Министерство науки и высшего образования РФ Федеральное государственное бюджетное образовательное учреждение высшего образования «Национальный исследовательский университет «МЭИ»

Направление подготовки/специальность: 13.03.01 Теплоэнергетика и теплотехника

Наименование образовательной программы: Современная тепловая электрическая станция

Уровень образования: высшее образование - бакалавриат

Форма обучения: Заочная

Оценочные материалы по дисциплине Тепломеханическое и вспомогательное оборудование электростанций

Москва 2025

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ РАЗРАБОТАЛ:

| Подписано электронной подписью ФГБОУ ВО «НИУ «МЭИ»

| Сведения о владельце ЦЭП МЭИ

| Владелец Дудолин А.А.

| Идентификатор Rb94958b9-DudolinAA-83802984

Разработчик

А.А. Дудолин

СОГЛАСОВАНО:

Руководитель образовательной программы

NCM NCM	Подписано электронной подписью ФГБОУ ВО «НИУ «МЭИ»				
	Сведения о владельце ЦЭП МЭИ				
	Владелец	Бураков И.А.			
	Идентификатор	R6e8dfb19-BurakovIA-87400e32			

И.А. Бураков

Заведующий выпускающей кафедрой

NOSO NOSO	Подписано электронн	ой подписью ФГБОУ ВО «НИУ «МЭИ»	
NCM	Сведения о владельце ЦЭП МЭИ		
	Владелец	Рогалев Н.Д.	
	Идентификатор	R618dc98f-RogalevND-c9225577	

Н.Д. Рогалев

ОБЩАЯ ЧАСТЬ

Оценочные материалы по дисциплине предназначены для оценки достижения обучающимися запланированных результатов обучения по дисциплине, этапа формирования запланированных компетенций и уровня освоения дисциплины.

Оценочные материалы по дисциплине включают оценочные средства для проведения мероприятий текущего контроля успеваемости и промежуточной аттестации.

Формируемые у обучающегося компетенции:

1. ПК-2 Способен участвовать в разработке проектов энергетических объектов, в эксплуатации энергетических систем, оборудования, ведении режимов

ИД-1 Демонстрирует возможность разрабатывать проекты и проектные решения энергетических объектов, участвует в эксплуатации энергетических систем, оборудования, ведении режимов

и включает:

для текущего контроля успеваемости:

Форма реализации: Компьютерное задание

1. Контрольная работа (Тестирование)

Форма реализации: Письменная работа

- 1. Конструкторский расчёт ПВД (Расчетно-графическая работа)
- 2. Расчёт деаэратора (Расчетно-графическая работа)
- 3. Расчёт сетевого подогревателя (Расчетно-графическая работа)
- 4. Тепловой расчёт ПВД (Расчетно-графическая работа)

БРС дисциплины

9 семестр

Перечень контрольных мероприятий <u>текущего контроля</u> успеваемости по дисциплине:

- КМ-1 Расчёт сетевого подогревателя (Расчетно-графическая работа)
- КМ-2 Расчёт деаэратора (Расчетно-графическая работа)
- КМ-3 Тепловой расчёт ПВД (Расчетно-графическая работа)
- КМ-4 Конструкторский расчёт ПВД (Расчетно-графическая работа)
- КМ-5 Контрольная работа (Тестирование)

Вид промежуточной аттестации – Экзамен.

	Веса контрольных мероприятий, %					
Росман низиминими	Индекс	KM-1	KM-2	KM-3	KM-4	KM-5
Раздел дисциплины	KM:					
	Срок КМ:	12	9	3	6	15
Поверхностные теплообменные аппараты схем ТЭС						
Отпуск тепла		+				

Турбины	+				
Теплообменное оборудование					
Контактные теплообменные аппараты схем ТЭС		+			
Расчет на прочность теплообменных аппаратов и трубопроводов	+				
Трубопроводы и арматура ТЭС и АЭС					
Трубопроводы и арматура ТЭС и АЭС			+	+	+
Контроль			+	+	
Оборудование вспомогательных систем ТЭС					
Оборудование газовоздушного тракта и систем топливоподачи					+
Оборудование технического водоснабжения					+
Нагнетатели ТЭС					
Насосы ТЭС					+
Тягодутьевые машины ТЭС					+
Bec KM:	20	20	20	20	20

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ТЕКУЩЕГО КОНТРОЛЯ

I. Оценочные средства для оценки запланированных результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций

Индекс	Индикатор	Запланированные	Контрольная точка
компетенции	-	результаты обучения по	
		дисциплине	
ПК-2	ИД-1 _{ПК-2} Демонстрирует	Знать:	КМ-1 Тепловой расчёт ПВД (Расчетно-графическая работа)
	возможность	назначение, принцип	КМ-2 Конструкторский расчёт ПВД (Расчетно-графическая работа)
	разрабатывать проекты и	действия, особенности	КМ-3 Расчёт деаэратора (Расчетно-графическая работа)
	проектные решения	использования,	КМ-4 Расчёт сетевого подогревателя (Расчетно-графическая работа)
	энергетических объектов,	характеристики и	КМ-5 Контрольная работа (Тестирование)
	участвует в эксплуатации	конструкции	
	энергетических систем,	тепломеханического и	
	оборудования, ведении	вспомогательного	
	режимов	оборудования	
		электростанций	
		Уметь:	
		выполнять гидравлические	
		расчёты и расчёты на	
		прочность элементов	
		теплообменных аппаратов	
		выполнять тепловой расчет	
		поверхностных	
		теплообменных аппаратов	
		ТЭС	
		выполнять	
		конструкторский и	
		поверочный расчет	
		поверхностных	
		теплообменных аппаратов	
		ТЭС	

II. Содержание оценочных средств. Шкала и критерии оценивания

КМ-1. Расчёт сетевого подогревателя

Формы реализации: Письменная работа

Тип контрольного мероприятия: Расчетно-графическая работа

Вес контрольного мероприятия в БРС: 20

Процедура проведения контрольного мероприятия: Работа выполняется студентами

самостоятельно согласно выданным вариантам.

Краткое содержание задания:

Рассчитать поверхность теплообмена сетевого подогревателя вертикального типа. Определить гидравлическое сопротивление подогревателя со стороны сетевой воды.

Контрольные вопросы/задания:

Запланированные результаты	Вопросы/задания для проверки
обучения по дисциплине	
Уметь: выполнять	1.Согласно представленному алгоритму расчёта
гидравлические расчёты и	выполнить и представить в отчёте:
расчёты на прочность	- схему включения рассчитываемого сетевого
элементов теплообменных	подогревателя в тепловую схему турбоустановки;
аппаратов	- конструктивную схему рассчитываемого сетевого
	подогревателя;
	- схему организации 4-х ходового движения сетевой
	воды в подогревателе;
	- схему для расчёта гидравлического сопротивления.
	2.Проанализировать соотношение полученных
	габаритных размеров сетевого подогревателя
	(отношение высоты подогревателя к диаметру корпуса),
	сравнить с аналогичным параметром ближайшего
	прототипа. Какие решения возможны, чтобы это
	соотношение было выполнено?
	3.Выполнить гидравлический расчёт сетевого
	подогревателя.
	4.Выполнить тепловой и конструкторский расчёт
	сетевого подогревателя.

Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме, без ошибок, задание оформлено преимущественно верно

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если задание выполнено в полном объеме, без ошибок, в оформлении задания присутствуют существенные недостатки

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание выполнено в полном объеме, имеются отдельные ошибки, в оформлении задания присутствуют существенные недостатки

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно

КМ-2. Расчёт деаэратора

Формы реализации: Письменная работа

Тип контрольного мероприятия: Расчетно-графическая работа

Вес контрольного мероприятия в БРС: 20

Процедура проведения контрольного мероприятия: Работа выполняется студентами

самостоятельно согласно выданным вариантам.

Краткое содержание задания:

Рассчитать подогрев воды в отсеках струйного деаэратора и определить концентрацию кислорода в конце каждого из отсеков (согласно индивидуальному заданию).

Контрольные вопросы/задания:

Запланированные	Вопросы/задания для проверки
результаты обучения по	
дисциплине	
Уметь: выполнять тепловой	1.Выполнить тепловой расчёт деаэратора согласно
расчет поверхностных	заданию
теплообменных аппаратов	2.Выполнить расчёт тепло- и массообмена в отсеках
ТЭС	струйного деаэратора
	3. Сравнить полученную концентрацию кислорода в
	питательной воде на выходе из деаэратора с
	нормативным значением
	4.У довлетворяет ли полученная концентрация кислорода
	требованиям нормативов? Какие изменения следует
	внеси в конструкцию струйного деаэратора для
	обеспечения требований нормативов по содержанию
	кислорода в питательной воде котлов?

Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме, без ошибок, задание оформлено преимущественно верно

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если задание выполнено в полном объеме, без ошибок, в оформлении задания присутствуют существенные недостатки

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание выполнено в полном объеме, в результатах имеются отдельные ошибки, в оформлении задания присутствуют существенные недостатки

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно

КМ-3. Тепловой расчёт ПВД

Формы реализации: Письменная работа

Тип контрольного мероприятия: Расчетно-графическая работа

Вес контрольного мероприятия в БРС: 20

Процедура проведения контрольного мероприятия: Работа выполняется студентами

самостоятельно согласно выданным вариантам.

Краткое содержание задания:

Выполнить тепловой расчёт ПВД с определением тепловой нагрузки каждой из зон и температурных напоров в них (параметры теплоносителей участка тепловой схемы задаются по вариантам).

Контрольные вопросы/задания:

Запланированные	результаты	Вопросы/задания для проверки
обучения по дисци	плине	
Уметь:	выполнять	1.Для заданного участка тепловой схемы выполнить
конструкторский	и поверочный	тепловой расчёт подогревателя высокого давления:
расчет	поверхностных	определить температуры питательной воды и пара в
теплообменных ап	паратов ТЭС	элементах подогревателя и температурные напоры в
		них.
		2.Изобразить расчётную тепловую схему
		подогревателя высокого давления

Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "отлично" выставляется если температуры пара, воды и температурные напоры в зонах рассчитаны верно, задание оформлено преимущественно верно

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если температуры пара, воды и температурные напоры в зонах рассчитаны верно, в оформлении задания присутствуют существенные недостатки

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если температуры пара, воды и температурные напоры в зонах рассчитаны с небольшими неточностями, но без грубых ошибок и/или в оформлении задания присутствуют существенные недостатки

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если температуры пара, воды и температурные напоры в зонах рассчитаны с ошибками, оформление задания не соответствует требованиям

КМ-4. Конструкторский расчёт ПВД

Формы реализации: Письменная работа

Тип контрольного мероприятия: Расчетно-графическая работа

Вес контрольного мероприятия в БРС: 20

Процедура проведения контрольного мероприятия: Работа выполняется студентами

самостоятельно согласно выданным вариантам.

Краткое содержание задания:

Для подогревателя высокого давления из задания №1 определить условия теплообмена в каждой из зон, необходимую поверхность нагрева и количество спиральных элементов.

Контрольные вопросы/задания:

Запланированные	результаты	Вопросы/задания для проверки
обучения по дисциплине		
Уметь:	выполнять	1.Построить температурный график ПВД.
конструкторский	И	2.Изобразить схему движения питательной воды в ПВД.
поверочный	расчет	3.Изобразить схему движения пара и конденсата
поверхностных		греющего пара в ПВД.
теплообменных	аппаратов	4.Сравнить скорость питательной воды в отдельных
ТЭС		зонах ПВД с принятой. Для случаев, когда фактическая
		и принятая скорости питательной воды отличаются,
		указать и обосновать, какие изменения необходимо
		внести в конструкцию ПВД, чтобы скорость
		питательной воды сошлась и находилась в допустимом
		диапазоне.

Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "отлично" выставляется если расчёт теплообмена в зонах выполнен верно, площади поверхностей, количество спиралей и фактическая скорость питательной воды рассчитаны верно, задание оформлено преимущественно верно

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если расчёт теплообмена в зонах выполнен верно, площади поверхностей, количество спиралей и фактическая скорость питательной воды рассчитаны верно, в оформлении задания присутствуют существенные недостатки

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если расчёт теплообмена в зонах выполнен преимущественно верно, площади поверхностей, количество спиралей и фактическая скорость питательной воды рассчитаны преимущественно верно, в оформлении задания присутствуют существенные недостатки

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если расчёт теплообмена в зонах выполнен неверно, площади поверхностей, количество спиралей и фактическая скорость питательной воды рассчитаны неверно

КМ-5. Контрольная работа

Формы реализации: Компьютерное задание **Тип контрольного мероприятия**: Тестирование **Вес контрольного мероприятия в БРС**: 20

Процедура проведения контрольного мероприятия: Работа выполняется студентами

самостоятельно согласно выданным вариантам.

Краткое содержание задания:

Развёрнуто ответить на поставленные вопросы, все утверждения должны быть обоснованными

Контрольные вопросы/задания:	
Запланированные результаты	Вопросы/задания для проверки
обучения по дисциплине	
Знать: назначение, принцип действия,	1.Перечислите требования, предъявляемые к
особенности использования,	подогревателям ТЭС.
характеристики и конструкции	2.С какой целью и куда отводится воздух из
тепломеханического и	ПНД и других подогревателей?
вспомогательного оборудования электростанций	3. Как рассчитывается диаметр трубной доски и диаметр корпуса ПНД?
электростандин	4. Чем обусловлено применение коллекторной
	системы и спиральных труб в ПВД?
	5.Принцип маркировки поверхностных ПНД и ПВД ТЭС и АЭС.
	6.С какой целью в конструкции ПСВ
	предусматривается плавающая водяная камера?
	Изобразить схематически.
	7. Каково назначение линзовых компенсаторов
	на корпусе сетевых подогревателей?
	Изобразите схему.
	8.Перечислите преимущества и недостатки
	применения смешивающих подогревателей в
	тепловой схеме ТЭС.
	9. Какая схема движения пара используется в
	смешивающих подогревателях? Почему?
	Привести схему.
	10.Опишите последовательность расчёта смешивающих ПНД.
	11.Приведите схему струйно-барботажного
	деаэратора и поясните необходимость и
	принцип действия пароперепускного
	устройства.
	12.Поясните необходимость выпара в
	деаэраторах и его влияние на эффективность
	деаэрации.
	13. Приведите классификацию деаэраторов по
	давлению в корпусе. Для чего они обычно
	используются?
	14.Способы очистки пара в испарителях:
	схемы, описание, принцип.
	15. Нарисуйте схему включения испарителя

Запланированные обучения по лисциплине	результаты	Вопросы/задания для проверки
обучения по дисциплине		мітновенного вскипания, поясните принцип действия. Каковы преимущества испарителя мітновенного вскипания? 16.Схема отпуска пара тепловому потребителя с помощью паропреобразователя. Преимущества и недостатки. 17.Назначение и принцип работы РОУ. Схема. 18.Каким образом компенсируются температурные перемещения паропроводов ТЭС? Расчёт удлинения трубопровода. 19.Для чего используются опоры и подвески? Какие виды опор и подвесок существуют? Схемы. 20. Дайте определение понятиям «насос» и «насосный агрегат». Приведите классификацию насосов, используемых на ТЭС. 21.Изобразите основные характеристики центробежного насоса — что они характеризируют? Укажите оптимальный режим работы. 22.Какие меры применяются для исключения кавитации в питательном насосе? 23.Схематически изобразите рабочие колёса с вперёд и с назад загнутыми лопатками. Покажите входной и выходной треугольники скоростей. 24.Записать уравнение Эйлера и показать в нём составляющие увеличения давления за счёт: действия центробежных сил, торможения потока в канале, торможения потока в диффузоре. Что такое степень реактивности ступени ТДМ? 25.Приведите примеры маркировки дымососов и дутьевых вентиляторов (расшифруйте их). 26.Приведите схему топливоподачи ТЭС на твёрдом топливе. Опишите назначение элементов. 27.Классификация систем пылеприготовления. Изобразить схему индивидуальной системы пылеприготовления с промежуточным бункером. 28.Можно ли использовать мельницывентиляторы для приготовления пыли антрацитов? Почему? 29.Изобразите схемитически пластинчатый теплообменник. Какие пластины обычно используются в пластинчатых теплообменник. Какие пластины обычно используются в пластиннатых теплообменник какие пластины обычно используются в пластингу З0.Привести схему оборотного охлажления с
		теплообменниках и на что влияет форма

Запланированные	результаты	Вопросы/задания для проверки
обучения по дисциплине		
		сухими вентиляторными градирнями.

Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто

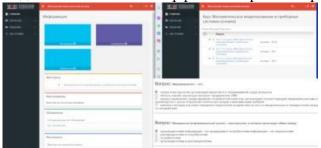
Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено


СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

9 семестр

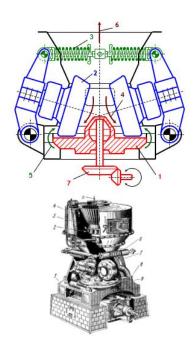
Форма промежуточной аттестации: Экзамен

Пример билета

Вид билета связан с интерфейсом сервиса "Прометей"

Процедура проведения

В тесте 20 вопросов встречаются вопросы следующих типов:


- 1. с одним вариантом ответа (в вопросах «один из многих», система сравнивает ответ слушателя с правильным ответом и автоматически выставляет за него назначенный балл)
- 2. с выбором нескольких вариантов ответов (в вопросах «многие из многих» система оценивает каждый ответ отдельно; есть возможность разрешить слушателю получить за вопрос 0,75 балла, если он выберет 3 правильных ответа из 4)
- 3. на соответствие слушатель должен привести в соответствие левую и правую часть ответа (в вопросах «соответствие» система оценивает каждый ответ отдельно; можно разрешить слушателю получить за вопрос 0,75 балла, если он выберет 3 правильных ответа из 4)
- 4. развернутый ответ, вводится в вручную в специально отведенное поле (ручная оценка преподавателем)

I. Перечень компетенций/индикаторов и контрольных вопросов проверки результатов освоения дисциплины

1. Компетенция/Индикатор: ИД- $1_{\Pi K-2}$ Демонстрирует возможность разрабатывать проекты и проектные решения энергетических объектов, участвует в эксплуатации энергетических систем, оборудования, ведении режимов

Вопросы, задания

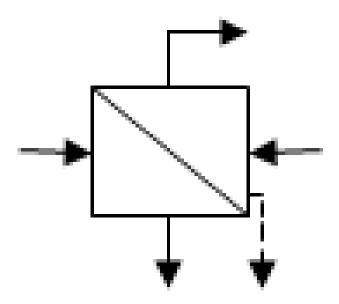
1.Описать оборудование данной конструкции (назвать, объяснить для каких целей используется, описать принцип действия):

- 2. Конструктивные схемы ПНД смешивающего типа, принцип работы, тепловой расчёт. Преимущества и недостатки смешивающих ПНД.
- 3. Арматура ТЭС. Опоры и подвески трубопроводов, их назначение.
- 4.Решить задачу.

Определить, как изменится допустимая высота всасывания насоса КсВ 420-125 при номинальной подаче, если температура воды в питательном резервуаре возрастёт с 50 до 90°С при давлении в нём 0,25 МПа. Вода поступает в насос по трубопроводу Ø273x5 мм (λ тр=0,02, $\Sigma\zeta$ =25, lтр=7,5 м). Кавитационный запас 25 м, скорость воды на входе в насос 0,7 м/с. Результат объяснить.

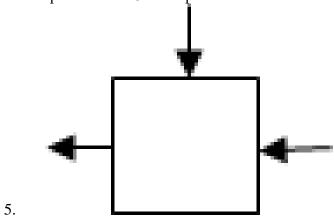
- 5. Типы градирен ТЭС, области применения, преимущества и недостатки
- 6.Струйные насосы: назначение, схема и принципы работы.
- 7. Тягодутьевые машины, их характеристики и способы регулирования.
- 8. Конструктивная схема ПВД, схема включения зон подогрева воды, график изменения температур

Материалы для проверки остаточных знаний

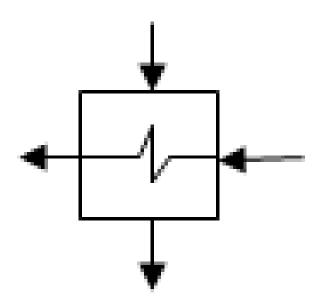

1. На величину недогрева в подогревателе поверхностного типа влияет:

Ответы:

1. Наличие охладителя пара. 2. Наличие охладителя конденсата. 3. Параметры греющего пара.


Верный ответ: 1. Наличие охладителя пара.

- 2.Основными характеристиками для выбора дутьевых вентиляторов являются: Ответы:
- 1. Производительность и давление 2. Напор и мощность 3. Напор и КПД Верный ответ: 1. Производительность и давление
- 3.Основными характеристиками для выбора питательного насоса ТЭС являются: Ответы:
- 1. Напор и подача 2. Напор и мощность 3. Подача и мощность Верный ответ: 1. Напор и подача


4. На рисунке приведено условное обозначение Ответы:

1. Смешивающего ПНД 2. Поверхностного ПНД 3. Испарителя Верный ответ: 3. Испарителя

На рисунке приведено условное обозначение Ответы:

1. Смешивающего ПНД 2. Поверхностного ПНД 3. Испарителя Верный ответ: 1. Смешивающего ПНД

6.

На рисунке приведено условное обозначение

Ответы:

1. Смешивающего ПНД 2. Поверхностного ПНД 3. Испарителя

Верный ответ: 2. Поверхностного ПНД

7.В основе принципа работы термического деаэратора лежит закон:

Ответы:

1. Генри 2. Ренкина 3. Брайтона

Верный ответ: 1. Генри

8.Площадь поверхности теплообмена подогревателя ПВ-475-230-50 составляет:

Ответы:

1. 475 м. кв. 2. 230 м. кв. 3. 50 м. кв.

Верный ответ: 1. 475 м. кв.

9. Основным назначением деаэратора питательной воды является:

Ответы

1. Снижение солесодержания питательной воды 2. Удаление агрессивных газов 3.

Охлаждение питательной воды

Верный ответ: 2. Удаление агрессивных газов

10. Явление накопления остаточной деформации в трубопроводе при работе с высоким давлением и температурой среды называется:

Ответы:

1. Летучестью. 2. Ползучестью. 3. Накопительством.

Верный ответ: 2. Ползучестью.

11. Какого механизма измельчения угля в дробилках и мельницах не существует? Ответы:

1. Удар. 2. Раздавливание. 3. Отпор. 4. Истирание.

Верный ответ: 3. Отпор.

II. Описание шкалы оценивания

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Ответы даны верно, логически обоснованы. Студент правильно объясняет полученные результаты и отвечает на дополнительные вопросы.

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Большинство ответов даны верно. В части материала есть незначительные недостатки.

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Основная часть задания выполнена верно. Студент затрудняется интерпретировать полученные результаты и/или отвечает на дополнительные вопросы частично.

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Работа не выполнена или выполнена преимущественно неправильно. Студент не может объяснить полученные результаты и/или отвечает на дополнительные вопросы неверно.

III. Правила выставления итоговой оценки по курсу

Оценка определяется в соответствии с Положением о балльно-рейтинговой системе для студентов НИУ «МЭИ» на основании семестровой и аттестационной составляющих.