Министерство науки и высшего образования РФ Федеральное государственное бюджетное образовательное учреждение высшего образования «Национальный исследовательский университет «МЭИ»

Направление подготовки/специальность: 12.03.01 Приборостроение Наименование образовательной программы: Компьютерная фотоника

Уровень образования: высшее образование - бакалавриат

Форма обучения: Заочная

Оценочные материалы по дисциплине Газовые и твердотельные лазеры

> Москва 2022

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ РАЗРАБОТАЛ:

Преподаватель (должность)

В.В. Близнюк

(расшифровка подписи)

СОГЛАСОВАНО:

Руководитель образовательной программы

(должность, ученая степень, ученое звание)

Заведующий выпускающей кафедры

(должность, ученая степень, ученое звание)

1030	Подписано электро	нной подписью ФГБОУ ВО «НИУ «МЭИ»		
	Сведения о владельце ЦЭП МЭИ			
	Владелец	Скорнякова Н.М.		
» <u>МэИ</u> «	Идентификатор	R984920bc-SkorniakovaNM-67f74b		
(marrier)				

(подпись)

HOSO MAN	Подписано электро	нной подписью ФГБОУ ВО «НИУ «МЭИ»		
	Сведения о владельце ЦЭП МЭИ			
	Владелец	Скорнякова Н.М.		
» <u>МэИ</u> «	Идентификатор	R984920bc-SkorniakovaNM-67f74b		

(подпись)

H.M.

Скорнякова

(расшифровка подписи)

H.M.

Скорнякова

(расшифровка подписи)

ОБЩАЯ ЧАСТЬ

Оценочные материалы по дисциплине предназначены для оценки: достижения обучающимися запланированных результатов обучения по дисциплине, этапа формирования запланированных компетенций и уровня освоения дисциплины.

Оценочные материалы по дисциплине включают оценочные средства для проведения мероприятий текущего контроля успеваемости и промежуточной аттестации.

Формируемые у обучающегося компетенции:

- 1. ПК-2 способен осуществлять разработку технологических процессов и технической документации на изготовление, сборку, юстировку и контроль оптических, оптико-электронных, механических блоков, узлов и деталей
 - ИД-2 Анализ состояния технологий изготовления, сборки, юстировки и контроля современных оптических и оптико-электронных приборов и комплексов

и включает:

для текущего контроля успеваемости:

Форма реализации: Компьютерное задание

- 1. Газоразрядные лазеры (Контрольная работа)
- 2. Общая классификация газовых лазеров и создание активной среды (Тестирование)
- 3. Основные характеристики твердотельных лазерных активных сред (Тестирование)

Форма реализации: Письменная работа

1. Оптические элементы твердотельных лазеров (Контрольная работа)

БРС дисциплины

8 семестр

	Веса контрольных мероприятий, %				
Doo wood waxaayaa waxaa	Индекс	КМ-	КМ-	КМ-	КМ-
Раздел дисциплины	КМ:	1	2	3	4
	Срок КМ:	3	6	9	12
Общая классификация газовых лазеров. Создание	активной				
среды. Резонаторы. Спектр излучения и режимы го	енерации.				
Общая классификация газовых лазеров.		+			
Создание активной среды. Резонаторы. Спектр излучения и режимы генерации.					
Газоразрядные лазеры					
Газоразрядные лазеры на атомных переходах			+		
Газоразрядные лазеры на ионных переходах			+		
Лазеры на колебательно-вращательных переходах молекул			+		
Основные характеристики твердотельных лазерных активных сред. Режимы работы твердотельных лазеров.					

Основные характеристики твердотельных лазерных активных сред. Трехуровневые и четырехуровневые среды.			+	
Режимы работы твердотельных лазеров. Способы активной и пассивной модуляции добротности			+	
Оптические источники накачки. Оптические элементы твердотельных лазеров.				
Газоразрядные лампы накачки. Диодные системы накачки.				+
Оптические элементы твердотельных лазеров. Управление пространственными и спектральными параметрами лазеров.				+
Bec KM:	25	25	25	25

^{\$}Общая часть/Для промежуточной аттестации\$

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ТЕКУЩЕГО КОНТРОЛЯ

I. Оценочные средства для оценки запланированных результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций

Индекс	Индикатор	Запланированные	Контрольная точка
компетенции		результаты обучения по	
		дисциплине	
ПК-2	$ИД-2_{\Pi K-2}$ Анализ	Знать:	Общая классификация газовых лазеров и создание активной среды
	состояния технологий	основные характеристики	(Тестирование)
	изготовления, сборки,	газовых и твердотельных	Газоразрядные лазеры (Контрольная работа)
	юстировки и контроля	лазеров	Основные характеристики твердотельных лазерных активных сред
	современных оптических и	методики диагностики	(Тестирование)
	оптико-электронных	излучения газовых лазеров	Оптические элементы твердотельных лазеров (Контрольная работа)
	приборов и комплексов	с учётом современных	
		тенденций развития	
		приборов квантовой	
		электроники	
		Уметь:	
		использовать современные	
		стандартизованные	
		методики проведения	
		исследований параметров	
		и характеристик газовых	
		лазеров	
		проводить стандартные	
		операции в ходе	
		исследований параметров	
		и характеристик	
		твердотельных лазеров	

II. Содержание оценочных средств. Шкала и критерии оценивания

КМ-1. Общая классификация газовых лазеров и создание активной среды

Формы реализации: Компьютерное задание **Тип контрольного мероприятия**: Тестирование **Вес контрольного мероприятия в БРС**: 25

Процедура проведения контрольного мероприятия: Технология проверки связана с выполнением контрольного теста по изученной теме. Время, отведенное на выполнение задания, устанавливается не более 30 минут. Количество попыток не более 3х. Тестирование проводится с использованием СДО "Прометей" или "Moodle". К тестированию допускается пользователь, изучивший материалы, авторизованный уникальным логином и паролем.

Краткое содержание задания:

Тест содержит вопросы открытого и закрытого типа. Выполняется индивидуально

Контрольные вопросы/задания:

Знать: методики диагностики излучения газовых лазеров с учётом современных тенденций развития приборов квантовой электроники

- 1. Какой основной элемент обязательно присутствует в конструкции лазера любого типа?
- а. Активная среда
- б. Резонатор
- в. Зеркала резонатора.
- г. Система накачки

Ответ: г

- 2. Какой термин, из перечисленных ниже, допускается ГОСТ-ом к применению для обозначения лазерных приборов?
- а. Квантовый генератор
- б. Оптический квантовый генератор
- в. Мазер
- г. Молекулярный генератор

Ответ: в

- 3. На чем основана работа лазера?
- а. На явлении индуцированного излучения
- б. На явлении фотоэффекта
- в. На фотонах
- г. На инфракрасном излучении

Ответ: а

- 4. Накачка в газовых лазерах может производиться вследствие
- а. Химической реакции
- б. Воздействия мощного источника света
- в. Электрического разряда
- г. Перехода электрона с одного типа полупроводника на другой

Ответ: в

5.Взаимодействие света с веществом имеет принципиально вероятностный характер. В квантовой теории взаимодействия света и вещества вводится понятие вероятности перехода, которое

отличается от понятия вероятности, используемого в математике. Какова размерность физической величины «вероятность перехода», используемой в лазерной физике?

а. сек
б. сек
в. сек
г. Не имеет размерности
Ответ: б

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 55 Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

КМ-2. Газоразрядные лазеры

Формы реализации: Компьютерное задание

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 25

Процедура проведения контрольного мероприятия: Решенные задания отправляются в

СДО "Прометей" в рамках функционала "Письменная работа"

Краткое содержание задания:

Контрольная работа включает в себя задания, требующие развернутого ответа. Выполняется индивидуально

Контрольные вопросы/задания:

Уметь: использовать	1.За счёт чего создается инверсия населенности в
современные стандартизованные	аргоновом лазере?
методики проведения	2.Как выглядит блок-схема лазера?
исследований параметров и	3.Свет газоразрядного лазера со стеклянной
характеристик газовых лазеров	оболочкой виден сбоку. Не противоречит ли это
	высокой направленности лазерного луча?
	4.Перечислите виды газоразрядных лазеров.

Описание шкалы оценивания:

Оценка: зачтено

Описание характеристики выполнения знания: Оценка "зачтено" выставляется если задание выполнено правильно или с незначительными недочетами

Оценка: не зачтено

Описание характеристики выполнения знания: Оценка "не зачтено" выставляется если задание не выполнено в отведенный срок или результат не соответствует заданию

КМ-3. Основные характеристики твердотельных лазерных активных сред

Формы реализации: Компьютерное задание Тип контрольного мероприятия: Тестирование Вес контрольного мероприятия в БРС: 25

Процедура проведения контрольного мероприятия: Технология проверки связана с выполнением контрольного теста по изученной теме. Время, отведенное на выполнение задания, устанавливается не более 30 минут. Количество попыток не более 3х. Тестирование проводится с использованием СДО "Прометей" или "Moodle". К тестированию допускается пользователь, изучивший материалы, авторизованный уникальным логином и паролем.

Краткое содержание задания:

Тест содержит вопросы открытого и закрытого типа. Выполняется индивидуально

Контрольные вопросы/задания:	
Знать: основные характеристики	1. Для накачки твердотельных лазеров применяется:
газовых и твердотельных	а. Электрический разряд
лазеров	б. Химическая реакция
	в. Оптическое излучение
	г. Перехода электрона с одного типа полупроводника на другой
	Ответ: в
	2.Твердотельные лазеры имеют:
	а. Одно- и двухуровневую схему активной среды
	б. Трёх- и четырехуровневую схему активной среды.
	в. Пяти- и шестиуровневую схему активной среды.
	г. Ничего из вышеперечисленного
	Ответ: б
	3.Длина волны генерации рубинового лазера
	составляет:
	а. 0,49 мкм
	б. 0,59 мкм
	в. 0,69 мкм
	г. 0,79 мкм
	Ответ: в
	4.Полосы поглощения рубина приходятся на
	следующие длины волн:
	а. 0,25 мкм и 1,15 мкм
	б. 0,41 мкм и 0,56 мкм
	в. 0,65 мкм и 0,78 мкм
	г. Нет верного ответа
	Ответ: б
	5.Источником накачки твердотельных лазеров
	служит:
	а. Источник импульсного высоковольтного
	напряжения
	б. Источник рентгеновского излучения
	в. Газоразрядная лампа
	г. Объемный резонатор

Ответ: в

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 55
Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

КМ-4. Оптические элементы твердотельных лазеров

Формы реализации: Письменная работа

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 25

Процедура проведения контрольного мероприятия: Решенные задания отправляются в

СДО "Прометей" в рамках функционала "Письменная работа"

Краткое содержание задания:

Контрольная работа включает в себя задания, требующие развернутого ответа. Выполняется индивидуально

Контрольные вопросы/задания:

1 1	
Уметь: проводить стандартные	1.Перечислите оптические источники накачки.
операции в ходе исследований	2. Чем отличается когерентная накачка
параметров и характеристик	твердотельного лазера от накачки импульсными
твердотельных лазеров	лампами?
	3. Опишите диодные системы накачки.
	4. Какой радиус кривизны имеют зеркала резонатора
	Фабри-Перо?
	5.Для чего служит оптический резонатор лазера?

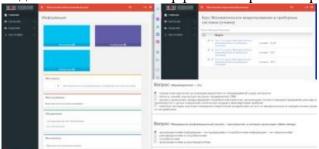
Описание шкалы оценивания:

Оценка: зачтено

Описание характеристики выполнения знания: Оценка "зачтено" выставляется если задание выполнено правильно или с незначительными недочетами

Оценка: не зачтено

Описание характеристики выполнения знания: Оценка "не зачтено" выставляется если задание не выполнено в отведенный срок или результат не соответствует заданию


СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

8 семестр

Форма промежуточной аттестации: Зачет с оценкой

Пример билета

Вид билета связан с интерфейсом сервиса "Прометей"

Процедура проведения

В тесте 20 вопросов встречаются вопросы следующих типов: 1. с одним вариантом ответа (в вопросах «один из многих», система сравнивает ответ слушателя с правильным ответом и автоматически выставляет за него назначенный балл) 2. с выбором нескольких вариантов ответов (в вопросах «многие из многих» система оценивает каждый ответ отдельно; есть возможность разрешить слушателю получить за вопрос 0,75 балла, если он выберет 3 правильных ответа из 4) 3. на соответствие слушатель должен привести в соответствие левую и правую часть ответа (в вопросах «соответствие» система оценивает каждый ответ отдельно; можно разрешить слушателю получить за вопрос 0,75 балла, если он выберет 3 правильных ответа из 4) 4. развернутый ответ, вводится в вручную в специально отведенное поле (ручная оценка преподавателем)

I. Перечень компетенций/индикаторов и контрольных вопросов проверки результатов освоения дисциплины

1. Компетенция/Индикатор: ИД-2_{ПК-2} Анализ состояния технологий изготовления, сборки, юстировки и контроля современных оптических и оптико-электронных приборов и комплексов

Вопросы, задания

- 1.За счёт чего создается инверсия населенности в аргоновом лазере?
- 2.Как выглядит блок-схема лазера?
- 3. Какой срок службы ионных лазеров и каким образом его увеличить?
- 4.Свет газоразрядного лазера со стеклянной оболочкой виден сбоку. Не противоречит ли это высокой направленности лазерного луча?
- 5. Перечислите виды газоразрядных лазеров.
- 6.Перечислите оптические источники накачки.
- 7. Чем отличается когерентная накачка твердотельного лазера от накачки импульсными лампами?
- 8. Опишите диодные системы накачки.
- 9. Какой радиус кривизны имеют зеркала резонатора Фабри-Перо?
- 10. Для чего служит оптический резонатор лазера?

Материалы для проверки остаточных знаний

- 1. Какой основной элемент обязательно присутствует в конструкции лазера любого типа? Ответы:
- а. Активная среда
- б. Резонатор
- в. Зеркала резонатора.
- г. Система накачки

Верный ответ: г

2. Какой термин, из перечисленных ниже, допускается ГОСТ-ом к применению для обозначения лазерных приборов?

Ответы:

- а. Квантовый генератор
- б. Оптический квантовый генератор
- в. Мазер
- г. Молекулярный генератор

Верный ответ: в

3. На чем основана работа лазера?

Ответы:

- а. На явлении индуцированного излучения
- б. На явлении фотоэффекта
- в. На фотонах
- г. На инфракрасном излучении

Верный ответ: а

4. Накачка в газовых лазерах может производиться вследствие

Ответы:

- а. Химической реакции
- б. Воздействия мощного источника света
- в. Электрического разряда
- г. Перехода электрона с одного типа полупроводника на другой

Верный ответ: в

5.Взаимодействие света с веществом имеет принципиально вероятностный характер. В квантовой теории взаимодействия света и вещества вводится понятие вероятности перехода, которое отличается от понятия вероятности, используемого в математике. Какова размерность физической величины «вероятность перехода», используемой в лазерной физике?

Ответы:

- а. сек
- б. сек ⁻¹
- в. сек ²
- г. Не имеет размерности

Верный ответ: б

6.Для накачки твердотельных лазеров применяется:

Ответы:

- а. Электрический разряд
- б. Химическая реакция
- в. Оптическое излучение
- г. Перехода электрона с одного типа полупроводника на другой Верный ответ: а
- 7. Твердотельные лазеры имеют:

Ответы:

- а. Одно- и двухуровневую схему активной среды
- б. Трёх- и четырехуровневую схему активной среды.

- в. Пяти- и шестиуровневую схему активной среды.
- г. Ничего из вышеперечисленного

Верный ответ: б

8. Длина волны генерации рубинового лазера составляет:

Ответы:

- а. 0,49 мкм
- б. 0,59 мкм
- в. 0.69 мкм
- г. 0,79 мкм

Верный ответ: в

9.Полосы поглощения рубина приходятся на следующие длины волн:

Ответы:

- а. 0,25 мкм и 1,15 мкм
- б. 0,41 мкм и 0,56 мкм
- в. 0,65 мкм и 0,78 мкм
- г. Нет верного ответа

Верный ответ: б

10.Источником накачки твердотельных лазеров служит:

Ответы

- а. Источник импульсного высоковольтного напряжения
- б. Источник рентгеновского излучения
- в. Газоразрядная лампа
- г. Объемный резонатор

Верный ответ: в

II. Описание шкалы оценивания

Оценка: 5

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Работа выполнена в рамках "продвинутого" уровня. Ответы даны верно, четко сформулированные особенности практических решений

Оценка: 4

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Работа выполнена в рамках "базового" уровня. Большинство ответов даны верно. В части материала есть незначительные недостатки

Оценка: 3

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Работа выполнена в рамках "порогового" уровня. Основная часть задания выполнена верно.

III. Правила выставления итоговой оценки по курсу

Оценка определяется по совокупности результатов текущего контроля успеваемости в соответствии с Положением о балльно-рейтинговой системе для студентов НИУ «МЭИ»