Министерство науки и высшего образования РФ Федеральное государственное бюджетное образовательное учреждение высшего образования «Национальный исследовательский университет «МЭИ»

Направление подготовки/специальность: 09.03.01 Информатика и вычислительная техника Наименование образовательной программы: Технологии разработки интеллектуальных систем

Уровень образования: высшее образование - бакалавриат

Форма обучения: Заочная

Оценочные материалы по дисциплине Вычислительные методы

Москва 2025

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ РАЗРАБОТАЛ:

Подписано электронной подписью ФГБОУ ВО «НИУ «МЭИ»

Сведения о владельце ЦЭП МЭИ

Владелец Шапошникова Д.А.

Идентификатор R\$cbdd042-ShaposhnikovDA-869290

Разработчик

СОГЛАСОВАНО:

Руководитель образовательной программы

Сведения о владельце ЦЭП МЭИ Владелец Ионова Т.В.	ЭИ»
Владелец Ионова Т.В.	
³ МЭИ ³ Идентификатор R5ac51726-lonovaTV-b9dd	3591

Т.В. Ионова

Шапошникова

Д.А.

Заведующий	
выпускающей	
кафедрой	

NGO NGO	Подписано электронн	ой подписью ФГБОУ ВО «НИУ «МЭИ»			
	Сведения о владельце ЦЭП МЭИ				
	Владелец Варшавский П.Р.				
» <u>М≎И</u> «	Идентификатор	R9a563c96-VarshavskyPR-efb4bbd			

П.Р. Варшавский

ОБЩАЯ ЧАСТЬ

Оценочные материалы по дисциплине предназначены для оценки достижения обучающимися запланированных результатов обучения по дисциплине, этапа формирования запланированных компетенций и уровня освоения дисциплины.

Оценочные материалы по дисциплине включают оценочные средства для проведения мероприятий текущего контроля успеваемости и промежуточной аттестации.

Формируемые у обучающегося компетенции:

- 1. ОПК-1 Способен применять естественнонаучные и общеинженерные знания, методы математического анализа и моделирования, теоретического и экспериментального исследования в профессиональной деятельности
 - ИД-2 Решает стандартные профессиональные задачи с применением естественнонаучных и обще-инженерных знаний, методов математического анализа и моделирования
 - ИД-3 Демонстрирует знание основных методов теоретического и экспериментального исследования, применяемых в математике, физике и технических науках

и включает:

для текущего контроля успеваемости:

Форма реализации: Компьютерное задание

- 1. Вычислительная задача. Погрешность функции (Тестирование)
- 2. Приближение функций. Задачи Коши (Контрольная работа)
- 3. Численные методы линейной алгебры (Контрольная работа)

Форма реализации: Обмен электронными документами

1. Методы решения нелинейных уравнений и систем (Тестирование)

БРС дисциплины

7 семестр

Перечень контрольных мероприятий <u>текущего контроля</u> успеваемости по дисциплине:

- КМ-1 Вычислительная задача. Погрешность функции (Тестирование)
- КМ-2 Методы решения нелинейных уравнений и систем (Тестирование)
- КМ-3 Численные методы линейной алгебры (Контрольная работа)
- КМ-4 Приближение функций. Задачи Коши (Контрольная работа)

Вид промежуточной аттестации – Экзамен.

	Веса контрольных мероприятий, %					
Роз пол. путомунануму	Индекс	КМ-	КМ-	КМ-	КМ-	
Раздел дисциплины	KM:	1	2	3	4	
	Срок КМ:	3	6	9	12	
Вычислительная задача. Погрешность функции						

Обусловленность вычислительной задачи	+			
Погрешности	+			
Методы решения нелинейных уравнений и систем				
Метод бисекций		+		
Метод простых итераций. Метод Ньютона		+		
Численные методы линейной алгебры				
Точные методы. Метод Гаусса.			+	
Итерационные методы. Метод простой итерации. Метод Зейделя			+	
Приближение функций. Задача Коши				
Аппроксимация, интерполяция, равномерная интерполяция				+
Численные методы решения задачи Коши для обыкновенных дифференциальных уравнений				+
Bec KM:	25	25	25	25

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ТЕКУЩЕГО КОНТРОЛЯ

I. Оценочные средства для оценки запланированных результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций

Индекс	Индикатор	Запланированные	Контрольная точка
компетенции	-	результаты обучения по	
		дисциплине	
ОПК-1	ИД-20ПК-1 Решает	Знать:	КМ-1 Вычислительная задача. Погрешность функции (Тестирование)
	стандартные	принципы работы	КМ-3 Численные методы линейной алгебры (Контрольная работа)
	профессиональные задачи	современных	
	с применением	математических пакетов	
	естественнонаучных и	Уметь:	
	обще-инженерных знаний,	работать с современными	
	методов математического	средствами оргтехники и	
	анализа и моделирования	пакетами прикладных	
		программ, вести поиск	
		информации в сети	
		Интернет	
ОПК-1	ИД-30ПК-1 Демонстрирует	Знать:	КМ-2 Методы решения нелинейных уравнений и систем
	знание основных методов	особенности	(Тестирование)
	теоретического и	профессиональной	КМ-4 Приближение функций. Задачи Коши (Контрольная работа)
	экспериментального	деятельности на основе	
	исследования,	использования	
	применяемых в	теоретических и	
	математике, физике и	практических основ	
	технических науках	естественных и	
		технических наук	
		Уметь:	
		применять	
		вычислительные методы	
		при моделировании	
		физических и	

	технологических	
	процессов	

II. Содержание оценочных средств. Шкала и критерии оценивания

КМ-1. Вычислительная задача. Погрешность функции

Формы реализации: Компьютерное задание Тип контрольного мероприятия: Тестирование Вес контрольного мероприятия в БРС: 25

Процедура проведения контрольного мероприятия: Технология проверки связана с выполнением контрольного теста по изученной теме. Время, отведенное на выполнение задания, устанавливается не более 60 минут. Количество попыток не более 3х. Тестирование проводится с использованием СДО "Прометей". К тестированию допускается пользователь, изучивший материалы, авторизированный уникальным логином и паролем.

Краткое содержание задания:

Контрольная точка направлена на проверку знаний по теории погрешностей

Контрольные вопросы/задания:	
Запланированные результаты	Вопросы/задания для проверки
обучения по дисциплине	
Знать: принципы работы	1.Указать количество верных цифр приближенного
современных математических	числа.
пакетов	$a = 473.45122 \ \Delta a = 0.01$
	1. 1.1
	2. 0
	3. 3
	4. 5
	Ответ:4
	2.Указать количество верных цифр приближенного
	числа.
	$a = 73.488931 \ \Delta a = 0.01$
	1. 1
	2. 0
	3. 4
	4. 5
	Ответ:3
	3.Значения х и у заданы со всеми верными
	цифрами. Указать абсолютную погрешность для
	функции $f(x, y)$.
	x = 2.5378, y = 2.535, f(x, y) = x - y
	1. 0,11
	2. 0,0011
	3. 0,000011
	4. 0,0017
	Ответ:2
	4.Значения х и у заданы со всеми верными
	цифрами. Указать абсолютную погрешность для
	функции $f(x, y)$.
	x = 1.345, y = 6.789, f(x, y) = y/x
	1. 0,1

Запланированные результаты	Вопросы/задания для проверки
обучения по дисциплине	
	2. 0,0045
	3. 0,45
	4. 0,0001
	Ответ:2
	5.Значения <i>х</i> и <i>у</i> заданы со всеми верными
	цифрами. Указать абсолютную погрешность для
	функции $f(x, y)$.
	x = 0.236, y = 0.121, f(x, y) = 3x + 2y
	1. 0,5
	2. 0,001
	3. 0,005
	4. 0,009
	Ответ:3

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-2. Методы решения нелинейных уравнений и систем

Формы реализации: Обмен электронными документами

Тип контрольного мероприятия: Тестирование **Вес контрольного мероприятия в БРС:** 25

Процедура проведения контрольного мероприятия: Технология проверки связана с выполнением контрольного теста по изученной теме. Время, отведенное на выполнение задания, устанавливается не более 60 минут. Количество попыток не более 3х. Тестирование проводится с использованием СДО "Прометей". К тестированию допускается пользователь, изучивший материалы, авторизированный уникальным логином и паролем.

Краткое содержание задания:

Контрольная точка направлена на проверку знаний по методам решения нелинейных уравнений

Запланированные	результаты	обучения	ПО	Вопросы/задания для проверки
дисциплине				

Запланированные результаты обучения по дисциплине	Вопросы/задания для проверки
Знать: особенности профессиональной	1. Какой метод нахождения корней
деятельности на основе использования	уравнения основан на поиске изменения
теоретических и практических основ	знака функции в заданных интервалах?
естественных и технических наук	Метод хорд
·	Метод Ньютона
	Метод половинного деления
	Метод касательных
	2.Какой метод используется для
	приближенного вычисления корня
	уравнения?
	Метод бисекции
	Метод наименьших квадратов
	Метод Эйлера
	3.Метод половинного деления это?
	метод деления отрезка пополам
	метод бисекций
	метод Ньютона
	метод простых итераций
	4.Отделить (локализовать) корни
	нелинейного уравнения - это значит
	а. разбить всю область допустимых
	значений на отрезки, в каждом из
	которых содержится один корень
	b. разбить всю область допустимых
	значений на отрезки, в каждом из
	которых содержится не менее одного
	корня
	с. разбить всю область допустимых
	значений на отрезки, в каждом из
	которых содержится не более одного
	корня
	5. Корнями системы нелинейных
	уравнений является
	совокупность значений неизвестных,
	при подстановке которых в уравнения
	системы, обращают их в тождества
	совокупность значений неизвестных,
	при подстановке которых в уравнения
	системы, функции принимают
	минимальные значения
	совокупность значений неизвестных,
	при которых функции уравнений
	существуют
	совокупность значений неизвестных,
	при подстановке которых в уравнения
	системы, функции принимает
	максимальные значения
	6.Решение систем нелинейных
	уравнений состоит из
	трех этапов

Запланированные дисциплине	результаты	обучения	ПО	Вопросы/задания для проверки
диоциплино				двух этапов
				четырех этапов
				пяти этапов
				7.К методам уточнения корней СНУ не
				относится
				метод итераций
				метод Ньютона
				метод золотого сечения
				8. Эффективность метода Ньютона
				проявляется только
				при выборе начальных приближений,
				достаточно близких к решению
				при неравенстве нулю определителя
				матрицы Якоби
				9.Выбор начальных приближений при
				решении СНУ методом итераций
				влияния не оказывает
				оказывает влияние
				10.Выбор начальных приближений при
				решении СНУ методом итераций
				влияния не оказывает
				оказывает влияние
				11.)Численные методы решения СНУ
				являются
				итерационными
				точными
				вероятностными
				в списке нет правильного ответа
				12.Методом бисекции с заданной
				точностью є найти корень уравнения на
				заданном интервале.
				$x3 - 10x + 1 = 0, (0,1), \varepsilon = 0.05$
				13. Методом бисекции с заданной
				точностью є найти корень уравнения на
				заданном интервале.
				$x3 + x2 - 3 = 0$, $(0,2)$, $\varepsilon = 0.01$
				14. Найти методом Ньютона с
				погрешностью, не превышающей 0.01,
				корень уравнения $f(x) = 0$.
				x3 - x + 7 = 0
				15.Найти методом Ньютона с
				погрешностью, не превышающей 0.01 ,
				корень уравнения $f(x) = 0$. x - x3 - 5 = 0
				16.Методом бисекции уточнить корень
				уравнения x4+2x3-x-1=0
				a) 0,867
				b) 0,234
				c) 0,2
				d) 0,43

Запланированные	результаты	обучения	ПО	Вопросы/задания для проверки
дисциплине				
				e) 0,861
				17.Определить состав корней уравнения
				x4+8x3-12x2+104x-20=0
				а) один положительный и один
				отрицательный
				b) нет ни одного корня
				с) невозможно найти число корней
				d) уравнение не имеет положительных
				корней
				е) два отрицательных корня

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "не зачтено" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-3. Численные методы линейной алгебры

Формы реализации: Компьютерное задание

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 25

Процедура проведения контрольного мероприятия: Студентам высылается вариант контрольной работы. После выполнения, студенты присоединяют файл с КМ в Прометее.

Краткое содержание задания:

Контрольная точка направлена на проверку умений по численному решению СЛАУ

Запланированные	Вопросы/задания для проверки		
результаты обучения по			
дисциплине			
Уметь: работать с	1.Определить как ведет себя метод простой итерации для		
современными	линейной системы		
средствами оргтехники и	100x+y=102		
пакетами прикладных	x+200y=202		
программ, вести поиск	1. сходится		
информации в сети	2. расходится		

Запланированные	Вопросы/задания для проверки			
результаты обучения по	Бенрееві задання для преверхні			
дисциплине				
Интернет	Ответ:1			
	2.а) Постройте сходящийся и расходящийся итерационные			
	процессы по методу простой итерации (Якоби) для системы			
	2x ₁ + x ₂ = -5, x ₁ + 3x ₂ = 0. 6) Изобразите геометрически поведение построенных итерационных процессов. Изобразите поведение приближений по методу Зейделя. Для геометрической иллюстрации нужно сделать несколько итераций (2-3) по предложенным методам. 3. Найдите LU-разложение матрицы , Используя метод LU-разложения, найдите обратную матрицу			
	(2 0 -1)			
	$A = \begin{bmatrix} 1 & 1 & -1 \end{bmatrix}$.			
	(-1 0 2)			
	4.Постройте сходящийся и расходящийся итерационные процессы по методу простой итерации (Якоби) для системы			
	$\begin{cases} x_1 + 3x_2 = 0, \\ 2x_1 + x_2 = -5. \end{cases}$			

Запланированные	Вопросы/задания для проверки					
результаты обучения по						
дисциплине						
	б) Изобразите геометрически поведение построенных					
	итерационных процессов. Изобразите поведение					
	приближений по методу Зейделя. Для геометрической					
	иллюстрации нужно сделать несколько итераций (2-3) по					
	предложенным методам.					
	5.Изобразите геометрически поведение построенных					
	итерационных процессов. Изобразите поведение					
	приближений по методу Зейделя. Для геометрической					
	иллюстрации нужно сделать несколько итераций (2-3) по					
	предложенным методам. 2. a) Найдите LU-разложение матрицы					
	2. а) Паидите во-разложение матрицы					
	4 1 0					
	$A = \begin{bmatrix} 1 & 4 & 0 \end{bmatrix}$.					
	(-1 1 5)					
	б) Используя метод LU-разложения, найдите обратную матрицу .					

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-4. Приближение функций. Задачи Коши

Формы реализации: Компьютерное задание

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 25

Процедура проведения контрольного мероприятия: Студентам высылается вариант контрольной работы. После выполнения, студенты присоединяют файл с КМ в Прометее.

Краткое содержание задания:

Контрольная точка направлена на проверку знаний по приближению функций, численных методов решения задачи Коши

Контрольные вопросы/задания:						
Запланированные результаты	Вопросы/задания для проверки					
обучения по дисциплине						
Уметь: применять	1.Вычислить интеграл с шагом h по формуле					
вычислительные методы при	центральных прямоугольников					
моделировании физических и	$\int_0^1 (6x^2-3x+4)dx$, h=0,1					
технологических процессов	- 0					
	1. 4,4950					
	24,4950					
	3. 0,4950					
	4. 40.4950					
	Ответ:1					
	2.Вычислить интеграл с шагом h по формуле трапеций					
	$\int_0^1 (4x^2 + x - 5) dx, h = 0,1$					
	$\int_0^{\infty} (4x + x - 3) dx, \text{ in=0,1}$					
	13,1600					
	2. 0,3160					
	3. 3,1600					
	4. 30,4950					
	4. 30,4730 Ответ:1					
	3. Дать ответ, как ведет себя модуль погрешности					
	решения задачи Коши на отрезке $[0, 10]$, если $y' = 5$ y ,					
	y(0) = -3.2					
	1. возрастает					
	2. убывает					
	Ответ:					
	1					
	4.Дать ответ, как ведет себя модуль погрешности					
	решения задачи Коши на отрезке $[0, 10]$, если $y' = -4y$,					
	y(0) = 2.6					
	1. возрастает					
	2. убывает					
	Ответ:2					
	5. Дать ответ, как ведет себя модуль погрешности					
	решения задачи Коши на отрезке $[0, 10]$, если $y' = -2y$					
	$\exp(3x), y(0) = 1.5$					
	1. возрастает					
	2. убывает					
	Ответ:2					
•						

Запланированные результаты обучения по дисциплине	Вопросы/задания для проверки
обучения по дисциплине	6.Оцените погрешность интерполяционного многочлена, который можно построить для приближения функции
	$f(x) = \sqrt{x} \ln x$
	, заданной значениями в 3 точках на отрезке
	[1, 2]
	с равномерным шагом. 7.С каким шагом интегрирования нужно вычислять приближённое значение интеграла
	2
	$\int xe^{2x}dx$
	0
	по формуле центральных прямоугольников для того, чтобы обеспечить точность
	$\varepsilon = 0.01$
	?

Запланированные результаты	таты Вопросы/задания для проверки			
обучения по дисциплине				
	8.Функция $f(x)$ задана таблицей своих значений:			
	Вычислите приближённое значение интеграла			
	0.4			
	$\int f(x)dx$			
	0			
	по формуле Симпсона, рассчитайте погрешность по правилу Рунге и найдите с его помощью уточнённое значение интеграла			

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

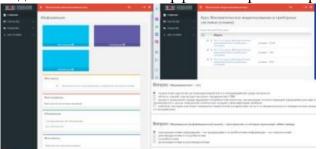
Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено


СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

7 семестр

Форма промежуточной аттестации: Экзамен

Пример билета

Вид билета связан с интерфейсом сервиса "Прометей"

Процедура проведения

В тесте 20 вопросов встречаются вопросы следующих типов:

- 1. с одним вариантом ответа (в вопросах «один из многих», система сравнивает ответ слушателя с правильным ответом и автоматически выставляет за него назначенный балл)
- 2. с выбором нескольких вариантов ответов (в вопросах «многие из многих» система оценивает каждый ответ отдельно; есть возможность разрешить слушателю получить за вопрос 0,75 балла, если он выберет 3 правильных ответа из 4)
- 3. на соответствие слушатель должен привести в соответствие левую и правую часть ответа (в вопросах «соответствие» система оценивает каждый ответ отдельно; можно разрешить слушателю получить за вопрос 0,75 балла, если он выберет 3 правильных ответа из 4)
- 4. развернутый ответ, вводится в вручную в специально отведенное поле (ручная оценка преподавателем)

I. Перечень компетенций/индикаторов и контрольных вопросов проверки результатов освоения дисциплины

1. Компетенция/Индикатор: ИД- $2_{O\Pi K-1}$ Решает стандартные профессиональные задачи с применением естественнонаучных и обще-инженерных знаний, методов математического анализа и моделирования

Вопросы, задания

1. Найти методом Ньютона с погрешностью, не превышающей 0.01, корень уравнения f(x) = 0

$$x3 - x + 7 = 0$$

2.Значения x и y заданы со всеми верными цифрами. Указать абсолютную погрешность для функции f(x, y)

$$x = 1.345, y = 6.789, f(x, y) = y/x$$

3. Функция задана таблицей своих значений. Приблизить эту функцию многочленом второй степени. Чему равно в этом случае среднеквадратичное отклонение

X	-4	-2	0	2	4
У	-0,8	0,3	1	1,7	1,9

4.Указать количество верных цифр приближенного числа

$$a = 73.488931 \ \Delta a = 0.01$$

5.Определить как ведет себя метод простой итерации для линейной системы

$$\begin{cases} 0,01x - y = -1\\ x - 0,02y = 2 \end{cases}$$

6.Значения x и y заданы со всеми верными цифрами. Указать абсолютную погрешность для функции f(x,y)

$$x = 1.0045, y = 1.1092, f(x, y) = 2x - 5y$$

Материалы для проверки остаточных знаний

1. Указать количество верных цифр приближенного числа

$$a = 73.488931 \Delta a = 0.01$$

Ответы:

1. 1 2. 0 3. 4 4. 5

Верный ответ: 3

2.Значения x и y заданы со всеми верными цифрами. Указать абсолютную погрешность для функции f(x, y)

$$x = 1.0045$$
, $y = 1.1092$, $f(x, y) = 2x - 5y$

Ответы:

1. 7.0 2. 0.0007 3. 0.002 4. 0.7

Верный ответ: 2

3.Значения x и y заданы со всеми верными цифрами. Указать абсолютную погрешность для функции f(x, y)

$$x = 1.345, y = 6.789, f(x, y) = y/x$$

Ответы:

1. 1.0 2. 0.0045 3. 0.45 4. 0.0001

Верный ответ: 2

4. Методом бисекции с заданной точностью ε найти корень уравнения на заданном интервале

$$x3 - x2 - 5 = 0$$
, (0,3), $\varepsilon = 0.01$

Ответы:

1. 2.16 2. 0.0011 3. 0.011 4. 0.0017

Верный ответ: 1

5. Найти методом Ньютона с погрешностью, не превышающей 0.01, корень уравнения f(x) = 0

$$x3 - x + 7 = 0$$

Ответы:

1. -0.11 2. -2.09 3. 0.11 4. 0.0017

Верный ответ: 2

6. Найти методом Ньютона с погрешностью, не превышающей 0.01, корень уравнения f(x) = 0.

$$\ln(2x) - 2 + x = 0$$

Ответы:

1. 0.11 2. 1.16 3. 0.011 4. 0.0017

Верный ответ: 2

7. Определить как ведет себя метод простой итерации для линейной системы

$$\begin{cases} 0,01x - y = -1\\ x - 0,02y = 2 \end{cases}$$

Ответы:

1. сходится 2. расходится

Верный ответ: 2

2. Компетенция/Индикатор: ИД-3_{ОПК-1} Демонстрирует знание основных методов теоретического и экспериментального исследования, применяемых в математике, физике и технических науках

Вопросы, задания

1. Методом бисекции с заданной точностью є найти корень уравнения на заданном интервале

$$x3 - x2 - 5 = 0$$
, (0,3), $\varepsilon = 0.01$

2. Значения x и y заданы со всеми верными цифрами. Указать абсолютную погрешность для функции f(x, y)

$$x = 0.236, y = 0.121, f(x, y) = 3x + 2y$$

3.Указать количество верных цифр приближенного числа

$$a = 473.45122 \Delta a = 0.01$$

Материалы для проверки остаточных знаний

1. Указать количество верных цифр приближенного числа

$$a = 473.45122 \ \Delta a = 0.01$$

Ответы:

1.12.03.34.5

Верный ответ: 4

2.3
начения x и y заданы со всеми верными цифрами. Указать абсолютную погрешность
 для функции f(x, y)

$$x = 0.236$$
, $y = 0.121$, $f(x, y) = 3x + 2y$

Ответы:

1. 0.5 2. 0.001 3. 0.005 4. 0.009

Верный ответ: 3

3. Функция задана таблицей своих значений. Приблизить эту функцию многочленом второй степени. Среднеквадратичное отклонение в этом случае равно:

	_1		1 7		
X	-4	-2	0	2	4
v	-0.8	0.3	1	1.7	1.9

Ответы:

1. 11.0 2. 1.20 3. 0.13 4. 0.05

Верный ответ: 4

II. Описание шкалы оценивания

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 85

Описание характеристики выполнения знания: оценка "отлично" выставляется, если задание выполнено в установленном объеме в соответствии со шкалой

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 75

Описание характеристики выполнения знания: оценка "хорошо" выставляется, если задание выполнено в установленном объеме в соответствии со шкалой

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: оценка "удовлетворительно" выставляется, если задание выполнено в установленном объеме в соответствии со шкалой

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: оценка "неудовлетворительно" выставляется, если задание выполнено ниже порогового уровня, установленного шкалой

ІІІ. Правила выставления итоговой оценки по курсу

Оценка определяется в соответствии с Положением о балльно-рейтинговой системе для студентов НИУ «МЭИ» на основании семестровой и аттестационной составляющих.