Министерство науки и высшего образования РФ Федеральное государственное бюджетное образовательное учреждение высшего образования «Национальный исследовательский университет «МЭИ»

Направление подготовки/специальность: 12.03.01 Приборостроение

Наименование образовательной программы: Диагностические системы и технологии (приборы

диагностики зданий и сооружений, медицинские диагностические приборы)

Уровень образования: высшее образование - бакалавриат

Форма обучения: Заочная

Оценочные материалы по дисциплине Квантовые и оптические системы

Москва 2025

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ РАЗРАБОТАЛ:

Подписано электронной подписью ФГБОУ ВО «НИУ «МЭИ»

Сведения о владельце ЦЭП МЭИ

Владелец Паршин В.А.

Идентификатор R683b30a4-ParshinVA-d4b11303

СОГЛАСОВАНО:

Руководитель образовательной программы

Разработчик

NASO NASO	Подписано электронной подписью ФГБОУ ВО «НИУ «МЭИ»				
MOM	Сведения о владельце ЦЭП МЭИ				
	Владелец	Хвостов А.А.			
	Идентификатор	Rd7c1e2e7-KhvostovAA-a55ec66d			

А.А. Хвостов

В.А. Паршин

Заведующий выпускающей кафедрой

NOSO NOSO	Подписано электронн	ой подписью ФГБОУ ВО «НИУ «МЭИ»				
100	Сведения о владельце ЦЭП МЭИ					
Владелец Самокрутов А./						
» <u>МЭИ</u> «	Идентификатор Р	145b9cc2-SamokrutovAA-7b5e7dc				

А.А. Самокрутов

ОБЩАЯ ЧАСТЬ

Оценочные материалы по дисциплине предназначены для оценки достижения обучающимися запланированных результатов обучения по дисциплине, этапа формирования запланированных компетенций и уровня освоения дисциплины.

Оценочные материалы по дисциплине включают оценочные средства для проведения мероприятий текущего контроля успеваемости и промежуточной аттестации.

Формируемые у обучающегося компетенции:

- 1. ОПК-3 Способен проводить экспериментальные исследования и измерения, обрабатывать и представлять полученные данные с учетом специфики методов и средств технических измерений в приборостроении
 - ИД-1 Выбирает и использует соответствующие ресурсы, современные методики и оборудование для проведения экспериментальных исследований и измерений ИД-2 Обрабатывает и представляет полученные экспериментальные данные для получения обоснованных выводов

и включает:

для текущего контроля успеваемости:

Форма реализации: Компьютерное задание

- 1. Механизмы создания инверсии населённости и спектральные характеристики излучения и поглощения при резонансных переходах (Тестирование)
- 2. Основные термины оптики и квантовой электроники. Взаимодействие оптического излучения с веществом, закон Бугера (Тестирование)
- 3. Прохождение лазерного излучения через оптическую систему. Метод лучевых матриц (Тестирование)
- 4. Устройство и принцип работы лазеров. Оптические резонаторы (Тестирование)
- 5. Формирование характеристик излучения внутри оптического резонатора (Тестирование)

БРС дисциплины

8 семестр

Перечень контрольных мероприятий <u>текущего контроля</u> успеваемости по дисциплине:

- КМ-1 Основные термины оптики и квантовой электроники. Взаимодействие оптического излучения с веществом, закон Бугера (Тестирование)
- КМ-2 Механизмы создания инверсии населённости и спектральные характеристики излучения и поглощения при резонансных переходах (Тестирование)
- КМ-3 Устройство и принцип работы лазеров. Оптические резонаторы (Тестирование)
- КМ-4 Формирование характеристик излучения внутри оптического резонатора (Тестирование)
- КМ-5 Прохождение лазерного излучения через оптическую систему. Метод лучевых матриц (Тестирование)

Вид промежуточной аттестации – Экзамен.

	Индекс	КМ-	КМ-	КМ-	КМ-	КМ-
	KM:	1	2	3	4	5
	Срок КМ:	3	6	9	12	15
Основные термины оптики и квантовой электроники. Взаимодействие оптического излучения с веществом, закон Бугера						
Главные термины оптики и квантовой электр	оники	+				
Взаимодействие оптического излучения с ве	ществом	+				
Механизмы создания инверсии населённости спектральные характеристики излучения и п при резонансных переходах						
Механизмы создания инверсии населённости	И		+	+		
Спектральные характеристики излучения и г при резонансных переходах			+	+		
Устройство и принцип работы лазеров. Оптические резонаторы						
Лазеры. Общий принцип работы			+	+		
Оптические резонаторы			+	+		
Формирование характеристик излучения внутри оптического резонатора						
Собственные типы волн двухзеркального резонатора					+	
Гауссов пучок (ГП)					+	
Прохождение лазерного излучения через оптическую систему. Метод лучевых матриц						
Принцип работы матричного метода						+
Применение матричного метода для расчёта параметров гауссова пучка (ГП)						+
	Bec KM:	20	20	20	20	20

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ТЕКУЩЕГО КОНТРОЛЯ

I. Оценочные средства для оценки запланированных результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций

Индекс	Индикатор	Запланированные	Контрольная точка
компетенции	_	результаты обучения по	
		дисциплине	
ОПК-3	ИД-10ПК-3 Выбирает и	Знать:	КМ-1 Основные термины оптики и квантовой электроники.
	использует	Механизмы работы систем	Взаимодействие оптического излучения с веществом, закон Бугера
	соответствующие ресурсы,	квантовой и оптической	(Тестирование)
	современные методики и	электроники	КМ-5 Прохождение лазерного излучения через оптическую систему.
	оборудование для	Уметь:	Метод лучевых матриц (Тестирование)
	проведения	Проводить расчёт	
	экспериментальных	характеристик квантовых	
	исследований и измерений	систем и лазерного	
		излучения	
ОПК-3	ИД-2 _{ОПК-3} Обрабатывает и	Знать:	КМ-2 Механизмы создания инверсии населённости и спектральные
	представляет полученные	Устройство и принципы	характеристики излучения и поглощения при резонансных переходах
	экспериментальные	работы лазеров, а также	(Тестирование)
	данные для получения	алгоритмы расчёта	КМ-3 Устройство и принцип работы лазеров. Оптические резонаторы
	обоснованных выводов	характеристик их	(Тестирование)
		излучения	КМ-4 Формирование характеристик излучения внутри оптического
		Уметь:	резонатора (Тестирование)
		Выбирать рациональные	
		пути решения базовых	
		задач по расчёту	
		параметров систем	
		квантовой и оптической	
		электроники, а также по	
		преобразованию лазерного	
		излучения оптической	
		системой	

II. Содержание оценочных средств. Шкала и критерии оценивания

КМ-1. Основные термины оптики и квантовой электроники. Взаимодействие оптического излучения с веществом, закон Бугера

Формы реализации: Компьютерное задание Тип контрольного мероприятия: Тестирование Вес контрольного мероприятия в БРС: 20

Процедура проведения контрольного мероприятия: В рамках проведение тестирования обучающемуся выдается 6 теоретических вопросов и 2 задачи. За каждый верный ответ на теоретический вопрос начисляется 1 балл. За верный ответ по задаче -2 балла. Максимальный балл -10. На прохождение тестирования 60 минут.

Краткое содержание задания:

- 1) При каком значении статистического веса д уровень считается невырожденным?
- 2) Скорость перехода при вынужденном излучении при переходе с уровня 2 на уровень 1 определяется:
- 3) Сколько мощности вынужденного излучения в единице объема вещества (Bт/м^3) будет генерироваться за счет эффекта вынужденного излучения при известной ру проходящего через среду индуцирующего излучения?
- 4) Какие параметры ЭМ излучения характеризуют его энергетику?
- 5) Чему равняется логарифмический коэффициент усиления, если коэффициент усиления равен 1000?
- 6) Какие параметры ЭМ излучения относятся к временным?
- 7) Плоская монохроматическая электромагнитная волна распространяется в однородной и изотропной немагнитной среде с диэлектрической проницаемостью равной 2. Интенсивность излучения равна 5 мВт/м2. Определите: амплитуды напряженности электрического и магнитного поля.
- 8) Излучение с интенсивностью I = 10 Вт/м2 проходит через среду. На выходе из среды величина интенсивности получилась равной 30 Вт/м $^{\circ}$ 2. Определите толщину среды, если её показатель усиления равен 2 м $^{\circ}$ (-1).

Контрольные вопросы/задания:

11011 POULLE DO POULL ON AUTHOR		
Запланированные	Вопросы/задания для проверки	
результаты обучения по		
дисциплине		
Знать: Механизмы работы	1.Чем определяется скорость перехода при вынужденном	
систем квантовой и	излучении при переходе с уровня 2 на уровень 1? (КМ-1)	
оптической электроники	2.Сколько мощности вынужденного излучения в единице	
	объема вещества (Вт/м^3) будет генерироваться за счет	
	эффекта вынужденного излучения при известной ру	
	проходящего через среду индуцирующего излучения?	
	(KM-1)	

Запланированные			Вопросы/задания для проверки
результаты	обучения	ПО	
дисциплине			
			3.Излучение с интенсивностью $I = 10 \text{ Bt/m} 2$ проходит
			через среду. На выходе из среды величина интенсивности
			получилась равной 30 Вт/м^2. Определите толщину
			среды, если её показатель усиления равен 2 м^(-1).

Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 90 Описание характеристики выполнения знания: Набрано 9-10 баллов за тест.

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 70 Описание характеристики выполнения знания: Набрано 7-8 баллов за тест.

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Набрано 5-6 баллов за тест

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Набрано менее 5 баллов.

КМ-2. Механизмы создания инверсии населённости и спектральные характеристики излучения и поглощения при резонансных переходах

Формы реализации: Компьютерное задание Тип контрольного мероприятия: Тестирование Вес контрольного мероприятия в БРС: 20

Процедура проведения контрольного мероприятия: В рамках проведение тестирования обучающемуся выдается 6 теоретических вопросов и 2 задачи. За каждый верный ответ на теоретический вопрос начисляется 1 балл. За верный ответ по задаче — 2 балла. Максимальный балл — 10. На прохождение тестирования 90 минут.

Краткое содержание задания:

- 1) Что такое инверсия населенности?
- 2) В системе с каким количеством энергетических уровней невозможно поддерживать стационарную инверсию населенности?
- 3) Какую роль из перечисленных играют в активной среде метастабильные уровни?
- 4) Что такое резонансный переход между уровнями?
- 5) Какова форма линии спектра при резонансных переходах в идеальном случае?
- 6) Что определяет ширину спектральной линии при резонансных переходах внутри атома?
- 7) Во сколько раз населённость верхнего уровня ниже населённости основного уровня в двухуровневой невырожденной системе при температуре 400 K, если отношение коэффициентов Эйнштейна спонтанного и вынужденного перехода равно 1,77·10^(-14) Дж·с/м^3?

8) Источник излучения испускает свет с резонансной длиной волны $\lambda 0 = 600$ нм и длиной когерентности 3,6 мм. Найдите степень монохроматичности излучения.

Контрольные вопросы/задания:

Запланированные результаты обучения	Вопросы/задания для проверки
по дисциплине	
Знать: Устройство и принципы работы	1. Что такое инверсия населенности? (КМ-2)
лазеров, а также алгоритмы расчёта	2.В системе с каким количеством
характеристик их излучения	энергетических уровней невозможно
	поддерживать стационарную инверсию населенности? (КМ-2)
	3. Какую роль из перечисленных играют в активной среде метастабильные уровни? (КМ-
	2)

Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 90 Описание характеристики выполнения знания: Набрано 9-10 баллов за тест.

Оценка: 4 («хорошо»)

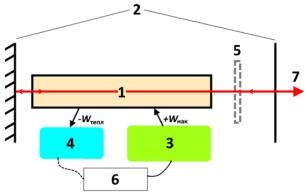
Нижний порог выполнения задания в процентах: 70 Описание характеристики выполнения знания: Набрано 7-8 баллов за тест.

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50 Описание характеристики выполнения знания: Набрано 5-6 баллов за тест.

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Набрано менее 5 баллов за тест.


КМ-3. Устройство и принцип работы лазеров. Оптические резонаторы

Формы реализации: Компьютерное задание Тип контрольного мероприятия: Тестирование Вес контрольного мероприятия в БРС: 20

Процедура проведения контрольного мероприятия: В рамках проведение тестирования обучающемуся выдается 8 теоретических вопросов и 2 задачи. За каждый верный ответ на теоретический вопрос начисляется 1 балл. За верный ответ по задаче — 2 балла. Максимальный балл — 10. На прохождение тестирования 90 минут.

Краткое содержание задания:

- 1) Укажите назначение основных элементов лазера.
- 2) Поставьте в соответствие номера на принципиальной схеме лазера его элементам.

- 3) Выберете утверждения, которые справедливы именно для устойчивого двухзеркального резонатора.
- 4) Укажите способ(ы) накачки для газового лазера.
- 5) Укажите способ(ы) накачки для твердотельного лазера (кроме полупроводникового).
- 6) Укажите способ(ы) накачки для полупроводникового лазера.
- 8) Минимальное количество зеркал в оптическом резонаторе.
- 9) При каком значении насыщенного коэффициента усиления активной среды будет поддерживаться стационарная генерация в лазере с коэффициентами пропускания зеркал резонатора 0,95 и 0,99? Диссипативные потери отсутствуют.
- 10) Чему равен коэффициент пропускания выходного зеркала лазера, если другое зеркало глухое, а насыщенный коэффициент усиления равен 1,2? Диссипативные потери в резонаторе составляют 2%.

Контрольные вопросы/задания:

контрольные вопросы/задания:		
Запланированные результаты	Вопросы/задания для проверки	
обучения по дисциплине		
Знать: Устройство и принципы	1.Укажите назначение основных элементов лазера.	
работы лазеров, а также	(KM-3)	
алгоритмы расчёта		
характеристик их излучения	2.При каком значении насыщенного коэффициента	
	усиления активной среды будет поддерживаться	
	стационарная генерация в лазере с коэффициентами	
	пропускания зеркал резонатора 0,95 и 0,99?	
	Диссипативные потери отсутствуют. (КМ-3)	
	3. Чему равен коэффициент пропускания выходного	
	зеркала лазера, если другое зеркало глухое, а	
	насыщенный коэффициент усиления равен 1,2?	
	Диссипативные потери в резонаторе составляют 2%.	
	(KM-3)	

Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 90 Описание характеристики выполнения знания: Набрано 11-12 баллов за тест.

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 70 Описание характеристики выполнения знания: Набрано 9-10 баллов за тест.

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50 Описание характеристики выполнения знания: Набрано 6-8 баллов за тест.

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Набрано менее 6 баллов за тест.

КМ-4. Формирование характеристик излучения внутри оптического резонатора

Формы реализации: Компьютерное задание Тип контрольного мероприятия: Тестирование Вес контрольного мероприятия в БРС: 20

Процедура проведения контрольного мероприятия: В рамках проведение тестирования обучающемуся выдается 6 теоретических вопросов и 2 задачи. За каждый верный ответ на теоретический вопрос начисляется 1 балл. За верный ответ по задаче -2 балла. Максимальный балл -10. На прохождение тестирования 90 минут.

Краткое содержание задания:

- 1) От чего модовый состав лазерного излучения зависит?
- 2) От чего зависит спектр излучения лазера?
- 3) Какой аббревиатурой обозначаются поперечные моды?
- 4) Чем описывается функция поля внутри устойчивого резонатора со сферическими зеркалами?
- 5) Что происходит при увеличении числа продольных мод в лазерном излучении?
- 6) Что такое перетяжка гауссова пучка (ГП)?
- 7) Найти радиус пучка лазерного излучения на расстоянии 100 м от перетяжки, если известно, что радиус перетяжки 0,4 мм, длина волны 660 нм.
- 8) В двузеркальном оптическом резонаторе с длиной 2 м радиусы кривизны зеркал R1 и R2 равняются 4 м и 6 м соответственно. Найдите координату перетяжки гауссова пучка, сформированного в таком резонаторе, если координата 1-го зеркала Z1 = 0.

Контрольные вопросы/задания:

Troni potibile Bonpoebi, suguini.	
Запланированные результаты обучения	Вопросы/задания для проверки
по дисциплине	
Уметь: Выбирать рациональные пути решения базовых задач по расчёту параметров систем квантовой и оптической электроники, а также по преобразованию лазерного излучения оптической системой	1.Найти радиус пучка лазерного излучения на расстоянии 100 м от перетяжки, если известно, что радиус перетяжки 0,4 мм, длина волны 660 нм. (КМ-4) 2.В двузеркальном оптическом резонаторе с длиной 2 м радиусы кривизны зеркал R1 и R2
	равняются 4 м и 6 м соответственно. Найдите координату перетяжки гауссова пучка, сформированного в таком резонаторе, если координата 1-го зеркала Z1 = 0. (КМ-4)

Запланированные результаты обучения	Вопросы/задания для проверки
по дисциплине	
	3.От чего модовый состав лазерного излучения
	зависит? (КМ-4)

Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 90 Описание характеристики выполнения знания: Набрано 9-10 баллов за тест.

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 70 Описание характеристики выполнения знания: Набрано 7-8 баллов за тест.

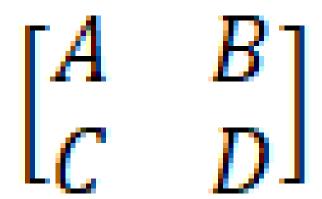
Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Набрано 5-6 баллов за тест.

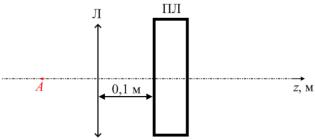
Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Набрано менее 5 баллов за тест.


КМ-5. Прохождение лазерного излучения через оптическую систему. Метод лучевых матриц

Формы реализации: Компьютерное задание **Тип контрольного мероприятия**: Тестирование **Вес контрольного мероприятия в БРС**: 20

Процедура проведения контрольного мероприятия: В рамках проведение тестирования обучающемуся выдается 1 теоретический вопросов и 2 задачи. За каждый верный ответ на теоретический вопрос начисляется 1 балл. За верный ответ по задаче — 2 балла. Максимальный балл — 5. На прохождение тестирования 90 минут.


Краткое содержание задания:

1) Какую размерность имеет элемент А в матрице оптической системы?

- 2) Дана оптическая система, изображенная на рисунке. Найдите **координату** изображения точки "A" (ZA'), если координата точки "A": ZA = 0 м. Вся система находится в воздухе. Параметры оптической системы:
- координата тонкой **собирающей линзы** $Z\Pi = 0.2$ м, фокусное расстояние f' = 20 мм.

- толщина плоскопараллельной пластинки 30 мм, показатель преломления пластинки 1,54.

3) На расстоянии 20 см от тонкой рассеивающей линзы с задним фокусным расстоянием -25 см располагается перетяжка исходного гауссова пучка. Найти, на каком расстоянии от исходной перетяжки располагается её изображение, если рэлеевская длина составляет 1,5 м. Расстояние выразить в целых сантиметрах.

Контрольные вопросы/задания:

контрольные вопросы/задания.		
Запланированные	Вопросы/задания для проверки	
результаты обучения по		
дисциплине		
Уметь: Проводить расчёт	1. Какую размерность имеет элемент А в матрице	
характеристик квантовых	оптической системы?	
систем и лазерного	2.Дана оптическая система, изображенная на рисунке.	
излучения	Найдите координату изображения точки "A" (ZA'), если	
	координата точки "A": ZA = 0 м. Вся система находится в	
	воздухе. Параметры оптической системы:	
	- координата тонкой собирающей линзы $Z\Pi = 0,2$ м,	
	фокусное расстояние $f' = 20$ мм.	
	- толщина плоскопараллельной пластинки 30 мм,	
	показатель преломления пластинки 1,54.	
	3.На расстоянии 20 см от тонкой рассеивающей линзы с	
	задним фокусным расстоянием -25 см располагается	
	перетяжка исходного гауссова пучка. Найти, на каком	
	расстоянии от исходной перетяжки располагается её	
	изображение, если рэлеевская длина составляет 1,5 м.	
	Расстояние выразить в целых сантиметрах.	

Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 100 Описание характеристики выполнения знания: Набрано 5 баллов.

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 80 Описание характеристики выполнения знания: Набрано 4 балла.

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 40 Описание характеристики выполнения знания: Набрано 2-3 балла.

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Набрано менее 2 баллов.

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

8 семестр

Форма промежуточной аттестации: Экзамен

Пример билета

Электромагнитные волны (ЭМВ) и их свойства:

- 1. Основные параметры и характеристики ЭМВ;
- 2. Волновой (фазовый) фронт волны определение;
- 3. Уравнения Максвелла и уравнение Гельмгольца с пояснениями всех входящих в формулы величин;
- 4. Уравнения плоской и сферической волны с пояснениями всех входящих в формулы величин.

Спектральные характеристики излучения:

- 1. Понятие спектра сигнала, расчет спектра сигнала через временную зависимость;
- 2. Монохроматичность, когерентность излучения;

Залача:

Определите радиус перетяжки гауссова пучка, если радиус кривизны волнового фронта на расстоянии 15 м от перетяжки вдвое больше, чем на расстоянии 6 м от перетяжки. Длина волны лазерного излучения равна $\lambda = 1064$ нм.

Процедура проведения

Экзамен проводится в письменной форме. Ответ на билет пишется на бумаге, фотографируется и прикрепляется в файл. При этом на каждой сфотографированной странице должны быть прописаны: ФИО экзаменуемого, номер билета, дата, учебная группа.

В каждом билете присутствует 6 теоретических вопросов и 1 задача. За каждый верный ответ на теоретический вопрос можно получить 0,5 или 1 балл, в зависимости от наличия/отсутствия недочетов. За решенную задачу можно получить 1 или 2 балла в зависимости от наличия/отсутствия недочетов.

- При ответе на теоретические вопросы обязательно наличие пояснений ко всем формулам, рисункам и схемам, приводимым на листе с ответом. При отсутствии расшифровки обозначений, используемых в формулах, или обозначений элементов рисунков, графиков и схем, ответ на вопрос засчитан не будет.
- При решении задачи необходимо записать «Дано», отобразить ход решения, привести ответ в формульном и численном виде. Если указано в задании, что требуется рисунок или схема, то для получения максимального балла необходимо их привести.

Время на решение билета 120 минут.

I. Перечень компетенций/индикаторов и контрольных вопросов проверки результатов освоения дисциплины

1. Компетенция/Индикатор: ИД-1_{ОПК-3} Выбирает и использует соответствующие ресурсы, современные методики и оборудование для проведения экспериментальных исследований и измерений

Вопросы, задания

- 1. Лазеры: устройство, основные элементы и их назначение. Принцип действия лазеров. Полный показатель усиления. Классификация и применение лазеров. Особенности лазерного излучения.
- 2. Резонаторы и их классификация по различным критериям. Основные параметры резонаторов и правила знаков. Устойчивость и добротность резонатора. Потери.
- 3.Виды двухзеркальных резонаторов. Способы вывода излучения из резонатора. Концентрический и конфокальный резонатор. Метод конфокального резонатора.
- 4. Формирование лазерного излучения в резонаторе, моды. Продольные и поперечные моды. Полиномы Эрмита-Гаусса. Селекция мод.
- 5.Взаимодействие излучения с веществом. Коэффициенты Эйнштейна. Спонтанное и вынужденное излучение. Спектральные характеристики перехода.
- 6. Распределение Больцмана. Стабильность уровней. Накачка среды. Механизмы создания инверсной населенности и примеры.

Материалы для проверки остаточных знаний

1.Источником когерентного излучения является...

Ответы:

1.Светодиод 2.Лазер 3.Солнце 4.Лампа накаливания

Верный ответ: 2. Лазер

2.Спектр излучения – это...

Ответы:

- 1. Набор всех поляризаций, имеющихся в составе данного излучения 2. Чередование максимумов и минимумов интерференционной картины при наложении электромагнитных волн 3. Совокупность всех характеристик данного излучения 4. Распределение энергетических параметров данного излучения по имеющимся в его составе частотам или длинам волн
 - Верный ответ: 4. Распределение энергетических параметров данного излучения по имеющимся в его составе частотам или длинам волн
- 3.Излучательными квантовыми переходами называются

Ответы:

1. Переходы между атомарными энергетическими уровнями 2. Переходы, сопровождающиеся излучением или поглощением фотона 3. Переходы между молекулярными энергетическими уровнями 4. Всё вышеперечисленное

Верный ответ: 2. Переходы, сопровождающиеся излучением или поглощением фотона

4. Математическая модель основной моды излучения, сформированного в устойчивом симметричном двухзеркальном конфокальном резонаторе называется

Ответы:

1. Гауссовым пучком 2. Бесселевым пучком 3. Бездифракционным пучком 4. Не имеет названия

Верный ответ: 1. Гауссовым пучком

5. Резонатор, в котором излучение распространяется вблизи оптической оси и не выходит за апертуру зеркал является

Ответы:

1. Разъюстированным 2. Неустойчивым 3. Устойчивым 4. Конфокальным

Верный ответ: 3. Устойчивым

6.В лазере за генерацию и усиление излучения отвечает

Ответы:

1. Система накачки 2. Резонатор 3. Активная среда 4. Оптический модулятор добротности

Верный ответ: 3. Активная среда

7.Область с наиболее узкой шириной гауссова пучка в его продольном сечении называется

Ответы:

1. Перетяжкой 2. Каустикой 3. Ближней зоной 4. Пятном генерации Верный ответ: 1. Перетяжкой

8. Различие частот излучаемого и принимаемого сигнала при движении источника относительно приёмника связано с

Ответы:

- 1. Дисперсией 2. Фотоэффектом 3. Чувствительностью приёмника 4. Эффектом Доплера Верный ответ: 4. Эффектом Доплера
- **2. Компетенция/Индикатор:** ИД-2_{ОПК-3} Обрабатывает и представляет полученные экспериментальные данные для получения обоснованных выводов

Вопросы, задания

- 1. Расчёт параметров гауссова пучка в устойчивом двухзеркальном резонаторе. Конфокальный параметр. Формирование поляризованного излучения в резонаторе.
- 2.Виды систем накачки. Условие начала и стационарного режима генерации. Кривые начала генерации. Механизм насыщения усиления.
- 3. Прохождение излучения через изотропную среду. Поглощение и усиление излучения. Закон Бугера-Ламберта-Бера. Логарифмический коэффициент усиления. Эффективное сечение перехода и его физический смысл.
- 4. Электромагнитные волны и описывающие их величины. Амплитуда, фаза, волновой фронт волны. Уравнения Максвелла и их решения: уравнение плоской и сферической волны.
- 5.С помощью толстой стеклянной линзы (n=1,5), радиусы кривизны преломляющих поверхностей которой составляют R1=-5 м и R2=-3 м, а толщина d=1 см, построено изображение предмета. Определите расстояние от последней преломляющей поверхности линзы до осевой точки изображения, если известно, что расстояние от осевой точки предмета до первой преломляющей поверхности S=25 см. Изобразите оптическую систему и укажите на ней положения предмета и его изображения.
- 6.Определите радиус перетяжки гауссова пучка, если радиус кривизны волнового фронта на расстоянии 15 м от перетяжки вдвое больше, чем на расстоянии 6 м от перетяжки. Длина волны лазерного излучения равна $\lambda = 1064$ нм.
- 7.Длина симметричного резонатора аргонового лазера ($\lambda = 514,5$ нм) равна 1 м. Угол расходимости основной моды резонатора 1'. Определите радиус кривизны зеркал резонатора. Изобразите резонатор с указанием положения центров кривизны его зеркал. 8.Определите предельно допустимые полезные потери энергии в симметричном конфокальном резонаторе He-Ne лазера ($\lambda = 632,8$ нм), если диссипативные потери составляют 10%, а ширина линии спектра собственных частот 10 МГц. Радиус перетяжки гауссова пучка 0,25 мм. Считайте, что длина активной среды равна длине резонатора.

Материалы для проверки остаточных знаний

1. При уменьшении разности энергий между уровнями частота фотона при спонтанном излучении...

Ответы:

1. Не изменяется 2. Уменьшается 3. Увеличивается 4. Может как увеличиться, так и уменьшиться

Верный ответ: 2. Уменьшается

2. Распределение концентрации частиц по энергиям в термодинамически равновесной системе описывается

Ответы:

1) Распределением Максвелла 2) Распределением Пуассона 3) Распределением Больцмана 4) Нормальным распределением

Верный ответ: 3) Распределением Больцмана

3. Расходимость гауссова пучка определяется в

Ответы:

1) ближней зоне 2) дальней зоне 3) перетяжке 4 на расстоянии рэлеевской длины от перетяжки

Верный ответ: 2) дальней зоне

4.Спектр собственных частот резонатора называется

Ответы:

1) продольными модами 2) поперечными модами 3) добротностью резонатора 4) параметром конфигурации резонатора

Верный ответ: 1) продольными модами

5.В системе с каким количеством энергетических уровней невозможно поддерживать стационарную инверсию населенности?

Ответы:

a) 2; б) 3; в) 4; г) 5

Верный ответ: а) 2

- 6. Какую роль из перечисленных играют в активной среде метастабильные уровни? Ответы:
- 1) Делают возможным создание инверсии населенности в среде
- 2) Обеспечивают поддержание термодинамического равновесия
- 3) Переход с них сопровождается безызлучательной релаксацией
- 4) Обеспечивают быстрый спонтанный переход на основное состояние

Верный ответ: 1) Делают возможным создание инверсии населенности в среде

- 7. Какова форма линии спектра при резонансных переходах в идеальном случае? Ответы:
- 1) Лоренцева
- 2) Гауссова
- 3) Прямоугольная
- 4) Параболическая

Верный ответ: 1) Лоренцева

II. Описание шкалы оценивания

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 87 Описание характеристики выполнения знания: Набрано 7,0-8,0 баллов.

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 68 Описание характеристики выполнения знания: Набрано 5,5-6,5 баллов.

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50 Описание характеристики выполнения знания: Набрано 4,0-5,0 баллов.

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Набрано ниже 4,0 баллов.

III. Правила выставления итоговой оценки по курсу

Оценка определяется в соответствии с Положением о балльно-рейтинговой системе для студентов НИУ «МЭИ» на основании семестровой и аттестационной составляющих.