Министерство науки и высшего образования РФ Федеральное государственное бюджетное образовательное учреждение высшего образования

«Национальный исследовательский университет «МЭИ»

Направление подготовки/специальность: 13.03.01 Теплоэнергетика и теплотехника

Наименование образовательной программы: Современная тепловая электрическая станция

Уровень образования: высшее образование - бакалавриат

Форма обучения: Заочная

Рабочая программа дисциплины ТЕХНИЧЕСКАЯ ТЕРМОДИНАМИКА

Блок:	Блок 1 «Дисциплины (модули)»
Часть образовательной программы:	Обязательная
№ дисциплины по учебному плану:	Б1.О.03.03
Трудоемкость в зачетных единицах:	4 семестр - 4; 5 семестр - 4; всего - 8
Часов (всего) по учебному плану:	288 часа
Лекции	4 семестр - 8 часов; 5 семестр - 8 часов; всего - 16 часов
Практические занятия	4 семестр - 4 часа; 5 семестр - 4 часа; всего - 8 часов
Лабораторные работы	не предусмотрено учебным планом
Консультации	4 семестр - 2 часа; 5 семестр - 2 часа; всего - 4 часа
Самостоятельная работа	4 семестр - 128,5 часа; 5 семестр - 128,5 часа; всего - 257,0 часа
в том числе на КП/КР	не предусмотрено учебным планом
Иная контактная работа	4 семестр - 1,2 часа; 5 семестр - 1,2 часа; всего - 2,4 часа
включая: Тестирование Контрольная работа	
Промежуточная аттестация:	
Экзамен Экзамен	4 семестр - 0,3 часа; 5 семестр - 0,3 часа; всего - 0,6 часа

ПРОГРАММУ СОСТАВИЛ:

Преподаватель

NGO NGO	Подписано электронн	ой подписью ФГБОУ ВО «НИУ «МЭИ»
San International State	Сведен	ия о владельце ЦЭП МЭИ
-	Владелец	Джураева Е.В.
» MOM «	Идентификатор	R930396c8-DzhuraevaEV-8c9904a

Е.В. Джураева

СОГЛАСОВАНО:

Руководитель образовательной программы

И.А. Бураков

Заведующий выпускающей кафедрой

O NOSO	Подписано электронн	ой подписью ФГБОУ ВО «НИУ «МЭИ»
	Сведен	ия о владельце ЦЭП МЭИ
	Владелец	Дудолин А.А.
» <u>М⊙И</u> «	Идентификатор	Rb94958b9-DudolinAA-83802984

А.А. Дудолин

1. ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Цель освоения дисциплины: изучение основных законов термодинамики и термодинамических методов анализа применительно к техническому оборудованию и системам производства, передачи и трансформации теплоты в теплосиловых установках

Задачи дисциплины

- освоение основных законов термодинамики, методов их применения для расчета и анализа процессов в техническом оборудовании и системах производства, передачи и трансформации теплоты в теплосиловых установках;
- овладение методами получения информации о термических и калорических свойствах веществ, применяемых в качестве теплоносителей и рабочих тел в теплосиловых установках;
- обучение методам термодинамического анализа процессов и циклов теплосиловых установок.

Формируемые у обучающегося компетенции и запланированные результаты обучения по дисциплине, соотнесенные с индикаторами достижения компетенций:

Код и наименование компетенции	Код и наименование индикатора достижения компетенции	Запланированные результаты обучения
ОПК-3 Способен применять соответствующий физикоматематический аппарат, методы анализа и моделирования, теоретического и экспериментального исследования при решении профессиональных задач	ИД-5 _{ОПК-3} Демонстрирует понимание физических явлений и умеет применять физические законы механики, молекулярной физики, термодинамики, электричества и магнетизма для решения типовых задач	знать: - методы расчета термодинамических свойств и процессов идеального газа. уметь: - рассчитывать термодинамические циклы газотурбинных установок; - рассчитывать термодинамические процессы реального газа (воды и водяного пара); - рассчитывать термодинамические циклы ТЭЦ и АЭС.
ОПК-4 Способен демонстрировать применение основных способов получения, преобразования, транспорта и использования теплоты в теплотехнических установках и системах	ИД-2 _{ОПК-4} Демонстрирует понимание основ термодинамики, основных законов термодинамики и применяет их для расчетов термодинамических процессов, циклов и их показателей	знать: - основные законы термодинамики и условия их применения; - методы расчета процессов идеального газа. уметь: - рассчитывать термодинамические циклы ПТУ; - рассчитывать термодинамические циклы парогазовых установок.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ ВО

Дисциплина относится к основной профессиональной образовательной программе Современная тепловая электрическая станция (далее — ОПОП), направления подготовки 13.03.01 Теплоэнергетика и теплотехника, уровень образования: высшее образование - бакалавриат.

Требования к входным знаниям и умениям:

- знать основы дифференциального и интегрального исчисления функций одной и нескольких переменных

- знать причинно-следственные связи между объектами и явлениями природы, основанные на физических методах исследования
 - знать раздел Физики (общей) "Молекулярная физика"
- уметь использовать основные понятия, законы и модели физики при решении инженерных задач
 - уметь дифференцировать и интегрировать функции, решать дифференциальные уравнения
 - уметь рассчитывать значения величин в единицах Международной системы измерений
- уметь использовать пакеты прикладных программ MS Office, MathCAD и прочие современные компьютерные программы для решения инженерных задач

Результаты обучения, полученные при освоении дисциплины, необходимы при выполнении выпускной квалификационной работы.

3. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

3.1 Структура дисциплины Общая трудоемкость дисциплины составляет 8 зачетных единиц, 288 часа.

	Разделы/темы	В			Распр	еделе	ние труд	доемкости	праздела (в часах) по ви	дам учебно	й работы	
Nº	газделы/темы дисциплины/формы	асо	стр				Конта	ктная раб	ота				CP	Содержание самостоятельной работы/
п/п	промежуточной	сего часо: на раздел	Семестр				Консу	льтация	ИК	P		Работа в	Подготовка к	методические указания
	аттестации	Всего часов на раздел	Ċ	Лек	Лаб	Пр	КПР	ГК	ИККП	ТК	ПА	семестре	аттестации /контроль	·
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	Основные понятия и законы термодинамики	22.19	4	2	-	0.7 5	-	0.44	-	0.30	-	18.7	-	Подготовка к текущему контролю: Повторение материала по разделу "Основные понятия и законы
1.1	Основные понятия	8.07		1	-	0.5	-	0.22	-	0.15	-	6.2	=	термодинамики"
1.2	Первый закон	14.12		1	-	0.2	-	0.22	-	0.15	-	12.5	-	Самостоятельное изучение
1.2	термодинамики	14.12		1		5		0.22		0.13		12.3		теоретического материала: Изучение дополнительного материала по разделу "Основные понятия и законы термодинамики" Изучение материалов литературных источников: [1], 67-72 [3], 20-25,50
2	Свойства и процессы идеального газа	29.74		2	-	1.0	-	0.44	-	0.30	-	26.0	-	Подготовка к текущему контролю: Повторение материала по разделу "Свойства
2.1	Термодинамические свойства идеального газа	12.37		1	-	0.5	-	0.22	-	0.15	ı	10.5	-	и процессы идеального газа" <u>Подготовка домашнего задания:</u> Подготовка домашнего задания направлена
2.2	Термодинамические процессы идеального газа	17.37		1	-	0.5	-	0.22	-	0.15	-	15.5	-	на отработку умений решения профессиональных задач. Домашнее задание выдается студентам по изученному в разделе "Свойства и процессы идеального газа" материалу. Дополнительно студенту необходимо изучить литературу и разобрать примеры выполнения подобных заданий. Проверка домашнего задания проводится по представленным письменным работам. Примеры вариантов домашних заданий:

		1	1	1 1	1	T
						Вариант 1: Углекислый газ СО2 при
						давлении 0.1 МПа занимает объём 0.3 м3.
						Начальная температура газа t1 =20°C.
						Определить количество теплоты, которое
						нужно затратить для изобарного расширения
						газа до объёма 1,0 м3, изменение его
						внутренней энергии и совершённую газом
						работу. Представить этот процесс в p,v-
						диаграмме в совокупности с процессами
						изотермическим и адиабатным. Вариант 2: В
						компрессоре сжимается кислород в
						количестве $0,3$ кг/с от давления $p1 = 0,15$
						МПа до давления р2=0,7 МПа. Температура
						кислорода на входе в компрессор 10°C.
						Определить температуру t2, удельные
						объёмы v1 и v2, работу сжатия в расчёте на
						1кг проходящего газа. Процесс сжатия –
						адиабатный обратимый. Представить этот
						процесс в р,у-диаграмме в совокупности с
						процессами изотермическим и политропным
						при n =1,2.
						Подготовка расчетных заданий: Задание
						является частью расчетного задания по
						разделу "Термодинамические свойства и
						процессы идеального газа". Студенты
						необходимо повторить теоретический
						материал, разобрать примеры решения
						аналогичных задач. провести расчеты по
						варианту задания и сделать выводы. В
						качестве задания используется следующее
						(пример): Параметры воздуха перед
						компрессором ГТУ $p1 = 0.1$ МПа, $t1 = 10$ С;
						за компрессором p2 = 900 кПа; температура
						газа перед газовой турбиной t3 = 900 C;
						внутренние относительные КПД
						компрессора и газовой турбины,
						соответственно 0,84 и 0,92; расход воздуха и
						газа 250 кг/с. Определить следующее: 1.
						Параметры (давление, температуру,
						энтальпию, энтропию) в характерных точках
1	1 1			1		,,, b impair opinin to man

													цикла ГТУ и представить их в табличной форме. Считать, что для газа s = 0 при Т0 = 273,15 К и р0 = 0,1 МПа. 2. Мощность газовой турбины, компрессора, ГТУ, количество подведенной теплоты Q1, теплоты Q2, отведенной с уходящими газами. 3. Термический и внутренний КПД ГТУ. Сравнить термический КПД ГТУ с термическим КПД цикла Карно. Изобразить принципиальную схему установки, цикл ГТУ а Т,s-диаграмме. Изучение материалов литературных источников: [3], 45-50,136,382-384 [4], 5-9 [5], 214-219,299
3	Второй закон термодинамики	20.94	1.5	1	1.0	-	0.44	-	0.2	1	17.8	-	<u>Самостоятельное изучение</u> <u>теоретического материала:</u> Изучение
3.1	Второй закон термодинамики	11.82	1	I	0.5	-	0.22	-	0.1	I	10	-	дополнительного материала по разделу "Второй закон термодинамики"
3.2	Эксергетический анализ термодинамических систем	9.12	0.5	-	0.5	-	0.22	-	0.1	-	7.8	-	<u>Изучение материалов литературных</u> <u>источников:</u> [2], 2-28 [3], 49-107
4	Свойства и процессы реального газа	35.13	2.5	1	1.2	-	0.68	-	0.40	1	30.3	-	Повторение материала по разделу "Свойства
4.1	Термодинамические свойства реального газа (воды и водяного пара)	12.37	1	-	0.5	-	0.22	-	0.15	1	10.5	-	и процессы реального газа" Подготовка домашнего задания: Подготовка домашнего задания направлена на отработку умений решения
4.2	Термодинамические процессы реального газа (воды и водяного пара)	17.37	1	-	0.5	-	0.22	-	0.15	-	15.5	-	профессиональных задач. Домашнее задание выдается студентам по изученному в разделе "Свойства и процессы реального газа" материалу. Дополнительно студенту
4.3	Термические уравнения состояния реального газа	5.39	0.5	-	5	-	0.24	-	0.1	-	4.3	-	необходимо изучить литературу и разобрать примеры выполнения подобных заданий. Примеры вариантов домашних заданий: Вариант 1. Водяной пар расширяется в турбине адиабатно и обратимо от парамет-

<u></u>	1	Г	1	1		T	1 2403 55 000
							ров: p1 = 24,0 МПа; t1 =550 0С до давления
							0,05 бар. Найти работу турбины в расчете на
							1 кг проходящего пара. Представить процесс
							в PV, HS, TS - диаграммах. Вариант 2.
							Водяной пар нагревается изобарно при
							давлении 5,0 МПа от степени су-хости х1 =
							0,8 до температуры t2 =520 0C. Найти
							значения внутренней энергии u1 и u2.,
							теплоту и работу пара в процессе.
							Представить процесс в в p,v; h,s; T,s -
							диаграммах.
							<i>Подготовка расчетных заданий:</i> Задания
							ориентированы на решения минизадач по
							разделу "Свойства и процессы реального
							газа". Студенты необходимо повторить
							теоретический материал, разобрать примеры
							решения аналогичных задач. провести
							расчеты по варианту задания и сделать
							выводы. В качестве задания используются
							следующие упражнения: В качестве задания
							используется следующее (пример):
							Начальные параметры пара перед турбиной
							Π ТУ $t6 = 450$ C, $p6 = 5$ МПа; после турбины
							пар направляется в конденсатор, давление в
							котором р7 = 4 кПа и затем в насос,
							повышающий давление до начального.
							Внутренние относительные КПД паровой
							турбины и насоса, соответственно, 0,85 и
							0,71. Определить следующее: 1. Параметры
							(давление, температуру, энтальпию,
							энтропию, степень сухости) в характерных
							точках цикла установки и представить их в
							табличной форме. 2. Работу паровой
							турбины, насоса, цикла ПТУ, удельное
							количество подведенной теплоты q1,
							количество подведенной теплоты q1, теплоты q2, отведенной в окружающую
							среду в конденсаторе. 3. Термический и
							внутренний КПД ПТУ. Сравнить
							термический КПД ПТУ с термическим КПД
1							цикла Карно. 4. Изобразить принципиальную
							8

	Экзамен Всего за семестр	36.0 144.00		8.0	- -	4.0	<u>-</u>	2.00	-	- 1.20	0.3	92.8	35.7 35.7	схему установки, цикл ПТУ в Т,s-диаграмме. <u>Изучение материалов литературных</u> <u>источников:</u> [4], 23-32
	Итого за семестр	144.00		8.0	-	4.0	2	2.00	1.20)	0.3		128.5	
5	Термодинамические циклы паротурбинных установок	53.05	5	3.5	-	2.0	-	0.75	-	0.3	-	46.5	-	Подготовка домашнего задания: Подготовка домашнего задания направлена на отработку умений решения
5.1	Циклы паротурбинных установок (ПТУ)	28.35		1.5	-	1	=	0.25	-	0.1	-	25.5	-	профессиональных задач. Домашнее задание выдается студентам по изученному в разделе "Термодинамические циклы
5.2	ПТУ с промежуточным перегревом пара	12.35		1	-	0.5	-	0.25	-	0.1	-	10.5	-	теплоэнергетических установок" материалу. Дополнительно студенту необходимо изучить литературу и разобрать примеры
5.3	ПТУ с регенерацией	12.35		1	-	0.5	-	0.25	-	0.1	-	10.5	-	выполнения подобных заданий. Проверка домашнего задания проводится по представленным письменным работам. Примеры заданий: Определить термический и внутренний КПД цикла ПТУ. Начальные параметры пара: давление р1 = 10,0 МПа; температура t1 = 520°C; давление в конденсаторе р2 = 5 кПа; внутренние относительные КПД турбины и насоса птоі=0,85; пноі=0,71. Опреде-лить мощности турбины, насоса и всей установки, если расход пара – 640 т/ч, и влажность пара в конце расширения в турбине. Рассчитать удельный расход условного топлива при известных КПД: котла пк =0,9, паропровода ппп =0,98 и электрогенератора пг =0,97. Пред-ставить схему установки и Т,ѕдиаграмму цикла. Иодгомовка к текущему контролю: Повторение материала по разделу "Термодинамические циклы паротурбинных установок"

													Самостоятельное изучение теоретического материала: Изучение дополнительного материала по разделу "Термодинамические циклы паротурбинных установок" Изучение материалов литературных источников: [2], 73-110 [5], 185-187,201
6	Термодинамические циклы газотурбинных установок	24.60	1.5	-	0.5	-	0.50	-	0.30	-	21.8	-	Подготовка к текущему контролю: Повторение материала по разделу "Термодинамические циклы газотурбинных
6.1	Цикл простой газотурбинной установки (ГТУ)	17.15	1	-	0.2 5	-	0.25	-	0.15	-	15.5	-	установок" <u>Подготовка расчетных заданий:</u> Задания ориентированы на решения минизадач по
6.2	Цикл газотурбинной установки с регенерацией	7.45	0.5	-	0.2	-	0.25	-	0.15	-	6.3		разделу "Термодинамические циклы газотурбинных установок". Студенты необходимо повторить теоретический материал, разобрать примеры решения аналогичных задач. провести расчеты по варианту задания и сделать выводы. В качестве задания используются следующие упражнения: Изучение материалов литературных источников: [2], 111-127 [5], 185-187,201
7	Теплофикационные циклы и циклы атомных электростанций	18.80	2	-	1.0	-	0.50	-	0.30	-	15.0	-	Подготовка к текущему контролю: Повторение материала по разделу "Теплофикационные циклы и циклы атомных электростанций"
7.1	Теплофикационные циклы ПТУ. Схемы с противодавлением и с отбором пара из турбины	9.40	1	-	0.5	-	0.25	-	0.15	-	7.5	-	<u>Самостоятельное изучение</u> <u>теоретического материала:</u> Изучение дополнительного материала по разделу "Теплофикационные циклы и циклы атомных электростанций"
7.2	Циклы АЭС	9.40	1	-	0.5	-	0.25	-	0.15	-	7.5	-	<u>Изучение материалов литературных</u> <u>источников:</u> [2], 103-110

8	Термодинамический цикл парогазовой установки с котлом - утилизатором	11.55	1	=	0.5	-	0.25	-	0.3	-	9.5	-	Самостоятельное изучение <u>теоретического материала:</u> Изучение дополнительного материала по разделу "Термодинамический цикл парогазовой
8.1	ПГУ	11.55	1		0.5		0.25		0.3		9.5	-	установки с котлом - утилизатором" Подготовка к текущему контролю: Повторение материала по разделу "Термодинамический цикл парогазовой установки с котлом - утилизатором" Подготовка расчетных заданий: Задания ориентированы на решения минизадач по разделу "Термодинамический цикл парогазовой установки с котлом - утилизатором". Студенты необходимо повторить теоретический материал, разобрать примеры решения аналогичных задач. провести расчеты по варианту задания и сделать выводы. В качестве задания используется следующее (пример): Рассчитать термодинамический цикл одноконтурной парогазовой установки (ПГУ) с котлом-утилизатором, используя ранее полученные данные о параметрах ГТУ и ПТУ. Известно также, что минимальная разность температур между газом и кипящей водой в котле-утилизаторе (КУ) составляет 10 С. Определить следующее: 1. Расход пара в паротурбинном контуре, мощность паровой турбины, насоса, ПТУ. 2. Мощность ПГУ, количество теплоты Q2, отведенной через конденсатор в окружающую среду, теплоты Qку, переданной в КУ за единицу времени. 3. Внутренний КПД ПГУ и котлаутилизатора. Сравнить внутренний КПД ПГУ с термическим КПД цикла Карно. 4. Изобразить принципиальную схему установки, цикл ПГУ в Т,s-диаграмме и процессы, совершаемые газом и водяным паром в котле-утилизаторе, в Т,Q-диаграмме. 5. Оформить расчетное задание полностью.

													<u>Изучение материалов литературных</u> <u>источников:</u> [2], 128-133
Экзамен	36.0		1	-	-	1	-	-	-	0.3	-	35.7	
Всего за семестр	144.00		8.0	-	4.0 0	-	2.00	-	1.20	0.3	92.8	35.7	
Итого за семестр	144.00		8.0	-	4.0 0	2	.00	1.20)	0.3		128.5	
ИТОГО	288.00	-	16.0	-	8.0 0	4	.00	2.40)	0.6		257.0	

Примечание: Лек – лекции; Лаб – лабораторные работы; Пр – практические занятия; КПР – аудиторные консультации по курсовым проектам/работам; ИККП – индивидуальные консультации по курсовым проектам/работам; ГК- групповые консультации по разделам дисциплины; СР – самостоятельная работа студента; ИКР – иная контактная работа; ТК – текущий контроль; ПА – промежуточная аттестация

3.2 Краткое содержание разделов

1. Основные понятия и законы термодинамики

1.1. Основные понятия

Термодинамическая система и окружающая среда. Функции состояния и функции процесса. Равновесные и неравновесные состояния и процессы.

1.2. Первый закон термодинамики

Первый закон термодинамики как закон сохранения и превращения энергии. Теплота и работа - формы передачи энергии. Работа расширения и техническая работа. Внутренняя энергия и энтальпия. Аналитическое выражение первого закона термодинамики. Уравнение первого закона термодинамики для неравновесных процессов. Уравнение первого закона термодинамики для стационарного одномерного потока.

2. Свойства и процессы идеального газа

2.1. Термодинамические свойства идеального газа

Уравнение состояния идеального газа (Клапейрона - Менделеева).. Калорические свойства идеального газа.. Молекулярно-кинетическая теория теплоемкости идеальных газов.. Зависимость теплоемкости идеального газа от температуры.. Внутренняя энергия и энтальпия идеального газа.. Таблицы термодинамических свойств идеальных газов..

2.2. Термодинамические процессы идеального газа

Изобарный процесс идеального газа. Соотношение параметров, расчет теплоты и работы расширения по таблицам, изображение процесса в диаграммах. Изохорный процесс идеального газа. Соотношение параметров, расчет теплоты и работы расширения по таблицам, изображение процесса в диаграммах. Изотермический процесс идеального газа. Соотношение параметров, расчет теплоты и работы расширения по таблицам, изображение процесса в диаграммах. Адиабатный (идеальный и реальный) процесс идеального газа. Соотношение параметров, расчет теплоты, работы расширения и технической работы (неохлаждаемый компрессор и газовая турбина) по таблицам, изображение процесса в диаграммах. Политропный процесс идеального газа. Соотношение параметров, расчет теплоты, работы расширения и технической работы по таблицам, изображение процесса в диаграммах.

3. Второй закон термодинамики

3.1. Второй закон термодинамики

Обратимые и необратимые процессы. Основные причины необратимости процессов. Формулировки второго закона термодинамики и связь между ними. Термодинамические циклы. Термический коэффициент полезного действия цикла теплового двигателя. Цикл Карно и его КПД. Коэффициенты трансформации теплоты цикла холодильной машины. Обратный цикл Карно. Энтропия. Т,s-диаграмма. Термодинамические циклы в Т,s-диаграмме. Формулировки и аналитические выражения второго закона термодинамики для обратимых и необратимых процессов.

3.2. Эксергетический анализ термодинамических систем

Эксергия теплоты. Эксергия потока вещества. Уравнение Гюи - Стодола. Эксергетический КПД.

4. Свойства и процессы реального газа

4.1. Термодинамические свойства реального газа (воды и водяного пара)

Отличия свойств реальных газов от идеальных. Фаза и фазовый переход. Тройная точка, критическая точка вещества. Фазовые диаграммы реального газа (p,V-, p,T-, T,s-, h,s-). Вода и водяной пар. Удельный объем, энтальпия и энтропия воды, влажного, сухого насыщенного и перегретого пара. Сверхкритическая область состояния пара. Т,s- и h,s - диаграммы водяного пара.

4.2. Термодинамические процессы реального газа (воды и водяного пара)

Расчет теплоты и работы расширения в изобарном процессе. Изображение процесса в диаграммах. Расчет теплоты и работы расширения в изохорном процессе. Изображение процесса в диаграммах. Расчет теплоты и работы расширения в изотермическом процессе. Изображение процесса в диаграммах. Расчет теплоты, работы расширения и технической работы в адиабатном (реальном и идеальном) процессе. Изображение процесса в диаграммах. Адиабатное дросселирование. Расчет процесса. Коэффициент Джоуля-Томсона. Точки и кривая инверсии. Сравнение эффектов охлаждения при изоэнтропном расширении и адиабатном дросселировании.

4.3. Термические уравнения состояния реального газа

Уравнение Ван-дер-Ваальса. Вириальное уравнение состояния, вириальные коэффициенты. Подобие термодинамических свойств веществ, zp- диаграмма..

5. Термодинамические циклы паротурбинных установок

5.1. Циклы паротурбинных установок (ПТУ)

Принципиальная схема ПТУ. Цикл в p,v- и T,s- диаграммах.. Термический КПД цикла ПТУ. Влияние начальных и конечных параметров пара на термический КПД цикла.. Необратимое расширение пара в турбине и сжатие воды в насосе. Действительный КПД цикла ПТУ..

5.2. ПТУ с промежуточным перегревом пара

Цикл и схема ПТУ с промежуточным перегревом пара.. Цикл в T,s- и h,s- диаграммах. КПД цикла..

5.3. ПТУ с регенерацией

Регенеративный подогрев питательной воды в циклах ПТУ. Схема регенеративного подогрева с отбором пара.. Термический КПД, зависимость его от числа подогревателей и температуры питательной воды..

6. Термодинамические циклы газотурбинных установок

6.1. Цикл простой газотурбинной установки (ГТУ)

Компрессоры охлаждаемые и неохлаждаемые.. Влияние параметров газа на КПД цикла..

6.2. Цикл газотурбинной установки с регенерацией

Принципиальная схема и цикл с регенерацией, изображение цикла в Тs-диаграмме.. Принципиальная схема и цикл с регенерацией, изображение цикла в Тs-диаграмме.. Удельная работа, подведенная и отведенная теплота, внутренний КПД цикла..

7. Теплофикационные циклы и циклы атомных электростанций

7.1. Теплофикационные циклы ПТУ. Схемы с противодавлением и с отбором пара из турбины

Критерии оценки эффективности циклов ПТУ-ТЭЦ: коэффициент использования теплоты (топлива), отопительный коэффициент, эксергетический КПД.. Принципиальная схема и циклы в Тѕ- диаграмме для ТЭЦ с турбиной типа Р (турбина с противодавлением).. Принципиальная схема и циклы в Тѕ- диаграмме для ТЭЦ с турбиной типа Т (турбина с отборами пара из турбины)..

7.2. Циклы АЭС

Принципиальная схема и цикл ПТУ с одним промежуточным сепаратором пара.. Принципиальная схема и цикл в Тѕ-диаграмме, процессы в hѕ - диаграмме.. Принципиальная схема и цикл ПТУ с сепарацией и перегревом пара.. Принципиальная схема и цикл в Тѕ-диаграмме, процессы в hѕ - диаграмме..

8. Термодинамический цикл парогазовой установки с котлом - утилизатором

8.1. ПГУ

Термодинамический цикл парогазовой установки с котлом - утилизатором. Тs - диаграмма ПГУ. Мощность ПГУ, КПД цикла.

3.3. Темы практических занятий

- 1. Уравнение Клапейрона Менделеева;;
- 2. 1 закон термодинамики;;
- 3. Процессы с идеальными газами;;
- 4. 2 закон термодинамики;;
- 5. Термодинамический цикл газотурбинной установки с регенерацией;;
- 6. Процессы с водой и водяным паром: изобарный и изохорный.;;
- 7. Цикл ПТУ с регенерацией;;
- 8. Процессы с водой и водяным паром: изотермический, адиабатный, поток вещества.;
- 9. Цикл ПТУ;;
- 10. Теплофикационные циклы;;
- 11. Цикл АЭС;;
- 12. Термодинамический цикл простой газотурбинной установки;;
- 13. Определение параметров воды и водяного пара;;
- 14. Термодинамический цикл парогазовой установки.

3.4. Темы лабораторных работ

не предусмотрено

3.5 Консультации

Групповые консультации по разделам дисциплины (ГК)

- 1. Обсуждение материалов по темам раздела "Основные понятия и законы термодинамики"
- 2. Обсуждение материалов по кейсам раздела "Свойства и процессы идеального газа". Разбор сложных моментов, вызывающих трудности при решении задач.
- 3. Обсуждение материалов по кейсам раздела "Свойства и процессы реального газа". Разбор сложных моментов, вызывающих трудности при решении задач.

- 4. Обсуждение материалов по кейсам раздела "Термодинамические циклы паротурбинных установок"
- 5. Обсуждение материалов по кейсам раздела "Термодинамические циклы газотурбинных установок"
- 6. Обсуждение материалов по кейсам раздела "Теплофикационные циклы и циклы атомных электростанций"
- 7. Обсуждение материалов по кейсам раздела "Термодинамический цикл парогазовой установки с котлом утилизатором"

3.6 Тематика курсовых проектов/курсовых работ

Курсовой проект/ работа не предусмотрены

3.7. Соответствие разделов дисциплины и формируемых в них компетенций

5.7. Соответствие разделов дисципл	ины и формир	y CIVI	ылв	них	KUM	пете	нции	1				
Запланированные результаты	Коды	Номер раздела дисциплины (в							(в	Оценочное средство (тип и наименование)		
обучения по дисциплине	' '	соответствии с п.3.1)										
(в соответствии с разделом 1)	индикаторов	1	2	3	4	5	6	7	8			
Знать:												
методы расчета термодинамических	ип 5									Тестирование/Процессы с идеальными газами. р,		
свойств и процессов идеального газа	ИД-5 _{ОПК-3}	+								v. Т - процессы		
методы расчета процессов	ип э									Тестирование/Процессы с идеальными газами. s, n,		
идеального газа	ИД-2 _{ОПК-4}		+							поток вещества		
основные законы термодинамики и										Контрольная работа/Термодинамические		
условия их применения	ИД-2 _{ОПК-4}			+	+					процессы с водой и водяным паром. T, s -		
										процессы		
Уметь:												
рассчитывать термодинамические	ИЛ 5							+		Контрольная работа/Расчет термодинамического		
циклы ТЭЦ и АЭС	ИД-5опк-3							+		цикла АЭС и ТЭЦ		
рассчитывать термодинамические										Контрольная работа/Термодинамические		
процессы реального газа (воды и	ИД-5 _{ОПК-3}			+						процессы с водой и водяным паром. v, p -		
водяного пара)										процессы (Контрольная работа)		
рассчитывать термодинамические	ИЛ 5ожи									Контрольная работа/Расчет термодинамического		
циклы газотурбинных установок	ИД-5 _{ОПК-3}						+			цикла газотурбинной установки		
рассчитывать термодинамические	ИП Э								+	Контрольная работа/Расчет термодинамического		
циклы парогазовых установок	ИД-2 _{ОПК-4}									цикла парогазовой установки		
рассчитывать термодинамические	ИП Э									Тестирование/Расчет термодинамических циклов		
циклы ПТУ	ИД-2 _{ОПК-4}					+				паротурбинной установки		

4. КОМПЕТЕНТНОСТНО-ОРИЕНТИРОВАННЫЕ ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ КОНТРОЛЯ ОСВОЕНИЯ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ (ТЕКУЩИЙ КОНТРОЛЬ УСПЕВАЕМОСТИ, ПРОМЕЖУТОЧНАЯ АТТЕСТАЦИЯ ПО ДИСЦИПЛИНЕ)

4.1. Текущий контроль успеваемости

4 семестр

Форма реализации: Компьютерное задание

- 1. Процессы с идеальными газами. р, v. Т процессы (Тестирование)
- 2. Процессы с идеальными газами. s, n, поток вещества (Тестирование)

Форма реализации: Письменная работа

- 1. Термодинамические процессы с водой и водяным паром. T, s процессы (Контрольная работа)
- 2. Термодинамические процессы с водой и водяным паром. v, p процессы (Контрольная работа) (Контрольная работа)

5 семестр

Форма реализации: Компьютерное задание

1. Расчет термодинамических циклов паротурбинной установки (Тестирование)

Форма реализации: Письменная работа

- 1. Расчет термодинамического цикла АЭС и ТЭЦ (Контрольная работа)
- 2. Расчет термодинамического цикла газотурбинной установки (Контрольная работа)
- 3. Расчет термодинамического цикла парогазовой установки (Контрольная работа)

Балльно-рейтинговая структура дисциплины является приложением А.

4.2 Промежуточная аттестация по дисциплине

Экзамен (Семестр №4)

Экзамен (Семестр №5)

В диплом выставляется оценка за 5 семестр.

Примечание: Оценочные материалы по дисциплине приведены в фонде оценочных материалов ОПОП.

5. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

5.1 Печатные и электронные издания:

- 1. Александров, А. А. Таблицы теплофизических свойств воды и водяного пара: Справочник : Рек. Гос. службой стандартных справочных данных ГСССД Р-776-98 / А. А. Александров,
- Б. А. Григорьев . М. : Изд-во МЭИ, 2003 . 168 с. К 100-летию со дня рождения М.П. Вукаловича . ISBN 5-7046-0397-1 .;
- 2. Александров, А. А. Термодинамические основы циклов теплоэнергетических установок : учебное пособие для вузов по направлению "Теплоэнергетика" / А. А. Александров . 2-е изд., стереот . М. : Издательский дом МЭИ, 2006 . 158 c. ISBN 5-903072-60-7 .;

- 3. Кириллин В.А., Сычев В.В., Шейндлин А.Е. "Техническая термодинамика", Издательство: "Издательский дом МЭИ", Москва, 2016 (496 с.) http://e.lanbook.com/books/element.php?pl1_id=72305;
- 4. Ривкин, С. Л. Термодинамические свойства газов / С. Л. Ривкин . 2-е изд., перераб. и доп . М. : Энергия, 1964 . 294 с.;
- 5. Цирельман Н. М.- "Техническая термодинамика", (2-е изд., доп.), Издательство: "Лань", Санкт-Петербург, 2018 (352 с.) https://e.lanbook.com/book/107965.

5.2 Лицензионное и свободно распространяемое программное обеспечение:

- 1. СДО "Прометей";
- 2. Office / Российский пакет офисных программ;
- 3. Windows / Операционная система семейства Linux;
- 4. Видеоконференции (Майнд, Сберджаз, ВК и др).

5.3 Интернет-ресурсы, включая профессиональные базы данных и информационносправочные системы:

- 1. ЭБС Лань https://e.lanbook.com/
- 2. ЭБС "Университетская библиотека онлайн" -

http://biblioclub.ru/index.php?page=main_ub_red

- 3. Научная электронная библиотека https://elibrary.ru/
- 4. Электронная библиотека МЭИ (ЭБ МЭИ) http://elib.mpei.ru/login.php
- 5. Портал открытых данных Российской Федерации https://data.gov.ru
- 6. База открытых данных Министерства труда и социальной защиты РФ https://rosmintrud.ru/opendata
- 7. База открытых данных профессиональных стандартов Министерства труда и социальной защиты РФ http://profstandart.rosmintrud.ru/obshchiy-informatsionnyy-blok/natsionalnyy-reestr-professionalnykh-standartov/
- 8. База открытых данных Министерства экономического развития РФ http://www.economy.gov.ru
- 9. База открытых данных Росфинмониторинга http://www.fedsfm.ru/opendata
- 10. Электронная открытая база данных "Polpred.com Обзор СМИ" https://www.polpred.com

6. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Тип помещения	Номер аудитории, наименование	Оснащение
Учебные аудитории	Ж-417/6, Белая	стол компьютерный, доска интерактивная,
для проведения	мультимедийная	компьютерная сеть с выходом в Интернет,
лекционных занятий и	студия	мультимедийный проектор, компьютер
текущего контроля		персональный
	Ж-417/7, Световая	стул, компьютерная сеть с выходом в
	черная студия	Интернет, микрофон, мультимедийный
		проектор, экран, оборудование
		специализированное, компьютер
		персональный
Учебные аудитории	Ж-417/1,	стол преподавателя, стол компьютерный,
для проведения	Компьютерный	шкаф для документов, шкаф для одежды, стол
практических занятий,	класс ИДДО	письменный, компьютерная сеть с выходом в
КР и КП		Интернет, доска маркерная передвижная,
		компьютер персональный, принтер,

		кондиционер, стенд информационный						
Учебные аудитории	Ж-417/1,	стол преподавателя, стол компьютерный,						
для проведения	Компьютерный	шкаф для документов, шкаф для одежды, стол						
промежуточной	класс ИДДО	письменный, компьютерная сеть с выходом						
аттестации		Интернет, доска маркерная передвижная,						
		компьютер персональный, принтер,						
		кондиционер, стенд информационный						
Помещения для	НТБ-201,	стол компьютерный, стул, стол письменный,						
самостоятельной	Компьютерный	вешалка для одежды, компьютерная сеть с						
работы	читальный зал	выходом в Интернет, компьютер						
		персональный, принтер, кондиционер						
Помещения для	Ж-200б,	стол, стул, компьютер персональный,						
консультирования	Конференц-зал	кондиционер						
	ИДДО							
Помещения для	Ж-417 /2a,	стеллаж для хранения инвентаря, экран,						
хранения оборудования	Помещение для	указка, архивные документы, дипломные и						
и учебного инвентаря	инвентаря	курсовые работы студентов, канцелярский						
		принадлежности, спортивный инвентарь,						
		хозяйственный инвентарь, запасные						
		комплектующие для оборудования						

БАЛЛЬНО-РЕЙТИНГОВАЯ СТРУКТУРА ДИСЦИПЛИНЫ

Техническая термодинамика

(название дисциплины)

4 семестр

Перечень контрольных мероприятий текущего контроля успеваемости по дисциплине:

- КМ-1 Процессы с идеальными газами. р, v. Т процессы (Тестирование)
- КМ-2 Процессы с идеальными газами. s, n, поток вещества (Тестирование)
- КМ-3 Термодинамические процессы с водой и водяным паром. v, p процессы (Контрольная работа) (Контрольная работа)
- КМ-4 Термодинамические процессы с водой и водяным паром. Т, s процессы (Контрольная работа)

Вид промежуточной аттестации – Экзамен.

Номер раздела	Раздел дисциплины	Индекс КМ:	КМ- 1	КМ- 2	КМ- 3	КМ- 4
	т аздол длециилия	Неделя КМ:	4	8	10	12
1	Основные понятия и законы термодинамики					
1.1	Основные понятия					
1.2	Первый закон термодинамики					
2	Свойства и процессы идеального газа					
2.1	Термодинамические свойства идеального газа			+		
2.2	Термодинамические процессы идеального газа			+		
3	Второй закон термодинамики					
3.1	Второй закон термодинамики				+	
3.2	Эксергетический анализ термодинамических систем					+
4	Свойства и процессы реального газа					
4.1	Термодинамические свойства реального газа (воды и водяного пара)					+
4.2	Термодинамические процессы реального газа (воды и водяного пара)					+
4.3	Термические уравнения состояния реального газа					+
		Bec KM, %:	25	25	25	25

5 семестр

Перечень контрольных мероприятий текущего контроля успеваемости по дисциплине:

- КМ-5 Расчет термодинамических циклов паротурбинной установки (Тестирование)
- КМ-6 Расчет термодинамического цикла АЭС и ТЭЦ (Контрольная работа)
- КМ-7 Расчет термодинамического цикла газотурбинной установки (Контрольная работа)
- КМ-8 Расчет термодинамического цикла парогазовой установки (Контрольная работа)

Вид промежуточной аттестации – Экзамен.

Номер	Раздел дисциплины	Индекс КМ:	КМ- 5	КМ- 6	КМ- 7	КМ- 8
раздела		Неделя КМ:	4	8	6	12
1	Термодинамические циклы паротурбинных ус	тановок				
1.1	Циклы паротурбинных установок (ПТУ)		+			
1.2	ПТУ с промежуточным перегревом пара		+			
1.3	ПТУ с регенерацией		+			
2	Термодинамические циклы газотурбинных уст	гановок				
2.1	Цикл простой газотурбинной установки (ГТУ))			+	
2.2	Цикл газотурбинной установки с регенерацией	Ă			+	
3	Теплофикационные циклы и циклы атомных электростанций					
3.1	Теплофикационные циклы ПТУ. Схемы с противодавлением и с отбором пара из турбин	ы		+		
3.2	Циклы АЭС			+		
4	Термодинамический цикл парогазовой устано котлом - утилизатором	вки с				
4.1	ПГУ					+
	25	25	25	25		