Министерство науки и высшего образования РФ Федеральное государственное бюджетное образовательное учреждение высшего образования «Национальный исследовательский университет «МЭИ»

Направление подготовки/специальность: 13.03.01 Теплоэнергетика и теплотехника

Наименование образовательной программы: Современная тепловая электрическая станция

Уровень образования: высшее образование - бакалавриат

Форма обучения: Заочная

Оценочные материалы по дисциплине Котельные установки и парогенераторы

Москва 2025

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ РАЗРАБОТАЛ:

Подписано электронной подписью ФГБОУ ВО «НИУ «МЭИ»

Сведения о владельце ЦЭП МЭИ

Владелец Пай А.В.

Идентификатор Rf1f642dc-PaiAV-a2446597

согласовано:

Разработчик

Руководитель образовательной программы

MON A	Подписано электронн	ой подписью ФГБОУ ВО «НИУ «МЭИ»	
	Сведения о владельце ЦЭП МЭИ		
	Владелец	Бураков И.А.	
	Идентификатор	R6e8dfb19-BurakovIA-87400e32	

И.А. Бураков

А.В. Пай

Заведующий	
выпускающей кафедрой	

NCSO NOSO	Подписано электронной подписью ФГБОУ ВО «НИУ «МЭИ»			
NCM	Сведения о владельце ЦЭП МЭИ			
	Владелец	Рогалев Н.Д.		
	Идентификатор	R618dc98f-RogalevND-c9225577		

Н.Д. Рогалев

ОБЩАЯ ЧАСТЬ

Оценочные материалы по дисциплине предназначены для оценки достижения обучающимися запланированных результатов обучения по дисциплине, этапа формирования запланированных компетенций и уровня освоения дисциплины.

Оценочные материалы по дисциплине включают оценочные средства для проведения мероприятий текущего контроля успеваемости и промежуточной аттестации.

Формируемые у обучающегося компетенции:

- 1. ПК-2 Способен участвовать в разработке проектов энергетических объектов, в эксплуатации энергетических систем, оборудования, ведении режимов
 - ИД-1 Демонстрирует возможность разрабатывать проекты и проектные решения энергетических объектов, участвует в эксплуатации энергетических систем, оборудования, ведении режимов
- 2. РПК-1 Способен определять энергоэффективность теплотехнического оборудования в сфере профессиональной деятельности
 - ИД-1 Демонстрирует знание базовых принципов энергоэффективности
 - ИД-2 Определяет показатели энергоэффективности теплотехнического оборудования

и включает:

для текущего контроля успеваемости:

Форма реализации: Компьютерное задание

- 1. Аэродинамика газовоздушного тракта (Тестирование)
- 2. Гидродинамика котлов (Тестирование)
- 3. Значение котельных установок в промышленной энергетике и жилищно-коммунальном хозяйстве. Основные элементы котельной установки. Органическое топливо как основной источник энергии в котельных агрегатах (Тестирование)
- 4. Особенности сжигания газообразных, жидких и твердых топлив в котельных агрегатах (Тестирование)
- 5. Расчет горения твердых, жидких и газообразных топлив (Тестирование)
- 6. Ступенчатое испарение воды в котельных агрегатах (Контрольная работа)
- 7. Тепловой баланс котельного агрегата (Контрольная работа)
- 8. Шлакозолоудаление в котельных агрегатах. Золоулавливание (Тестирование)

БРС дисциплины

6 семестр

Перечень контрольных мероприятий <u>текущего контроля</u> успеваемости по дисциплине:

- КМ-1 Расчет горения твердых, жидких и газообразных топлив (Тестирование)
- КМ-2 Тепловой баланс котельного агрегата (Контрольная работа)
- КМ-3 Гидродинамика котлов (Тестирование)
- КМ-4 Значение котельных установок в промышленной энергетике и жилищно-коммунальном хозяйстве. Основные элементы котельной установки. Органическое топливо как основной источник энергии в котельных агрегатах (Тестирование)

Вид промежуточной аттестации – Зачет с оценкой.

	Веса конт	Веса контрольных мероприятий, %				
D	Индекс	КМ-	КМ-	КМ-	KM-	
Раздел дисциплины	KM:	1	2	3	4	
	Срок КМ:	3	6	8	10	
Значение котельных установок в промышленной эне					_	
жилищно-коммунальном хозяйстве. Основные элеме						
котельной установки. Органическое топливо как осн						
источник энергии в котельных агрегатах						
Последовательность получения и использования пара	аи					
преобразования одних видов энергии в другие		+				
Автономные производственные и отопительные коте	ельные и					
котлы		+				
Основные элементы паровых и водогрейных котлов		+				
Топливно-энергетический баланс России		+				
Природное и искусственное топливо		+				
Составы твердого, жидкого и газообразного топлива		+				
Теплотехнические характеристики топлива		+				
Расчет горения твердых, жидких и газообразных топ.	лив					
Теоретически необходимый расход воздуха для сжигания топлива		+				
Выход и состав продуктов полного сгорания топлива		+				
Условия полного сгорания топлива		+				
Основное уравнение горения (баланс кислорода воздуха) и контроль процесса горения топлива		+				
Тепловой баланс котельного агрегата						
Энтальпия продуктов сгорания топлива			+			
Материальный баланс рабочих веществ в котле			+			
Общее уравнение теплового баланса котельного агрегата			+			
Полезно используемая теплота для производства пара			+			
Потери теплоты			+			
Зависимость от КПД котла и его нагрузки			+			
Особенности сжигания газообразных, жидких и твер в котельных агрегатах	дых топлив					
Газообразное топливо			+			

Сжигание жидких топлив в котельных агрегатах		+		
Основные схемы организации сжигания твердого топлива в котлах		+		
Гидродинамика котлов				
Гидродинамика котлов с естественной циркуляцией			+	+
Расчет контуров естественной циркуляции			+	+
Надежность циркуляции			+	+
Причины образования застоя или опрокидывания циркуляции			+	+
Bec KM:	25	25	25	25

7 семестр

Перечень контрольных мероприятий <u>текущего контроля</u> успеваемости по дисциплине:

- КМ-1 Ступенчатое испарение воды в котельных агрегатах (Контрольная работа)
- КМ-2 Аэродинамика газовоздушного тракта (Тестирование)
- КМ-3 Шлакозолоудаление в котельных агрегатах. Золоулавливание (Тестирование)
- КМ-4 Особенности сжигания газообразных, жидких и твердых топлив в котельных агрегатах (Тестирование)

Вид промежуточной аттестации – Экзамен.

	Веса в	сонтрольн	ных меро	приятий,	%
Раздел дисциплины	Индекс КМ:	KM-1	KM-2	KM-3	KM-4
	Срок КМ:	12	15	16	18
Водный режим и качество пара					
Влияние качества воды на работу котла		+			
Нормы качества питательной и котловой во	оды, пара	+			
Водно-химический режим и продувка парового котла		+			
Ступенчатое испарение воды		+			
Сепарация и промывка пара		+			
Аэродинамика газовоздушного тракта					
Системы газовоздушного тракта			+		
Аэродинамические сопротивления			+		
Аэродинамика дымовой трубы			+		

Шлакозолоудаление в котельных агрегатах.				
Золоулавливание				
Выход и характеристики золы и шлака			+	+
Механическая система шлакозолоудаления			+	+
Пневматическая система шлакозолоудаления			+	+
Гидравлическая система шлакозолоудаления			+	+
Золоулавливание и очистка продуктов сгорания			+	+
Bec KM:	25	25	25	25

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ТЕКУЩЕГО КОНТРОЛЯ

I. Оценочные средства для оценки запланированных результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций

Индекс	Индикатор	Запланированные	Контрольная точка
компетенции	_	результаты обучения по	
		дисциплине	
ПК-2	ИД-1 _{ПК-2} Демонстрирует	Знать:	КМ-1 Значение котельных установок в промышленной энергетике и
	возможность	методы расчета	жилищно-коммунальном хозяйстве. Основные элементы котельной
	разрабатывать проекты и	показателей	установки. Органическое топливо как основной источник энергии в
	проектные решения	энергетической	котельных агрегатах (Тестирование)
	энергетических объектов,	эффективности котельных	КМ-2 Расчет горения твердых, жидких и газообразных топлив
	участвует в эксплуатации	агрегатов	(Тестирование)
	энергетических систем,	принцип действия и	КМ-3 Тепловой баланс котельного агрегата (Контрольная работа)
	оборудования, ведении	конструктивные	КМ-4 Особенности сжигания газообразных, жидких и твердых топлив
	режимов	особенности котельных	в котельных агрегатах (Тестирование)
		агрегатов с естественной и	КМ-5 Гидродинамика котлов (Тестирование)
		принудительной	КМ-8 Шлакозолоудаление в котельных агрегатах. Золоулавливание
		циркуляцией	(Тестирование)
		теплоносителя;	
		основные источники	
		научно-технической	
		информации по котельной	
		технике малой и средней	
		мощности	
		Уметь:	
		рассчитывать выход и	
		состав газообразных	
		токсичных выбросов в	
		атмосферу, разрабатывать	
		экозащитные мероприятия	
		для котельных агрегатов	

РПК-1	ИД-1 _{РПК-1} Демонстрирует	Уметь:	КМ-6 Ступенчатое испарение воды в котельных агрегатах
	знание базовых принципов	оценивать энергетическую	(Контрольная работа)
	энергоэффективности	эффективность котельных	
		агрегатов,	
		непосредственно	
		определять показатели	
		энергетической	
		эффективности	
		действующих котельных	
		агрегатов	
РПК-1	ИД-2РПК-1 Определяет	Знать:	КМ-7 Аэродинамика газовоздушного тракта (Тестирование)
	показатели	методы снижения вредных	
	энергоэффективности	выбросов котельными	
	теплотехнического	агрегатами на различных	
	оборудования	стадиях осуществления	
		технологического процесса	
		сжигания топлива в	
		котельных агрегатах	

II. Содержание оценочных средств. Шкала и критерии оценивания

6 семестр

КМ-1. Расчет горения твердых, жидких и газообразных топлив

Формы реализации: Компьютерное задание **Тип контрольного мероприятия**: Тестирование **Вес контрольного мероприятия в БРС**: 25

Процедура проведения контрольного мероприятия: Технология проверки связана с выполнением контрольного теста по изученной теме. Время, отведенное на выполнение задания, устанавливается не более 70 минут. Количество попыток не более 3х. Тестирование проводится с использованием СДО "Прометей". К тестированию допускается пользователь, изучивший материалы, авторизированный уникальным логином и паролем.

Краткое содержание задания:

Контрольная точка направлена на проверку знаний по расчету продуктов сгорания органического топлива

Контрольные вопросы/задания:	
Запланированные результаты обучения	Вопросы/задания для проверки
по дисциплине	
Знать: основные источники научно-	1.В приводимом списке укажите продукты
технической информации по котельной	
технике малой и средней мощности	1. 1. CO2;
	2. 2. S02;
	3. 3. CO;
	4. 4. H2O;
	5. 5. CH4;
	6. 6. O2;
	7. 7. CmHn;
	8. 8. H2;
	9. 9. N2.
	10. Ответ: 1,2,4,9
	2.Горение является:
	1. 1. Химическим процессом;
	2. 2. Физическим процессом;
	3. 3. Физико-химическим процессом.
	4. Ответ: 3
	3. Как изменяется содержание трехатомных
	газов VR02 (м3/кг) в продуктах полного
	горения с увеличением коэффициента
	избытка воздуха:
	1. 1. Уменьшается;
	2. 2. Остается без изменения;
	3. 3. Увеличивается.
	4. Ответ: 2

Запланированные результаты обучения по дисциплине	Вопросы/задания для проверки
	 4.Как изменяется содержание водяных паров VH2O (м3/кг) в продуктах полного горения с увеличением коэффициента избытка воздуха: 1. Уменьшается; 2. Остается без изменения; 3. Увеличивается. 4. Ответ: 3
	 5.Как изменяется содержание двухатомных газов (м3/кг) в продуктах полного горения с увеличением коэффициента избытка воздуха: 1. Уменьшается; 2. Остается без изменения; 3. Увеличивается. 4. Ответ: 3
	 6.Как изменяется величина топливной характеристики β с увеличением содержания водорода в топливе: 1. Уменьшается; 2. Остается без изменения; 3. Увеличивается. 4. Ответ: 3
	 7.Как изменяется содержание С02 % в продуктах горения с ростом величины топливной характеристики β: 1. Уменьшается; 2. Остается без изменения; 3. Увеличивается. 4. Ответ: 1
	 8.Коэффициент избытка воздуха определяется как отношение: 1. Действительного расхода воздуха, подаваемого на сжигание топлива, к его теоретическому значению; 2. Теоретического значения расхода воздуха к действительному расходу воздуха, подаваемого на сжигание топлива. 3. Ответ: 1
	 9.В качестве окислителя в процессах горения топлива в котельных агрегатах используется атмосферный воздух, содержащий: 1. 1.21% кислорода и 79% азота; 2. 29% кислорода и 71% азота; 3. 19% кислорода и 81% азота. 4. Ответ: 1 10.Условия, необходимые для полного

Запланированные результаты обучения	Вопросы/задания для проверки
по дисциплине	
	сгорания топлива (исключить не верный
	ответ):
	1. 1. Непрерывный подвод топлива в зону горения;
	2. 2. Непрерывный подвод окислителя (воздуха) в
	достаточном количестве;
	3. 3. Хорошее перемешивание топлива с
	окислителем;
	4. 4. Время пребывания топливо-воздушной смеси в
	топке должно быть минимальным.
	5. Ответ: 4

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-2. Тепловой баланс котельного агрегата

Формы реализации: Компьютерное задание

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 25

Процедура проведения контрольного мероприятия: Решенные задания по вариантам отправляются в СДО "Прометей" в рамках функционала "письменная работа".

Краткое содержание задания:

Контрольная точка направлена на проверку знаний расчету теплового баланса

Запланированные результаты обучения по	Вопросы/задания для проверки
дисциплине	
Уметь: рассчитывать выход и состав	1.Рассчитать потери теплоты с
газообразных токсичных выбросов в атмосферу, разрабатывать экозащитные	уходящими газами дуг, % при сжигании горючего газа составом СН4 -100%; при
мероприятия для котельных агрегатов	полном сжигании топлива с α =1.
	Температура отходящих газов 110 0С.
	2.Рассчитать потери теплоты с

Запланированные	результаты	обучения	ПО	Вопросы/задания для проверки
дисциплине				
				уходящими газами дуг, % при сжигании
				горючего газа составом СН4 -100%; при
				полном сжигании топлива с α=1.
				Температура отходящих газов 120 0С.
				3. Рассчитать потери теплоты с
				уходящими газами дуг, % при сжигании
				горючего газа составом СН4 -100%; при
				полном сжигании топлива с α=1.
				Температура отходящих газов 130 0С.

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-3. Гидродинамика котлов

Формы реализации: Компьютерное задание Тип контрольного мероприятия: Тестирование Вес контрольного мероприятия в БРС: 25

Процедура проведения контрольного мероприятия: Технология проверки связана с выполнением контрольного теста по изученной теме. Тестирование проводится с использованием СДО "Прометей". К тестированию допускается пользователь, изучивший материалы, авторизованный уникальным логином и паролем.

Краткое содержание задания:

Контрольная работа направлена на проверку знаний по гидродинамики котлов

Запланированные результаты	Вопросы/задания для проверки	
обучения по дисциплине		
Знать: методы расчета показателей	1.Каким давлением ограничены котлы с	
энергетической эффективности	естественной циркуляцией?	
котельных агрегатов	1. 1- 2 МПа	
	2. 7-8 МПа	
	3. 10-11 МПа	
	4. 18-19 Мпа	

Запланированные обучения по дисциплине	результаты	Вопросы/задания для проверки
Запланированные обучения по дисциплине	результаты	Ответ: 4 2.На движущий напор циркуляции, а значит и на полезный напор оказывает влияние: 1. Относительная скорость пара 2. Температура перегретого пара 3. Плотность падающего теплового потока 4. Давление в контуре 5. Давление перегретого пара Ответ: 1, 3, 4 3.Целью расчета циркуляции является: 1. Определение давления в контуре 2. Определение скорости воды и пароводяной смеси 3. Определение плотности падающего теплового потока Ответ: 2 4.Полезный напор для сложного контура с естественной циркуляцией находят: 1. Вычисление затруднено, ограничиваются расчетом каждого отдельного контура 2. Суммированием полезных напоров каждого звена Ответ: 2 5.Высота экономайзерного участка определяется: 1. Определением разницы в длине подъемных и опускных труб 2. Вычитанием высоты паровой части из общей высоты контура 3. Высота экономайзерного участка составляет 30% от общей высоты контура Ответ: 2 6.Мера борьбы с застоем и опрокидыванием это: 1. Увеличение сопротивления опускных труб 2. Уменьшение сопротивления опускных труб 3. Уменьшение скорости пароводяной смеси
		 Определением разницы в длине подъемных и опускных труб Вычитанием высоты паровой части из общей высоты контура Высота экономайзерного участка составляет
		30% от общей высоты контура Ответ: 2 6.Мера борьбы с застоем и опрокидыванием это: 1. Увеличение сопротивления опускных труб 2. Уменьшение сопротивления опускных труб
		Ответ: 2 7. Что такое опрокидывание циркуляции? 1. Движение пароводяной смеси вниз в опускной трубе 2. Движение пароводяной смеси вверх в подъемной трубе
		3. Движение пароводяной смеси вниз в подъемной трубе Ответ: 3 8. Что такое кратность циркуляции: 1. Отношение массы воды, циркулирующей в системе за единицу времени, к массе вырабатываемого пара за то же время

Запланированные	результаты	Вопросы/задания для проверки
обучения по дисциплине		
обучения по дисциплине		2. Отношение скорости воды, циркулирующей в системе, к скорости вырабатываемого пара Ответ: 1 9.Назовите кратность циркуляции для водогрейного котла: 1. 1 2.10 3.100 Ответ: 1 10.Укажите тип котла, который имеет наибольшую кратность циркуляции? 1. Котел МПЦ 2. Прямоточный котел 3. Котел с естественной циркуляцией
		Ответ: 3

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 85

Описание характеристики выполнения знания: оценка "отлично" выставляется, если задание выполнено в установленном объеме в соответствии со шкалой

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 75

Описание характеристики выполнения знания: оценка "хорошо" выставляется, если задание выполнено в установленном объеме в соответствии со шкалой

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: оценка "удовлетворительно" выставляется, если задание выполнено в установленном объеме в соответствии со шкалой

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: оценка "неудовлетворительно" выставляется, если задание выполнено ниже порогового уровня, установленного шкалой

КМ-4. Значение котельных установок в промышленной энергетике и жилищнокоммунальном хозяйстве. Основные элементы котельной установки. Органическое топливо как основной источник энергии в котельных агрегатах

Формы реализации: Компьютерное задание **Тип контрольного мероприятия**: Тестирование **Вес контрольного мероприятия в БРС**: 25

Процедура проведения контрольного мероприятия: Технология проверки связана с выполнением контрольного теста по изученной теме. Время, отведенное на выполнение задания, устанавливается не более 70 минут. Количество попыток не более 3х. Тестирование проводится с использованием СДО "Прометей". К тестированию допускается пользователь, изучивший материалы, авторизированный уникальным логином и паролем.

Краткое содержание задания:

Контрольная точка направлена на проверку знаний по устройству котельных установок и знания основных свойств органического топлива которое является источником энергии в котельных агрегатах

Запрацировани в	
Запланированные	Вопросы/задания для проверки
результаты обучения по	
дисциплине	1 D
Знать: методы расчета	1. Выбрать теплоту сгорания условного топлива:
показателей энергетической	1. 1. 7000 ккал/кг;
эффективности котельных	2. 2. 7700 ккал/кг;
агрегатов	3. 3. 29,33 МДж/кг;
	4. 4. 23,9 МДж/кг.
	5. Ответ: 1,3
	2.В составе природного газообразного топлива величина
	водяных паров выражена в?
	водяных паров выражена в: 1. 1. Долях;
	2. 2. Процентах;
	3. 3. Отсутствует.
	4. Ответ: 3
	3.Сера колчеданная входит в:
	1. 1. Сухую массу топлива;
	2. 2. Горючую;
	3. 3. Органическую.
	4. Ответ: 2, 3
	4. Что такое высшая теплота сгорания?
	1. 1. Если в продуктах сгорания все водяные пары
	конденсируются и образует жидкую фазу, то теплота сгорания
	называется высшей Qв;
	2. 2. Если конденсации водяного пара не происходит в продуктах
	сгорания, то теплоту сгорания называют высшей Qв.
	3. Ответ: 1
	5 Как виндет на тапноту сгорония увелинание золи пости?
	5. Как влияет на теплоту сгорания увеличение зольности?1. Не влияет;
	•
	2. С увеличением зольности теплота сгорания топлива увеличивается;
	•
	3. С увеличением зольности теплота сгорания топлива
	уменьшается.
	4. Ответ: 3
	6.Как влияет на теплоту сгорания уменьшение
	влажности?
	1. 1. Не влияет;
	2. 2. Теплота сгорания топлива увеличивается;
	3. 3. Теплота сгорания топлива уменьшается.
	4. Ответ: 2
	7. Какие из представленных газов называют баластом?
	1. 1. CO + H2 + CmHn + H2S + CO2 + N2 + O2;

Запланированные	Вопросы/задания для проверки
результаты обучения по	
дисциплине	
	2. 2. CO2 + N2 + O2;
	3. 3. CO + H2 + CmHn + H2S.
	4. Ответ: 2
	8. Твердые топлива с температурой t3 (температура начала жидкоплавкого состояния) больше 1450 °C относят к топливам с:
	1. 1. С легкоплавкой золой;
	2. 2. С золой средней плавкости;
	3. 3. С тугоплавкой золой.
	4. Ответ: 3
	 9.Подберите к определению верный термин: Все твердые топлива при нагревании без доступа воздуха подвергаются термическому распаду с выделением горючих газов — СО, Н2, Сти и негорючих газов N2, О2, СО2, Н2О. Выделение этих газов называется: 1. Горением; 2. Теплотой сгорания; 3. Выходом летучих. 4. Ответ: 3
	10.Теплота сгорания какого топлива определяется экспериментально?1. Сухого;2. Твердого;
	3. 3. Жидкого;
	4. 4. Газообразного.
	5. Ответ: 2,3
	1

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

7 семестр

КМ-1. Ступенчатое испарение воды в котельных агрегатах

Формы реализации: Компьютерное задание

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 25

Процедура проведения контрольного мероприятия: Решенные задания по вариантам

отправляются в СДО "Прометей" в рамках функционала "письменная работа".

Краткое содержание задания:

Контрольная точка направлена на проверку знаний на "продувку" в котельных агрегатах

Контрольные вопросы/задания:

Контрольные вопросы/задания	:		
Запланированные результаты	обучения	ПО	Вопросы/задания для проверки
дисциплине			
Уметь: оценивать	энергетичес	кую	1.Определить солесодержание пара
эффективность котельных	агрега	тов,	для системы трехступенчатого
непосредственно определять	показат	сели	испарения воды если заданы
энергетической эффективности	действуюї	цих	следующие исходные данные:
котельных агрегатов	·		Исходные данные:
•			Sпв=90+n мг/л;
			p=5%;
			X=0,03+0,001*n %;
			D1=78%; D2=17%; D3=5 %
			2.Определить солесодержание пара
			для системы трехступенчатого
			испарения воды если заданы
			следующие исходные данные:
			Исходные данные:
			Sпв=90+n мг/л;
			p=2%;
			X=0,03+0,001*n %;
			D1=78%; D2=17%; D3=5 %
			3. Определить солесодержание пара
			для системы трехступенчатого
			испарения воды если заданы
			следующие исходные данные:
			Исходные данные:
			Sпв=90+n мг/л;
			p=7%;
			X=0,03+0,001*n %;
			D1=78%; D2=17%; D3=5 %

Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 85

Описание характеристики выполнения знания: оценка "отлично" выставляется, если задание выполнено в установленном объеме в соответствии со шкалой

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 75

Описание характеристики выполнения знания: оценка "хорошо" выставляется, если задание выполнено в установленном объеме в соответствии со шкалой

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: оценка "удовлетворительно" выставляется, если задание выполнено в установленном объеме в соответствии со шкалой

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: оценка "неудовлетворительно" выставляется, если задание выполнено ниже порогового уровня, установленного шкалой

КМ-2. Аэродинамика газовоздушного тракта

Формы реализации: Компьютерное задание Тип контрольного мероприятия: Тестирование Вес контрольного мероприятия в БРС: 25

Процедура проведения контрольного мероприятия: Технология проверки связана с выполнением контрольного теста по изученной теме. Тестирование проводится с использованием СДО "Прометей". К тестированию допускается пользователь, изучивший материалы, авторизованный уникальным логином и паролем.

Краткое содержание задания:

Контрольная работа направлена на проверку знаний по аэродинамике газовоздушного тракта

Контрольные вопросы/задания:	
Запланированные результаты обучения по	Вопросы/задания для проверки
дисциплине	
Знать: методы снижения вредных выбросов	1.Из каких сопротивлений складывается
котельными агрегатами на различных стадиях	суммарное сопротивление опускного
осуществления технологического процесса	газохода при искусственной тяге?
сжигания топлива в котельных агрегатах	1. Аэродинамического сопротивления
	экономайзера и самотяги;
	2. Аэродинамического сопротивления
	воздушного подогревателя и самотяги;
	3. Аэродинамического сопротивления
	экономайзера, воздушного
	подогревателя и самотяги;
	4. Аэродинамического сопротивления
	экономайзера и воздушного
	подогревателя.
	Ответ: 3
	2.Самотяга дымовой трубы возрастает:
	1. При увеличении разницы температур
	газов и воздуха;
	2. При уменьшении разницы температур
	газов и воздуха;
	3. Только при установке дымососа.
	Ответ: 1
	3.Из каких соображений принимается
	минимально допустимая высота трубы:
	1. Исходя из норм ПДК;
	2. Исходя из определения полезной тяги

Запланированные дисциплине	результаты	обучения	ПО	Вопросы/задания для проверки
дисциплине				развиваемой дымовой трубой; 3. Исходя из диаметра устья дымовой трубы. Ответ: 1 4. Скорость газов на выходе из трубы, при естественной тяге принимают не менее: 1. 2 -3 м/с; 2. 3 -5 м/с; 3. 6 -10 м/с. Ответ: 3 5. Сопротивления при движении потока газов возрастают пропорционально: 1. Квадрату скорости; 2. Пропорционально скорости в степени 0,6—0,8. Ответ: 1 6. Какая система газовоздушного тракта применяются в котлах большой мощности? 1. Система с естественной тягой создаваемой дымовой трубой; 2. Система с подачей воздуха и удалением продуктов сгорания дымососом и трубой; 3. Система с подачей воздуха вентилятором и удалением продуктов сгорания дымососом и трубой. Ответ: 3 7. В каком случае самотяга равна нулю? 1. При равенстве плотностей газа и атмосферного воздуха; 2. В горизонтальных газоходах; 3. В вертикальных газоходах. Отвеет: 1,2 8. В системах с естественной тягой весь газовый тракт находится под: 1. Давлением; 2. Разряжением. Ответ: 2 9. На чем основывается действие дымовой трубы: 1. На разности плотностей холодного воздуха и потока газов; 2. На разности скоростей холодного воздуха и потока газов при поперечном омывании поверхностей нагрева в котлах, работающих на

Запланированные	результаты	обучения	ПО	Вопросы/задания для проверки
дисциплине				
				твердом топливе, принимается:
				1. 8-10 м/с;
				2. 2-4 м/с;
				3. 10-14м/с.
				Ответ: 1

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 85

Описание характеристики выполнения знания: оценка "отлично" выставляется, если задание выполнено в установленном объеме в соответствии со шкалой

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 75

Описание характеристики выполнения знания: оценка "хорошо" выставляется, если задание выполнено в установленном объеме в соответствии со шкалой

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: оценка "удовлетворительно" выставляется, если задание выполнено в установленном объеме в соответствии со шкалой

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: оценка "неудовлетворительно" выставляется, если задание выполнено ниже порогового уровня, установленного шкалой

КМ-3. Шлакозолоудаление в котельных агрегатах. Золоулавливание

Формы реализации: Компьютерное задание Тип контрольного мероприятия: Тестирование Вес контрольного мероприятия в БРС: 25

Процедура проведения контрольного мероприятия: Технология проверки связана с выполнением контрольного теста по изученной теме. Тестирование проводится с использованием СДО "Прометей". К тестированию допускается пользователь, изучивший материалы, авторизованный уникальным логином и паролем.

Краткое содержание задания:

Контрольная точка направлена на проверку знаний по шлакозолоудалению в котельных агрегатах

Запланированные результаты обучения по	Вопросы/задания для проверки
дисциплине	
Знать: принцип действия и конструктивные	1.К недостаткам электрофильтров
особенности котельных агрегатов с	относится:
естественной и принудительной циркуляцией	1. Малое аэродинамическое
теплоносителя;	сопротивление;
	2. Малое гидравлическое сопротивление
	3. Взрывоопасность пыли
	Ответ: 3
	2.Какой золоуловитель имеет
	наибольший коэффициент улавливания?

Запланированные	результаты	обучения	ПО	Вопросы/задания для проверки
дисциплине				
				1. Электрофильтр
				2. Инерционный циклон
				3. Жалюзийный пылеуловитель
				Ответ: 1
				3.Основное преимущество
				центробежных скрубберов?
				1. Низкий расход энергии
				2. Исключение вторичного уноса
				уловленной пыли
				3. Простота конструкции
				Ответ: 2
				4. Какая конструкция топки имеет
				наибольшей унос золы с продуктами
				сгорания от общего объема шлака и
				золы?
				1. Слоевая топка
				2. Пылеугольная топка с твердым
				шлакоудалением
				3. Пылеугольная топка с жидким
				шлакоудалением
				Ответ: 2
				5.В каком производстве нашли
				применение зола и шлак топлива?
				1. Производство строительных
				материалов
				2. Химическая промышленность
				3. Металлургия
				Ответ: 1
				6.Какая система шлакозолоудаления
				применяется в котлах большой
				мощности?
				1. Механическая
				2. Гидравлическая
				3. Пневматическая
				Ответ: 2
				7. Какая система шлакозолоудаления
				позволяет получать сухой шлак и золу
				для дальнейшего использования?
				1. Механическая
				2. Пневматическая
				Ответ: 2
				8.Скреперные установки относятся к:
				1. Механической системе
				шлакозолоудаления
				2. Гидравлической системе
				шлакозолоудаления
				3. Пневматической системе
				шлакозолоудаления
				Ответ: 1
				9.Основные способы золошлакоудаления

Запланированные результаты	обучения	ПО	Вопросы/задания для проверки
дисциплине			
			это:
			1. Инерционный и центробежный
			2. Электрический, механический,
			гидравлический
			3. Гидравлический, пневматический,
			механический
			4. Электрический, механический,
			пневматический
			5. Гидравлический, ручной
			Ответ: 3
			10.Какие топки имеют наибольший
			выход шлака от общего количества
			шлака и золы?
			1. Слоевые топки
			2. Пылеугольные топки с твердым
			шлакоудалением
			3. Пылеугольные топки с жидким
			шлакоудалением
			Ответ: 1

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 85

Описание характеристики выполнения знания: оценка "отлично" выставляется, если задание выполнено в установленном объеме в соответствии со шкалой

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 75

Описание характеристики выполнения знания: оценка "хорошо" выставляется, если задание выполнено в установленном объеме в соответствии со шкалой

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: оценка "удовлетворительно" выставляется, если задание выполнено в установленном объеме в соответствии со шкалой

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: оценка "неудовлетворительно" выставляется, если задание выполнено ниже порогового уровня, установленного шкалой

KM-4. Особенности сжигания газообразных, жидких и твердых топлив в котельных агрегатах

Формы реализации: Компьютерное задание Тип контрольного мероприятия: Тестирование Вес контрольного мероприятия в БРС: 25

Процедура проведения контрольного мероприятия: Технология проверки связана с выполнением контрольного теста по изученной теме. Время, отведенное на выполнение задания, устанавливается не более 70 минут. Количество попыток не более 3х. Тестирование проводится с использованием СДО "Прометей". К тестированию допускается пользователь, изучивший материалы, авторизированный уникальным логином и паролем.

Краткое содержание задания:

Контрольная точка направлена на проверку знаний по особенностям сжигания газообразных, жидких и твердых топлив в котельных агрегатах

Контрольные вопросы/задания:	D /
Запланированные результаты	Вопросы/задания для проверки
обучения по дисциплине	1 17
Знать: принцип действия и	1.Процессы в кипящем слое производятся при
конструктивные особенности	температуре:
котельных агрегатов с естественной	1. 1. tк.c. > tразм.золы;
и принудительной циркуляцией	2. 2. tк.c. < tразм.золы;
теплоносителя;	3. 3. tк.с. = tразм.золы.
	4. Ответ: 2
	2. Chooping today have convenient and
	2. Слоевые топки применимы для:
	1. 1. крупнозернистого топлива;
	2. 2. для пылевидного топлива;
	3. для мелкозернистого топлива.
	Ответ: 1
	3.Проскок пламени в газовую горелку
	происходит если:
	1. 1. Wист > W р.пл ;
	2. 2. Wист = W p.пл;
	3. 3. Wист < W р.пл.
	где: Wист – скорость истечения топливно-
	воздушной смеси из горелки. W р.пл – скорость
	распространения пламени
	Ответ: 3
	4. Как изменяется область устойчивого горения
	газа при увеличении коэффициента избытка
	воздуха в горелке:
	1. 1. увеличивается;
	2. 2. уменьшается;
	3. 3. не изменяется.
	4. Ответ: 2
	C. T.
	5. Температура воспламенения природного газа
	составляет:
	1. 1. 400 oC;
	2. 2. 645 oC;
	3. 3. 620 oC;
	4. 4. 650 oC
	5. Ответ: 2
	6 Do avoy vo mas
	6.Во сколько раз высота кипящего слоя больше
	высоты исходного плотного слоя?
	1. 1. 1,2-2 pasa;
	2. 2. 1 pas;
	3. 3. 3,4 раза ;
	4. 4.4 раза.
	5. Ответ: 1

Запланированные результаты	Вопросы/задания для проверки	
обучения по дисциплине		
	 7.Укажите для шаровой барабанной мельницы примерный удельный расход электроэнергии на пылеприготовление на работе на АШ: 1. 10-15 кВт·ч на 1 т пыли; 	
	2. 2. 25-35 кВт·ч на 1 т пыли;	
	3. 3. 40-50 кВт·ч на 1 т пыли.	
	4. Ответ: 2	
	8. Что такое условная вязкость:	
	1. 1. отношение времени, необходимого для	
	непрерывного истечения 200 см3 мазута при	
	определенной температуре, ко времени истечения	
	этого же объема дистиллированной воды при	
	температуре 20 ºС;	
	2. отношение времени, необходимого для непрерывного истечения 100 см3 мазута при определенной температуре, ко времени истечения этого же объема дистиллированной воды при температуре 20 °C; 3. отношение времени, необходимого для непрерывного истечения 200 см3 мазута при определенной температуре, ко времени истечения этого же объема дистиллированной воды при температуре 10 °C. Ответ: 1 9. В процессе горения твердого топлива в плотном слое наибольшая температура достигается в зоне: 1. 1. горящего кокса; 2. слое топлива;	
	,	
	3. 3. надслойном пламени. 4. Ответ: 1	
	10.Температура горения топлива в кипящем слое: 1. 800-1000 °C; 2. 1000-1200°C; 3. 1200-1400°C. Ответ: 2	

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

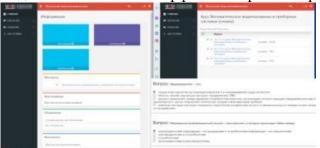
Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено


СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

6 семестр

Форма промежуточной аттестации: Зачет с оценкой

Пример билета

Вид билета связан с интерфейсом сервиса "Прометей"

Процедура проведения

В тесте 10 вопросов встречаются вопросы следующих типов:

- 1. с одним вариантом ответа (в вопросах «один из многих», система сравнивает ответ слушателя с правильным ответом и автоматически выставляет за него назначенный балл)
- 2. с выбором нескольких вариантов ответов (в вопросах «многие из многих» система оценивает каждый ответ отдельно; есть возможность разрешить слушателю получить за вопрос 0,75 балла, если он выберет 3 правильных ответа из 4)
- 3. на соответствие слушатель должен привести в соответствие левую и правую часть ответа (в вопросах «соответствие» система оценивает каждый ответ отдельно; можно разрешить слушателю получить за вопрос 0,75 балла, если он выберет 3 правильных ответа из 4)
- 4. развернутый ответ, вводится в вручную в специально отведенное поле (ручная оценка преподавателем)

I. Перечень компетенций/индикаторов и контрольных вопросов проверки результатов освоения дисциплины

1. Компетенция/Индикатор: ИД- $1_{\Pi K-2}$ Демонстрирует возможность разрабатывать проекты и проектные решения энергетических объектов, участвует в эксплуатации энергетических систем, оборудования, ведении режимов

Вопросы, задания

1.Последовательность этапов и механизм сжигания жидкого топлива.

Материалы для проверки остаточных знаний

- 1. Ниже перечислены основные элементы котельной установки, уберите лишнее: Ответы:
- а) Газификатор; б)Пароперегреватель; в)Топка; г)Экономайзер; д) Воздухоподогреватель; е) Барабан. ж) Экраны з) Пароохладитель. Верный ответ: а

2. Компетенция/Индикатор: ИД-1_{РПК-1} Демонстрирует знание базовых принципов энергоэффективности

Вопросы, задания

- 1.По какой формуле подсчитывается объемный расход воздуха при сжигании природного газа
- 2.По какой формуле подсчитывается объемный расход воздуха при сжигании мазута

Материалы для проверки остаточных знаний

1.В зависимости от направлений движения газов и пара различают три основные схемы включения пароперегревателя в газовый поток, это:

Ответы:

- а) прямоточную, противоточную; смешанную;
- б) поперечную, горизонтальную, смешанную Верный ответ: а
- 2. Водяной экономайзер служит для:

Ответы:

- а) использует теплоту продуктов сгорания топлива для предварительного подогрева или частичного испарения питательной воды, поступающей в барабан котла
- б) Экономит питательную воду;
- в) использует теплоту топлива для получения перегретого пара и питательной воды поступающей в барабан котла.

Верный ответ: а

3. Компетенция/Индикатор: ИД-2_{РПК-1} Определяет показатели энергоэффективности теплотехнического оборудования

Вопросы, задания

- 1.По какой формуле рассчитывается объем азота при сжигании твердых и жидких топлив
- 2.Способы организации сжигания природного газа

Материалы для проверки остаточных знаний

1. При наличии в котельном агрегате экономайзера и воздухоподогревателя первым по ходу газа устанавливается:

Ответы:

а) Экономайзер;

б) Воздухоподограватель.

Верный ответ: а

2. Какой вид теплообмена преобладает в топке котла?

Ответы:

а) Радиационный;

б)Конвективный.

Верный ответ: а

II. Описание шкалы оценивания

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Работа выполнена в рамках "продвинутого" уровня. Ответы даны верно, четко сформулированные особенности практических решений

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Работа выполнена в рамках "базового" уровня. Большинство ответов даны верно. В части материала есть незначительные недостатки

Оценка: 3 («удовлетворительно»)

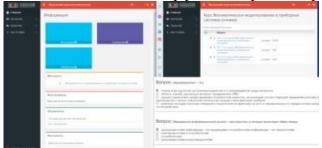
Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Работа выполнена в рамках "порогового" уровня. Основная часть задания выполнена верно. на вопросы углубленного уровня

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Работа не выполнена или выполнена преимущественно неправильно

ІІІ. Правила выставления итоговой оценки по курсу


Оценка определяется в соответствии с Положением о балльно-рейтинговой системе для студентов НИУ «МЭИ» на основании семестровой и аттестационной составляющих.

7 семестр

Форма промежуточной аттестации: Экзамен

Пример билета

Вид билета связан с интерфейсом сервиса "Прометей"

Процедура проведения

В тесте 10 вопросов встречаются вопросы следующих типов:

- 1. с одним вариантом ответа (в вопросах «один из многих», система сравнивает ответ слушателя с правильным ответом и автоматически выставляет за него назначенный балл)
- 2. с выбором нескольких вариантов ответов (в вопросах «многие из многих» система оценивает каждый ответ отдельно; есть возможность разрешить слушателю получить за вопрос 0,75 балла, если он выберет 3 правильных ответа из 4)
- 3. на соответствие слушатель должен привести в соответствие левую и правую часть ответа (в вопросах «соответствие» система оценивает каждый ответ отдельно; можно разрешить слушателю получить за вопрос 0,75 балла, если он выберет 3 правильных ответа из 4)
- 4. развернутый ответ, вводится в вручную в специально отведенное поле (ручная оценка преподавателем)

I. Перечень компетенций/индикаторов и контрольных вопросов проверки результатов освоения дисциплины

1. Компетенция/Индикатор: ИД- $1_{\Pi K-2}$ Демонстрирует возможность разрабатывать проекты и проектные решения энергетических объектов, участвует в эксплуатации энергетических систем, оборудования, ведении режимов

Вопросы, задания

- 1.Основные схемы пылеприготовления
- 2.Сепарация пара

Материалы для проверки остаточных знаний

- 1. При появлении накипи на трубах температура наружной стенки Ответы:
- а) Увеличивается
- б) Уменьшается
- в) Остается без изменений

Верный ответ: а

2. Продувка котла служит для

Ответы:

- а) Поддержания требуемой концентрации солей в барабане
- б) Для удаления золы с поверхностей нагрева
- в) Для нагрева воздуха, подаваемого в топку Верный ответ: а
- **2. Компетенция/Индикатор:** ИД-1_{РПК-1} Демонстрирует знание базовых принципов энергоэффективности

Вопросы, задания

1. Что такое продувка

Материалы для проверки остаточных знаний

- 1.Потери теплоты с продувкой составляют не более Ответы:
- а) 1% теплоты топлива
- б) 0,5% теплоты топлива
- в) 5% теплоты топлива

Верный ответ: б

3. Компетенция/Индикатор: ИД- $2_{\text{РПК-1}}$ Определяет показатели энергоэффективности теплотехнического оборудования

Вопросы, задания

- 1. Назовите способы улавливания золы
- 2.Основы методики расчета аэродинамических сопротивлений

Материалы для проверки остаточных знаний

1. Что такое простейший контур циркуляции

- а) Система состоящая из экономайзера, барабана; пароперегревателя
- б) Система состоящая из опускных и подъемных труб, барабана и нижнего коллектора
- в) Система состоящая из экономайзера, барабана; пароперегревателя, опускных и подъемных труб

Верный ответ: б

II. Описание шкалы оценивания

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 85

Описание характеристики выполнения знания: оценка "отлично" выставляется, если задание выполнено в установленном объеме в соответствии со шкалой

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 75

Описание характеристики выполнения знания: оценка "хорошо" выставляется, если задание выполнено в установленном объеме в соответствии со шкалой

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: оценка "удовлетворительно" выставляется, если задание выполнено в установленном объеме в соответствии со шкалой

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: оценка "неудовлетворительно" выставляется, если задание выполнено ниже порогового уровня, установленного шкалой

III. Правила выставления итоговой оценки по курсу

Оценка определяется в соответствии с Положением о балльно-рейтинговой системе для студентов НИУ «МЭИ» на основании семестровой и аттестационной составляющих.