность счета на уровне 3-5		

Запланированные		Вопросы/задания для проверки
результаты обучения	ПО	
дисциплине		
		периодов сигнала; шаг счета примерно в 1000 раз меньше
		периода сигнала.
		2.Привести пример «дискретизации» аналогового сигнала
		(синусоида с круговой частотой 1 и амплитудой 2), путем
		перемножения этого сигнала с последовательностью
		коротких прямоугольных импульсов (амплитудой 1,
		длительность импульса 1-2% от периода, период
		следования импульсов необходимо выбрать так, чтобы на
		периоде синусоиды было 10-15 импульсов). Повторить
		эксперимент, увеличив частоту синусоидального сигнала в
		10 раз. Сделать выводы. Методические указания:
		перемножение осуществляется блоком PRODUCT из
		группы Mathematical operations. 3.Осуществить квантование дискретного сигнала,
		полученного в п. 2. Для этого использовать блок
		QUANT_f группы Discontinuities с шагом 0.5. Используя
		сумматор (блок SUMMATION группы Mathematical
		operations), вычислить разность дискретного и
		квантованного сигнала - ошибку квантования.
		4.Используя блоки INTEGRAL f (группа Continuous time
		systems), GAIN_f (группа Mathematical operations) и
		AFFICH_m (группа Sinks) провести вычисление среднего
		значения X0 и коэффициентов ak, bk первых пяти
		гармоник последовательности прямоугольных импульсов
		x(t) (амплитуда 1, длительность импульса (15+N*5)%
		периода, где N – младшая значащая цифра в номере
		зачетной книжки студента, период следования импульсов
		1) по формулам (результат - 11 чисел в блоках
		AFFICH_m):
		$v = 1$ $f_{v(x)}$
		$X_0 = \frac{1}{T} \int_0^t x(t) dt$
		1 0
		2 T
		$a = \frac{2}{\pi} \int y(t) \cos(k\omega t) dt$
		$a_k = \frac{2}{T} \int_{0}^{T} x(t) \cos(k\omega_i t) dt$
		- 0
		2 7
		$b_k = \frac{2}{T} \int_{0}^{T} x(t) \sin(k\omega_1 t) dt$
		T_0
		2 –
		$\omega_{\rm l} = \frac{2\pi}{T}$
		$\omega_1 - \overline{T}$
		*
		здесь T - период $x(t)$.

Описание шкалы оценивания:

Нижний порог выполнения задания в процентах: 85

Описание характеристики выполнения знания: оценка "отлично" выставляется, если задание выполнено верно

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 75

Описание характеристики выполнения знания: оценка "хорошо" выставляется, если задание выполнено верно с незначительными ошибками, выбрано верное направление решения

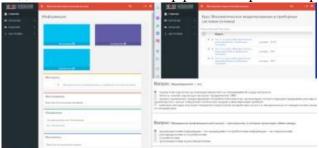
Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: оценка "удовлетворительно" выставляется, если задание выполнено преимущественно верно, допущены ошибки при выборе направления решения

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: оценка "неудовлетворительно" выставляется, если не выполнены критерии для оценки "удовлетворительно"


СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

9 семестр

Форма промежуточной аттестации: Зачет с оценкой

Пример билета

Вид билета связан с интерфейсом сервиса "Прометей"

Процедура проведения

В тесте встречаются вопросы следующих типов:

- 1. с одним вариантом ответа (в вопросах «один из многих», система сравнивает ответ слушателя с правильным ответом и автоматически выставляет за него назначенный балл)
- 2. с выбором нескольких вариантов ответов (в вопросах «многие из многих» система оценивает каждый ответ отдельно; есть возможность разрешить слушателю получить за вопрос 0,75 балла, если он выберет 3 правильных ответа из 4)
- 3. на соответствие слушатель должен привести в соответствие левую и правую часть ответа (в вопросах «соответствие» система оценивает каждый ответ отдельно; можно разрешить слушателю получить за вопрос 0,75 балла, если он выберет 3 правильных ответа из 4)
- 4. развернутый ответ, вводится вручную в специально отведенное поле (ручная оценка преподавателем)

I. Перечень компетенций/индикаторов и контрольных вопросов проверки результатов освоения дисциплины

1. Компетенция/Индикатор: ИД-2_{ОПК-1} Использует базовые знания и методы математических наук для решения прикладных задач

Вопросы, задания

- 1.Опишите, какими параметрами определяется гармонический сигнал.
- 2.Опишите процесс преобразования аналогового сигнала в последовательность значений.
- 3. Назовите метод, который относится к авторегресионному спектральному анализу.

Материалы для проверки остаточных знаний

- 1. При обработке сигналов приходится увеличивать или уменьшать частоту дискретизации сигналов. Что производит функция передискретизации? Ответы:
- 1) Повышает чистоту дискретизации в целое число раз.
- 2) Изменение частоты дискретизации в произвольное число раз.
- 3) Понижение частоты дискретизации в целое число раз.
- 4) Повышение частоты дискретизации в произвольное число раз. Верный ответ: 2)
- 2. Как определяется детерминированный сигнал?

Ответы:

- 1) Значение этого сигнала в любой момент времени определяется точно.
- 2) В любой момент времени этот сигнал представляет собой случайную величину, которая принимает конкретное значение с некоторой вероятностью.
- 3) В любой момент времени этот сигнал представляет собой не случайную величину, которая принимает конкретное значение с некоторой вероятностью.
- 4) Значение этого сигнала нельзя определить точно в любой момент времени Верный ответ: 1)
- 3. Если в аналоговой системе произвольная задержка подаваемого на вход сигнала приводит лишь к такой же задержке выходного сигнала, не меняя его формы, система называется:

Ответы:

- 1) стационарной.
- 2) не стационарной.
- 3) параметрической.
- 4) системой с переменными параметрами

Верный ответ: 1)

2. Компетенция/Индикатор: ИД- $1_{O\Pi K-5}$ Использует техническое сопровождение информационных систем и баз данных

Вопросы, задания

- 1.Опишите, как описывается линейная цепь в пространстве состояний.
- 2. Назовите формы дискретных фильтров.
- 3. Назовите методы и алгоритмы цифровой обработки сигналов.

Материалы для проверки остаточных знаний

1.Система счисления – это:

Ответы:

- 1) правила выполнения операций над числами
- 2) правила записи чисел
- 3) нет верного ответа

Верный ответ: 1), 2)

2. Единичная импульсная функция является дискретным аналогом дельта - функции и представляет собой:

Ответы:

- 1) бесконечно узкий импульс с бесконечной амплитудой.
- 2) одиночный отсчёт с единичным значением.
- 3) сумму бесконечной геометрической прогрессии.
- 4) отсчёты синусоиды с произвольной частотой и начальной фазой

Верный ответ: 2)

3. Спектральная плотность мощности белого шума равна:

Ответы:

- 1) $W(\omega)=0$
- 2) $W(\omega)=1$
- 3) $W(\omega)$ =const
- 4) $W(\omega) = \infty$

Верный ответ: 1)

4.Под термином "белый шум" понимается:

Ответы:

- 1) случайный сигнал, автокорреляционная функция которого есть функция Дирака
- 2) случайный сигнал, плотность мощности которого является функцией Дирака
- 3) нестационарный случайный сигнал

- 4) любой стационарный случайный сигнал Верный ответ: 1)
- **3. Компетенция/Индикатор:** ИД-2_{ОПК-5} Устанавливает и инсталлирует программные комплексы, применяет основы сетевых технологий

Вопросы, задания

- 1. Раскройте смысл понятия "Автокорреляционная функция".
- 2.Охарактеризуйте дискретное преобразование Фурье.
- 3.Определите, обладает ли фильтр линейной Φ ЧX, если задана импульстная характеристика фильтра h(m).
- 4. Примените к сигналу $x(n)=[1\ 1\ 2\ -1\ -1]$ треугольное окно и затем найдите сумму отсчетов полученного сигнала.
- 5.Выполните децимацию на 3 сигнала $x(n)=[1\ 1\ 0\ -1\ -2\ -2\ -2\ 0\ 0\ 1\ 2\ 1\ 0\ -1]$ и затем найдите сумму отсчетов полученного сигнала.
- 6. Укажите сигнал, имеющий минимальную базу.

Материалы для проверки остаточных знаний

1.Сигналы, при частотном анализе которых (длина выборки N=150 отсчетов, ts=0.1) наблюдается эффект размытия (утечка) спектра:

Ответы:

- 1) $s(k)=\sin(2 \text{ pi k ts}-0.2) + 0.1\cos(3 \text{ pi k ts})$
- 2) $s(k)=\sin(4 \text{ pi } k \text{ ts}) + 0.4\cos(7 \text{ pi } k \text{ ts})$
- 3) $s(k)=\sin(3 \text{ pi } k \text{ ts}+0.5) + 0.2\cos(9 \text{ pi } k \text{ ts})$
- 4) $s(k)=\sin(2 \text{ pi } k \text{ ts}) + 0.5\cos(4 \text{ pi } k \text{ ts}-0.1)$

Верный ответ: 1), 2), 3)

2.Сигналы, при частотном анализе которых (длина выборки N=150 отсчетов, ts=0.1) наблюдается эффект размытия (утечка) спектра:

Ответы:

- 1) $s(k)=\sin(4 \text{ pi } k \text{ ts}) + 0.08\cos(8 \text{ pi } k \text{ ts}-0.5)$
- 2) $s(k)=\sin(2 \text{ pi } k \text{ ts-}0.2) + 0.1\cos(3 \text{ pi } k \text{ ts})$
- 3) $s(k)=\sin(2 \text{ pi } k \text{ ts}) + 0.5\cos(4 \text{ pi } k \text{ ts}-0.1)$
- 4) $s(k)=\sin(4 \text{ pi } k \text{ ts}) + 0.4\cos(7 \text{ pi } k \text{ ts})$

Верный ответ: 2), 4)

3.Скалярное произведение дискретных сигналов x1=(2,-1,-3) и x2=(3,-1,1) равно: Ответы:

- 1) -1
- 2) 0
- 3) 1
- 4) 2
- 5) 3
- 6) 4
- 7) 5

Верный ответ: 4)

4.Сигналы, при частотном анализе которых (длина выборки N=128 отсчетов, ts=0.1) наблюдается эффект наложения спектра:

Ответы:

- 1) $n(3 \text{ pi k ts}) + 0.08\cos(11 \text{ pi k ts})$
- 2) $n(2 \text{ pi k ts}) + 0.5\cos(4 \text{ pi k ts} + 0.1)$
- 3) $n(3 \text{ pi k ts}+0.5) + 0.2\cos(9 \text{ pi k ts})$

Верный ответ: 1)

5.Сделайте выводы об устойчивости фильтра, заданного уравнением: y(n) + a1 y(n-1) + a2 y(n-2) = x(n) + b1 x(n-1) a1=1; a2=0.25; b1=0:

Ответы:

- 1) устойчив
- 2) неустойчив
- 3) мало данных

Верный ответ: 1)

6.На вход КИХ фильтра 4 порядка подан цифровой сигнал. Какой разрядности переменная, накапливающая сумму свертки, необходима для фильтрации сигнала без округлений, если целочисленные коэффициенты фильтра и значения отсчетов сигнала квантованы в 8 бит?

Ответы:

- 1) 8 бит
- 2) 10 бит
- 3) 16 бит
- 4) 20 бит
- 5) 32 бит

Верный ответ: 4)

7.Сигнал произвольной формы с полосой частот 1,8 кГц и частотой дискретизации 14,2 кГц поступает на дециматор. Наибольший порядок децимации (М), при котором отсутствуют искажения спектра сигнала равен:

Ответы:

- 1) 1
- 2) 2
- 3) 3
- 4) 4
- 5) 5
- 6) 6
- 7)7
- 8)8

Верный ответ: 3)

8.К сигналу $x(n)=[1\ 1\ 2\ -1\ -1]$ применили треугольное окно. Сумма отсчетов полученного сигнала равна:

Ответы:

- 1) 0
- 2)0,5
- 3) 2
- 4) 6

Верный ответ: 3)

II. Описание шкалы оценивания

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 85

Описание характеристики выполнения знания: оценка "отлично" выставляется, если задание выполнено в установленном объеме в соответствии со шкалой

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 75

Описание характеристики выполнения знания: оценка "хорошо" выставляется, если задание выполнено в установленном объеме в соответствии со шкалой

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: оценка "удовлетворительно" выставляется, если задание выполнено в установленном объеме в соответствии со шкалой

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: оценка "неудовлетворительно" выставляется, если задание выполнено ниже порогового уровня, установленного шкалой

III. Правила выставления итоговой оценки по курсу

Оценка определяется в соответствии с Положением о балльно-рейтинговой системе для студентов НИУ «МЭИ» на основании семестровой и аттестационной составляющих.