Министерство науки и высшего образования РФ Федеральное государственное бюджетное образовательное учреждение высшего образования «Национальный исследовательский университет «МЭИ»

Направление подготовки/специальность: 12.03.01 Приборостроение Наименование образовательной программы: Компьютерная фотоника

Уровень образования: высшее образование - бакалавриат

Форма обучения: Заочная

Оценочные материалы по дисциплине Материаловедение

> Москва 2025

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ РАЗРАБОТАЛ:

 Подписано электронной подписью ФГБОУ ВО «НИУ «МЭИ»

 Сведения о владельце ЦЭП МЭИ

 Владелец
 Марченков А.Ю.

 Идентификатор
 ₹1428e5c3-MarchenkovAY-a17968*

Разработчик

СОГЛАСОВАНО:

Руководитель образовательной программы

Заведующий	
выпускающей	
кафедрой	

NOSO NOSO	Подписано электронной подписью ФГБОУ ВО «НИУ «МЭИ»					
2 818 (1918)	Сведен	ния о владельце ЦЭП МЭИ				
NOM	Владелец	Скорнякова Н.М.				
	Идентификатор F	984920bc-SkorniakovaNM-67f74b				

NGO NGO	Подписано электро	нной подписью ФГБОУ ВО «НИУ «МЭИ»	
SEE THE STREET NAME OF	Све,	дения о владельце ЦЭП МЭИ	
NOM	Владелец	Скорнякова Н.М.	
	Идентификатор	R984920bc-SkorniakovaNM-67f74b	

Н.М. Скорнякова

Марченков

А.Ю.

H.М. Скорнякова

ОБЩАЯ ЧАСТЬ

Оценочные материалы по дисциплине предназначены для оценки достижения обучающимися запланированных результатов обучения по дисциплине, этапа формирования запланированных компетенций и уровня освоения дисциплины.

Оценочные материалы по дисциплине включают оценочные средства для проведения мероприятий текущего контроля успеваемости и промежуточной аттестации.

Формируемые у обучающегося компетенции:

- 1. ОПК-3 Способен проводить экспериментальные исследования и измерения, обрабатывать и представлять полученные данные с учетом специфики методов и средств технических измерений в приборостроении
 - ИД-1 Выбирает и использует соответствующие ресурсы, современные методики и оборудование для проведения экспериментальных исследований и измерений

и включает:

для текущего контроля успеваемости:

Форма реализации: Компьютерное задание

- 1. Кристаллическое строение и свойства металлов (Тестирование)
- 2. Основные методы обработки материалов (Тестирование)
- 3. Строение и свойства металлов и сплавов (Тестирование)

Форма реализации: Письменная работа

- 1. Диэлектрики. Проводники. Полупроводники. Ферромагнетизм (Контрольная работа)
- 2. Конструкционные материалы (Решение задач)

БРС дисциплины

3 семестр

Перечень контрольных мероприятий <u>текущего контроля</u> успеваемости по дисциплине:

- КМ-1 Кристаллическое строение и свойства металлов (Тестирование)
- КМ-2 Основные методы обработки материалов (Тестирование)
- КМ-3 Строение и свойства металлов и сплавов (Тестирование)
- КМ-4 Конструкционные материалы (Решение задач)
- КМ-5 Диэлектрики. Проводники. Полупроводники. Ферромагнетизм (Контрольная работа)

Вид промежуточной аттестации – Экзамен.

	Веса контрольных мероприятий, %					
Раздел дисциплины	Индекс	КМ-	КМ-	КМ-	КМ-	КМ-
	KM:	1	2	3	4	5
	Срок КМ:	3	6	9	12	15
Закономерности формирования структуры						
материалов						
Физико-химические закономерности формирования						
структуры материалов		+				

Атомно-кристаллическое строение металлов	+				
Обработка сплавов					
Термическая обработка сплавов		+			
Химико-термическая обработка		+			
Конструкционные материалы					
Металлические материалы			+		
Неметаллические материалы			+		
Инструментальные материалы					
Теория и технология термической обработки металлов и сплавов				+	
Основные методы обработки материалов				+	
Диэлектрики. Проводники. Полупроводники					
Диэлектрики. Контроль качества изоляции					+
Проводники					+
Полупроводники					+
Ферромагнетизм. Оптоволокно					+
Bec KM	: 20	20	20	20	20

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ТЕКУЩЕГО КОНТРОЛЯ

I. Оценочные средства для оценки запланированных результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций

Индекс	Индикатор	Запланированные	Контрольная точка
компетенции	_	результаты обучения по	
		дисциплине	
ОПК-3	ИД-10ПК-3 Выбирает и	Знать:	КМ-1 Кристаллическое строение и свойства металлов (Тестирование)
	использует	классификацию	КМ-2 Строение и свойства металлов и сплавов (Тестирование)
	соответствующие ресурсы,	применяемых материалов,	КМ-3 Конструкционные материалы (Решение задач)
	современные методики и	правила выбора	КМ-4 Основные методы обработки материалов (Тестирование)
	оборудование для	материалов для	КМ-5 Диэлектрики. Проводники. Полупроводники. Ферромагнетизм
	проведения	производства изделий	(Контрольная работа)
	экспериментальных	заданного	
	исследований и измерений	функционального	
		назначения и области	
		применения; способы	
		обработки	
		основные понятия	
		материаловедения;	
		структуру	
		кристаллических решеток,	
		строение и свойства	
		материалов	
		способы производства	
		металлов и сплавов;	
		методы их испытания на	
		физические, механические	
		и конструкционные	
		свойства	
		Уметь:	
		расшифровывать	

маркировку металлов и	
сплавов, определять состав	
материала по маркировке;	
выбирать марки	
материалов в зависимости	
от назначения деталей и	
условий их работы в	
конструкциях узлов и	
механизмов	
осуществлять контроль	
качества изоляции	

II. Содержание оценочных средств. Шкала и критерии оценивания

КМ-1. Кристаллическое строение и свойства металлов

Формы реализации: Компьютерное задание **Тип контрольного мероприятия**: Тестирование **Вес контрольного мероприятия в БРС**: 20

Процедура проведения контрольного мероприятия: Технология проверки связана с выполнением контрольного теста по изученной теме. Время, отведенное на выполнение задания, устанавливается не более 30 минут. Количество попыток не более 3х. Тестирование проводится с использованием СДО "Прометей". К тестированию допускается пользователь, изучивший материалы, авторизированный уникальным логином и паролем.

Краткое содержание задания:

Контрольная точка направлена на проверку знаний по следующим вопросам: основы кристаллического строения металлов. дефекты кристаллического строения, упругая и пластическая деформация материалов, механические свойства конструкционных материалов

Контрольные вопросы/задания:	
Запланированные результаты	Вопросы/задания для проверки
обучения по дисциплине	
Знать: классификацию применяемых	1.К какой группе дефектов кристаллического
материалов, правила выбора	строения металлов относятся примесные атомы
материалов для производства изделий	внедрения и замещения?
заданного функционального	1. точечные
назначения и области применения;	2. линейные
способы обработки	3. поверхностные
	4. объёмные
	Ответ: 1
	2.Способность металла иметь разные типы
	кристаллических решеток в различных
	интервалах температур называется
	1. анизотропия
	2. изотропность
	3. полиморфизм (аллотропия)
	Ответ: 3
	3. Какие из перечисленных дефектов
	кристаллического строения являются
	линейными?
	1. вакансии
	2. дислокации
	3. границы зерен
	4. поры
	Ответ: 2
	4. Что такое анизотропия свойств кристаллов?
	1. изменение механических свойств кристаллов
	с повышением температуры
	2. различие механических, физических и
	химических свойства вдоль различных

Запланированные	результаты	Вопросы/задания для проверки
обучения по дисциплине		
		кристаллографических направлений и
		плоскостей
		3. повышение прочности кристалла за счет
		увеличения плотности дислокаций
		4. изменение свойств кристалла из-за фазовой
		перекристаллизации
		Ответ: 2
		5. Как называется явление снятия искажений
		кристаллической решетки при нагреве металла,
		подвергнутого наклёпу, в результате которого
		происходит незначительное снижение твёрдости
		и прочности и повышение характеристик
		пластичности?
		1. первичная рекристаллизация
		2. собирательная рекристаллизация
		3. возврат
		Ответ: 3

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 85

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 75

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-2. Основные методы обработки материалов

Формы реализации: Компьютерное задание **Тип контрольного мероприятия**: Тестирование **Вес контрольного мероприятия в БРС**: 20

Процедура проведения контрольного мероприятия: Технология проверки связана с выполнением контрольного теста по изученной теме. Время, отведенное на выполнение задания, устанавливается не более 30 минут. Количество попыток не более 3х. Тестирование проводится с использованием СДО "Прометей". К тестированию допускается пользователь, изучивший материалы, авторизированный уникальным логином и паролем.

Краткое содержание задания:

Контрольная точка направлена на проверку знаний по следующим вопросам: структурные составляющие, общие понятия, содержание углерода, диаграмма Fe-Fe3C, примеси (МН-МН)

дисциппине 3нать: основные понятия материаловедения; 1. Что такое феррит? структуру кристаллических решеток, строение и свойства материалов 1. Что такое феррит? 1. Твердый раствор внедрения углерода в Feq ("гамма-железе") 2. Твердый раствор внедрения углерода в Feα ("альфа-железе") 3. Механическая смесь феррита цементита 4. Механическая смесь феррита цементита 5. Твердый раствор замещения углерода в Feq ("гамма-железе") 6. Твердый раствор замещения углерода в Feα ("альфа-железе") 7. Химическое соединение желез и углерода Fe ₃ C Ответ: 2 2. Сколько углерода (по массе) содержится в перлите? 1. 0,8 % 2. 2,14 % 3. 6,67 % 4. не более 0,01 % Ответ: 1 3. Расшифруйте марку стали 60 1. Сталь общего назначения с содержанием углерода 0,6% 2. Сталь обыкновенного качества, 60 - номер по ГОСТ 3. Качественная конструкционная сталь с			я по Вопросы/запация пля проверки
 Знать: основные понятия материаловедения; структуру кристаллических решеток, строение и свойства материалов 1. Что такое феррит? 1. Твердый раствор внедрения углерода в Feγ ("тамма-железе") 2. Твердый раствор внедрения углерода в Feγ ("альфа-железе") 3. Механическая смесь аустенит и цементита 4. Механическая смесь феррита цементита 5. Твердый раствор замещения углерода в Feγ ("тамма-железе") 6. Твердый раствор замещения углерода в Feγ ("тамма-железе") 7. Химическое соединение желез и углерода в Fe₃ С Ответ: 2 2. Сколько углерода (по массе) содержится в перлите? 1. 0,8 % 2. 2,14 % 3. 6,67 % 4. не более 0,01 % Ответ: 1 3.Расшифруйте марку стали 60 1. Сталь общего назначения с содержанием углерода 0,6% 2. Сталь обыкновенного качества, 60 - номер по ГОСТ 3. Качественная конструкционная сталь с 	-	результаты обучени	л по ропросы/задания для проверки
структуру кристаллических решеток, строение и свойства материалов 1. Твердый раствор внедрения углерода в Fey ("гамма-железе") 2. Твердый раствор внедрения углерода в Fea ("альфа-железе") 3. Механическая смесь аустении и цементита 4. Механическая смесь феррита цементита 5. Твердый раствор замещения углерода в Fey ("гамма-железе") 6. Твердый раствор замещения углерода в Fey ("гамма-железе") 7. Химическое соединение желез и углерода Fe Fey ("гамма-железе") 7. Химическое соединение желез и углерода (по массе) содержится в перлите? 1. 0,8 % 2. 2,14 % 3. 6,67 % 4. не более 0,01 % Ответ: 1 3. Расшифруйте марку стали 60 1. Сталь общего назначения с содержанием углерода 0,6% 2. Сталь обыкновенного качества, 60 - номер по ГОСТ 3. Качественная конструкционная сталь с		понятия материалов	ления. 1 Что такое феннит?
содержанием углерода 0,6% 4. Качественная конструкционная сталь с содержанием углерода 6% 5. Инструментальная сталь с содержанием углерода 0,6% 6. Инструментальная сталь с содержанием углерода 6% Ответ: 3 4.Сталь У7 является	Знать: основные структуру кристалл	результаты обучени понятия материалов ических решеток, стро	предения; предения; предения; предение и 1. Твердый раствор внедрения углерода в Feγ ("гамма-железе") 2. Твердый раствор внедрения углерода в Feα ("альфа-железе") 3. Механическая смесь аустенита и цементита 4. Механическая смесь феррита и цементита 5. Твердый раствор замещения углерода в Feγ ("гамма-железе") 6. Твердый раствор замещения углерода в Feα ("альфа-железе") 7. Химическое соединение железа и углерода Fe₃C Ответ: 2 2.Сколько углерода (по массе) содержится в перлите? 1. 0,8 % 2. 2,14 % 3. 6,67 % 4. не более 0,01 % Ответ: 1 3.Расшифруйте марку стали 60 1. Сталь общего назначения с содержанием углерода 0,6% 2. Сталь обыкновенного качества, 60 - номер по ГОСТ 3. Качественная конструкционная сталь с содержанием углерода 0,6% 4. Качественная конструкционная сталь с содержанием углерода 6% 5. Инструментальная сталь с содержанием углерода 0,6% 6. Инструментальная сталь с содержанием углерода 0,6% 6. Инструментальная сталь с содержанием углерода 0,6% 6. Инструментальная сталь с содержанием углерода 6% 6. Инструментальная сталь с содержанием углерода 0,6% 6. Инструментальная сталь с содержанием углерода 6% Ответ: 3

Запланированные	результаты	обучения	ПО	Вопросы/задания для проверки
дисциплине				
				5.При увеличении содержания
				углерода в углеродистых сталях
				1. прочность и пластичность
				стали увеличиваются
				2. прочность стали
				увеличивается, а пластичность
				снижается
				3. прочность стали снижается, а
				пластичность увеличивается
				4. прочность и пластичность стали
				снижаются
				Ответ: 2

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 85

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 75

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-3. Строение и свойства металлов и сплавов

Формы реализации: Компьютерное задание Тип контрольного мероприятия: Тестирование Вес контрольного мероприятия в БРС: 20

Процедура проведения контрольного мероприятия: Технология проверки связана с выполнением контрольного теста по изученной теме. Время, отведенное на выполнение задания, устанавливается не более 30 минут. Количество попыток не более 3х. Тестирование проводится с использованием СДО "Прометей". К тестированию допускается пользователь, изучивший материалы, авторизированный уникальным логином и паролем.

Краткое содержание задания:

строению

itoni polibnibie bompoebi/sugumin.	
Запланированные результаты	Вопросы/задания для проверки
обучения по дисциплине	
Знать: способы производства	1. Два слитка металла кристаллизуются в разных
металлов и сплавов; методы их	формах – первый слиток остывает в холодной

Запланированные результаты обучения по дисциплине	Вопросы/задания для проверки
	металлической форме, а второй – в горячей
испытания на физические,	металлической форме, а второй – в горячей керамической форме. В каком из слитков структура
механические и	
конструкционные свойства	металла после кристаллизации получится более крупнозернистой?
	1. В слитке, кристаллизующемся в холодной
	металлической форме
	2. В слитке, кристаллизующемся в горячей
	керамической форме
	3. Размер зерна в обоих слитках будет одинаковым
	Ответ: 2
	2.При определении твердости по методу Роквелла по
	шкале В в качестве индентора используют:
	1. четырёхгранную алмазную пирамиду с углом α =
	136° между противоположными гранями
	2. стальные шарики диаметром D = 1; 2,5; 5 и 10 мм
	3. стальной шарик диаметром D = 1,588 мм
	4. алмазный конус с углом при вершине 120°
	Ответ: 3
	3. Максимальное напряжение, возникающее в образце
	при его испытании на растяжение, называется
	1. физический предел текучести
	2. условный предел текучести
	3. временное сопротивление
	4. предел выносливости Ответ: 3
	4. Какие из перечисленных свойств материалов
	характерны для металлов
	1. низкая тепло- и электропроводность
	2. наличие металлического блеска
	3. наличие кристаллической решетки в твердом
	состоянии
	4. высокая окислительная способность
	5. небольшое количество (как правило, 1-3)
	электронов на внешнем электронном уровне
	6. способность к упругому и пластическому
	деформированию
	Ответ: 2,3,5,6
	5. Какой особенностью обладают автоматные стали?
	1. Высокой коррозионной стойкостью в щелочных
	средах
	2. Повышенной обрабатываемостью резанием
	3. Повышенной температурой плавления
	4. Высокой прочностью в сочетании с большим
	запасом пластичности Ответ: 2
	OTBUT. 2

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 85

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 75

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-4. Конструкционные материалы

Формы реализации: Письменная работа

Тип контрольного мероприятия: Решение задач

Вес контрольного мероприятия в БРС: 20

Процедура проведения контрольного мероприятия: Решенные задания по вариантам

отправляются в СДО "Прометей" в рамках функционала "письменная работа".

Краткое содержание задания:

Контрольная точка направлена на проверку знаний по следующим вопросам: классификация конструкционных материалов, металлические материалы, неметаллические материалы, методы изучения строения конструкционных материалов

	топтропыне вопросы/задания.				
Запланированные	Вопросы/задания для проверки				
результаты					
обучения по					
дисциплине					
Уметь:	1.Вычертить диаграмму состояния "свинец - олово" (рис. 1).				
осуществлять	Указать линии ликвидуса и солидуса,				
контроль качества	а также структурно-фазовый состав областей. Для сплава,				
изоляции	содержащего 50% Sn, построить				
	кривую охлаждения и описать происходящие при охлаждении				
	превращения. Для данного слава				
	определить количественное соотношение структурных				
	составляющих при температуре 200° С				
	и схематично изобразить структуру.				

Запланированные	Вопросы/задания для проверки
результаты	
обучения по	
дисциплине	
	T°C
	350
	300
	250 62%Sn
	200
	150 183°
	100
	50 /
	0 10 20 30 40 50 60 70 80 90 100
	Pb %Sn Sn
	Figure 1 Рис.1
	Т°С ,
	500
	400
	400
	300
	200 8%Zn
	200 199°
	100
	0 10 20 30 40 50 60 70 80 90 100
	Sn → %Zn Zn
	2. Диаграмма состояния системы «олово – цинк»
	Figure 2 Рис. 2
	Вычертить диаграмму состояния "цинк - олово" (рис. 2). Указать
	линии ликвидуса и солидуса, а также структурно-фазовый состав
	областей. Для сплава, содержащего 40% Zn, построить кривую
	охлаждения и описать происходящие при охлаждении
	превращения. Для данного слава определить количественное
	соотношение структурных составляющих при температуре 250° С
	и схематично изобразить структуру.
	3.Вычертить диаграмму состояния "Fe - Fe ₃ C" (рис. 3). Указать
	структурно-фазовый состав областей.
	Построить кривую охлаждения и описать превращения для
	сплава, содержащего 4,3% С.
	Схематично изобразить и описать структуру заданного сплава.

Запланированные	Вопросы/задания для проверки
результаты	
обучения по	
дисциплине	
	T ^O C Michigan Againm
	1600 4 1000 м.

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 85

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 75

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-5. Диэлектрики. Проводники. Полупроводники. Ферромагнетизм

Формы реализации: Письменная работа

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 20

Процедура проведения контрольного мероприятия: Решенные задания по вариантам отправляются в СДО "Прометей" в рамках функционала "письменная работа".

Краткое содержание задания:

Контрольная точка направлена на проверку знаний по темам "Диэлектрики. Проводники. Полупроводники. Ферромагнетизм"

Запланированные			Вопросы/задания для проверки	
	результаты	обучения	ПО	
	дисциплине			

Запланированные	Вопросы/задания для проверки
результаты обучения по	
дисциплине	
Уметь: расшифровывать	1.Определите сколько углерода (по массе) содержит
маркировку металлов и	цементит
сплавов, определять состав	2.Показать угол наклона для примесной проводимости.
материала по маркировке;	Зависимость концентрации носителей заряда от
выбирать марки материалов	температуры при разном содержании примесей показана
в зависимости от	на рисунке
назначения деталей и	lnn ↑
условий их работы в	n <n'<n"< td=""></n'<n"<>
конструкциях узлов и	n"
механизмов	
	"Wn'
	n n
	₂ Wo λ 2 ^N n
	1/2kT
	3.Укажите чем определяется допустимая рабочая
	температура диэлектрика?
	Допустимая рабочая температура диэлектрика
	определяется совокупностью важнейших термических
	свойств материала к которым относятся
	теплопроводность, теплоемкость, плавление и
	размягчение материала, тепловое расширение,
	нагревостойкость, стойкость к термоударам

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 85

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 75

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

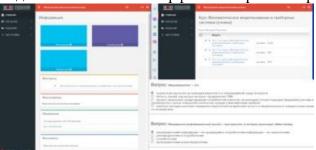
Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено


СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

3 семестр

Форма промежуточной аттестации: Экзамен

Пример билета

Вид билета связан с интерфейсом сервиса "Прометей"

Процедура проведения

В тесте встречаются вопросы следующих типов:

- 1. с одним вариантом ответа (в вопросах «один из многих», система сравнивает ответ слушателя с правильным ответом и автоматически выставляет за него назначенный балл)
- 2. с выбором нескольких вариантов ответов (в вопросах «многие из многих» система оценивает каждый ответ отдельно; есть возможность разрешить слушателю получить за вопрос 0,75 балла, если он выберет 3 правильных ответа из 4)
- 3. на соответствие слушатель должен привести в соответствие левую и правую часть ответа (в вопросах «соответствие» система оценивает каждый ответ отдельно; можно разрешить слушателю получить за вопрос 0,75 балла, если он выберет 3 правильных ответа из 4)
- 4. развернутый ответ, вводится вручную в специально отведенное поле (ручная оценка преподавателем)

I. Перечень компетенций/индикаторов и контрольных вопросов проверки результатов освоения дисциплины

1. Компетенция/Индикатор: ИД- $1_{O\Pi K-3}$ Выбирает и использует соответствующие ресурсы, современные методики и оборудование для проведения экспериментальных исследований и измерений

Вопросы, задания

- 1. Физико-химические закономерности формирования структуры материалов
- 2. Термическая и химико-термическая обработка сплавов
- 3. Конструкционные материалы
- 4.Инструментальные материалы
- 5. Неметаллические материалы
- 6. Чем обусловлены диэлектрические потери в переменном электрическом поле
- 7. Что представляют собой потери на электропроводность
- 8. Что называется нагревостойкостью электроизоляционного материала
- 9. Какой тип электропроводности у проводников первого рода и второго рода
- 10. Чем обусловлены магнитные свойства у ферромагнетиков

Материалы для проверки остаточных знаний

1. Два слитка металла кристаллизуются в разных формах — первый слиток остывает в холодной металлической форме, а второй — в горячей керамической форме. В каком из слитков структура металла после кристаллизации получится более крупнозернистой

Ответы:

1. В слитке, кристаллизующемся в холодной металлической форме 2. В слитке, кристаллизующемся в горячей керамической форме 3. Размер зерна в обоих слитках будет одинаковым

Верный ответ: 2

2. Модифицирование металлов проводят с целью...

Ответы:

1. уменьшения поверхностных дефектов кристаллической решетки 2. повышения критической температуры хрупкости 3. получения мелкозернистой структуры 4. повышения коррозионной стойкости

Верный ответ: 3

3. Какой тип диаграммы состояния характерен для сплавов, в которых компоненты взаимно нерастворимы в твердом состоянии

Ответы:

- 1. Диаграмма I типа 2. Диаграмма II типа 3. Диаграмма III типа 4. Диаграмма IV типа Верный ответ: 1
- 4. Геометрическое место точек на диаграмме состояния, характеризующее температуры начала кристаллизации всех сплавов системы, называется

Ответы:

1. линией предельной растворимости 2. линией ликвидус 3. линией солидус 4. кривой охлаждения 5. линией структурных превращений

Верный ответ: 2

5.В каком из методов определения твердости в качестве индентора используется алмазный конус

Ответы:

1. в методе Бринелля 2. в методе Роквелла 3. в методе Виккерса 4. во всех перечисленных методах

Верный ответ: 2

6. Какие токи будут протекать через конденсатор, к которому приложено переменное напряжение, если между его электродами находится диэлектрик с ионным типом химических связей, диэлектрическая проницаемость

Ответы:

1. токи смещения 2. токи абсорбции 3. токи, обусловленные свободными носителями заряда

Верный ответ: 1, 2, 3

7. Пробивное напряжение при тепловом пробое уменьшается

Ответы

1. при уменьшении температуры диэлектрика 2. при ухудшений условий теплоотдачи с поверхности диэлектрика 3. при увеличении толщины диэлектрика

Верный ответ: 2

8. Как соотносятся разупорядоченность кристаллической решетки металла и его удельное сопротивление

Ответы:

1. Металл с регулярной кристаллической решеткой обладает наименьшим удельным сопротивлением 2. Кристаллическая решетка металла не влияет на его удельное сопротивление 3. Металл с регулярной кристаллической решеткой обладает наибольшим удельным сопротивлением

Верный ответ: 1

- 9.В собственном полупроводнике носителями заряда являются Ответы:
- 1. свободные электроны и дырки, концентрация которых одинаковы 2. свободные электроны и дырки, концентрация которых неодинаковы 3. примесные электроны и дырки, концентрация которых одинаковы

Верный ответ: 1

10.К каким группам относятся материалы, в которых ориентация элементарных магнитных моментов соседних атомов антипараллельна; суммарный магнитный момент внутри домена равен 0

Ответы:

1. диамагнетики 2. парамагнетики 3. ферромагнетики 4. антиферромагнетики 5. ферримагнетики

Верный ответ: 4

11.В каком из методов определения твердости в качестве индентора используется алмазный конус

Ответы:

- 1. в методе Бринелля
- 2. в методе Роквелла
- 3. в методе Виккерса
- 4. во всех перечисленных методах

Верный ответ: 2

- 12. Для какого из перечисленных металлов характерно явление полиморфизма Ответы:
- 1. медь
- 2. алюминий
- 3. железо

Верный ответ: 3

- 13.Степень тетрагональности объемно-центрированной кристаллической решётки равна Ответы:
- 1.0,5
- 2. 1
- 3. 1,633
- 4.8

Верный ответ: 2

14.К какому типу дефектов относится граница зерна

Ответы:

- 1. точечные
- 2. линейные
- 3. поверхностные
- 4. объемные

Верный ответ: 3

15. Какой из приведенных материалов относится к углеродистым инструментальным сталям

Ответы:

- 1. Y7A
- 2. Ст5пс
- 3. 08кп

Верный ответ: 1

II. Описание шкалы оценивания

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 85

Описание характеристики выполнения знания: Работа выполнена в рамках "продвинутого" уровня. Ответы даны верно, четко сформулированные особенности практических решений

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 75

Описание характеристики выполнения знания: Работа выполнена в рамках "базового" уровня. Большинство ответов даны верно. В части материала есть незначительные недостатки

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Работа выполнена в рамках "порогового" уровня. Основная часть задания выполнена верно.

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Работа не выполнена или выполнена преимущественно неправильно

III. Правила выставления итоговой оценки по курсу

Оценка определяется в соответствии с Положением о балльно-рейтинговой системе для студентов НИУ «МЭИ» на основании семестровой и аттестационной составляющих.