Министерство науки и высшего образования РФ Федеральное государственное бюджетное образовательное учреждение высшего образования «Национальный исследовательский университет «МЭИ»

Направление подготовки/специальность: 13.03.01 Теплоэнергетика и теплотехника

Наименование образовательной программы: Теплоснабжение и теплотехническое оборудование

Уровень образования: высшее образование - бакалавриат

Форма обучения: Заочная

Оценочные материалы по дисциплине Нагнетатели и тепловые двигатели

Москва 2025

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ РАЗРАБОТАЛ:

 Подписано электронной подписью ФГБОУ ВО «НИУ «МЭИ»

 Сведения о владельце ЦЭП МЭИ

 Владелец
 Федюхин А.В.

 Идентификатор
 Rc1c8a01a-FediukhinAV-59cb47d9

согласовано:

Руководитель образовательной программы

Разработчик

MON A	Подписано электр	онной подписью ФГБОУ ВО «НИУ «МЭИ»	
	Сведения о владельце ЦЭП МЭИ		
	Владелец	Хомченко Н.В.	
	Идентификатор	Rbd1b9495-KhomchenkoNV-644530	

H.B. Хомченко

A.B.

Федюхин

Заведующий выпускающей кафедрой

MOM I	Подписано электронн	ой подписью ФГБОУ ВО «НИУ «МЭИ»	
	Сведения о владельце ЦЭП МЭИ		
	Владелец	Гаряев А.Б.	
	Идентификатор	R75984319-GariayevAB-a6831ea7	

А.Б. Гаряев

ОБЩАЯ ЧАСТЬ

Оценочные материалы по дисциплине предназначены для оценки достижения обучающимися запланированных результатов обучения по дисциплине, этапа формирования запланированных компетенций и уровня освоения дисциплины.

Оценочные материалы по дисциплине включают оценочные средства для проведения мероприятий текущего контроля успеваемости и промежуточной аттестации.

Формируемые у обучающегося компетенции:

- 1. ПК-1 Способен участвовать в проектировании и эксплуатации объектов теплоэнергетики и теплотехники
 - ИД-2 Принимает участие в разработке принципиальных схем и оборудования для объектов теплоэнергетики и теплотехники
 - ИД-4 Принимает участие в оценке энергетической эффективности объектов теплоэнергетики и теплотехники

и включает:

для текущего контроля успеваемости:

Форма реализации: Компьютерное задание

- 1. Вентиляторы и компрессоры (Контрольная работа)
- 2. Насосы и насосные установки (Контрольная работа)
- 3. Паротурбинные установки (Тестирование)

Форма реализации: Письменная работа

1. Газотурбинные и газопоршневые установки (Тестирование)

БРС дисциплины

8 семестр

Перечень контрольных мероприятий <u>текущего контроля</u> успеваемости по дисциплине:

- КМ-1 Насосы и насосные установки (Контрольная работа)
- КМ-2 Вентиляторы и компрессоры (Контрольная работа)
- КМ-3 Газотурбинные и газопоршневые установки (Тестирование)
- КМ-4 Паротурбинные установки (Тестирование)

Вид промежуточной аттестации – Экзамен.

	Веса контрольных мероприятий, %				
Раздел дисциплины	Индекс КМ:	KM-1	KM-2	KM-3	KM-4
	Срок КМ:	4	8	11	14
Насосы и насосные установки					
Классификация нагнетателей и тепловых двигателей		+	+		

Конструкция и принцип работы центробежного насоса	+			
Совместная работа насоса и сети	+			
Вентиляторы и компрессоры				
Вентиляторы		+		
Компрессоры динамического действия		+		
Компрессоры объёмного действия		+		
Газодинамические характеристики компрессоров динамического действия		+		
Регулируемые гидромуфты		+		
Газотурбинные и газопоршневые установки				
Газотурбинные установки (ГТУ)			+	
Теплофикационные ГТУ			+	
Парогазовые установки (ПГУ)			+	
Газопоршневые установки (ГПУ)			+	
Паротурбинные установки				
Паровые турбины (ПТ)				+
Влияние параметров пара на КПД идеального цикла				+
Bec KM:	25	25	25	25

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ТЕКУЩЕГО КОНТРОЛЯ

I. Оценочные средства для оценки запланированных результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций

Индекс	Индикатор	Запланированные	Контрольная точка
компетенции		результаты обучения по	
		дисциплине	
ПК-1	ИД-2 _{ПК-1} Принимает	Знать:	КМ-1 Насосы и насосные установки (Контрольная работа)
	участие в разработке	методические,	КМ-3 Газотурбинные и газопоршневые установки (Тестирование)
	принципиальных схем и	нормативные и	КМ-4 Паротурбинные установки (Тестирование)
	оборудования для	руководящие материалы	
	объектов теплоэнергетики	по безопасности	
	и теплотехники	эксплуатации	
		электроустановок	
		сущность явлений,	
		происходящих в	
		материалах при их	
		обработке и в условиях	
		эксплуатации изделий	
		Уметь:	
		оценивать и	
		прогнозировать состояние	
		материалов и причины	
		отказов деталей при	
		воздействии на них	
		различных	
		эксплуатационных	
		факторов	
ПК-1	$ИД-4_{\Pi K-1}$ Принимает	Знать:	КМ-1 Насосы и насосные установки (Контрольная работа)
	участие в оценке	строение и свойства	КМ-2 Вентиляторы и компрессоры (Контрольная работа)
	энергетической	материалов	
	эффективности объектов	Уметь:	

теплоэнергетики и	выполнять расчеты и	
теплотехники	выбирать защитные	
	средства при проведении	
	электротехнических работ	
	организовывать безопасное	
	проведение работ и вести	
	надзор за ними	

II. Содержание оценочных средств. Шкала и критерии оценивания

КМ-1. Насосы и насосные установки

Формы реализации: Компьютерное задание

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 25

Процедура проведения контрольного мероприятия: Выполненное задание отправляется в

СДО "Прометей" в рамках функционала "Письменная работа".

Краткое содержание задания:

Контрольная точка направлена на оценку освоения компетенции по вопросам насосов и насосных установрк

Контрольные вог Запланированные		
обучения по дисциплине		Вопросы задания для проверки
Знать: строение и свойства		а 1.Как меняется статическое давление жидкости на
материалов	и своиств	стенки в сужающемся трубопроводе?
материалов		1.Увеличивается
		2. Уменьшается
		3.Остаётся постоянным
		4. Непрерывно изменяется в обе стороны
		Ответ: 2
		2. Какую составляющую суммарного давления
		жидкости можно не учитывать в сечениях 1 и 2
		горизонтального трубопровода?
		1.Статическую
		2.Динамическую
		3.Весовую
		4.Суммарную
		Ответ: 3
		3. Какая зависимость напора насоса от частоты
		вращения?
		1.Прямо пропорциональная
		2.Обратно пропорциональная
		3.Квадратичная
		4.Кубическая
		5.Зависимость отсутствует
		Ответ: 3
		4. Какая зависимость подачи насоса от частоты
		вращения?
		1.Прямо пропорциональная
		2. Обратно пропорциональная
		3.Квадратичная
		4.Кубическая
		5.Зависимость отсутствует
		Ответ: 1
		5. Чему будет равен суммарный напор 2-ух
		одинаковых насосов, подключённых к сети

Запланированные результаты	Вопросы/задания для проверки
обучения по дисциплине	
	параллельно?
	1.Сумме напоров каждого насоса
	2.Напору одного насоса
	3.Половине напора одного насоса
	4.Нулю (насосы передавят друг друга)
	Ответ: 2
	6.Какой будет суммарная подача 2-ух одинаковых
	насосов, подключённых к сети параллельно, при
	отключении одного из насосов?
	1. Равная половине от суммарной подачи двух
	работающих насосов
	2.Меньшая половины суммарной подачи двух
	работающих насосов
	3.Большая половины суммарной подачи двух
	работающих насосов
	4. Равная суммарной подаче двух работающих насосов
	Ответ: 3
	7. Как меняется напор насоса при его регулировании
	дросселированием?
	1. Напор насоса увеличивается
	2.Напор насоса уменьшается
	3.Непрерывно изменяется в обе стороны
	4. Напор насоса не меняется
	Ответ: 1
	8.Как меняется напор насоса при его регулировании
	путём уменьшения частоты вращения насоса?
	1. Напор насоса увеличивается
	2.Напор насоса уменьшается
	3.Непрерывно изменяется в обе стороны
	4. Напор насоса не меняется
	Ответ: 2
	9. Какая зависимость динамического сопротивления
	сети от расхода?
	1.Прямо пропорциональная
	2.Квадратичная
	3.Кубическая
	4.Зависимость отсутствует
	Ответ: 2
Уметь: оценивать и	1.Статическое давление воды в сечении 1 Рстат1 = 0,7
прогнозировать состояние	МПа. Геометрическая высота центра трубопровода в
материалов и причины отказов	сечении $1 \ z1 = 8 \ м$, в сечении $2 \ z2 = 4 \ м$. Скорость
деталей при воздействии на них	движения воды в сечении 1 и 2, $C1 = C2 = 1$ м/с.
различных эксплуатационных	Плотность воды $\rho = 1000$ кг/м3. Диаметр
факторов	трубопровода $d=0,25$ м. Длина трубопровода $L=$
	1200 м. Коэффициент сопротивления трению $\lambda = 0.03$.
	Суммарный коэффициент местных сопротивлений ξ =
	11. Рассчитать давления и напоры воды в сечениях 1 и
	2
	2.Определить мощность на валу центробежного
	насоса производительностью 0,02 м3/с, если

	1 1
обучения по дисциплине	
	ания манометра на нагнетательном патрубке 0,5
	показания вакуумметра на всасывающем
± 7	бке 30 кПа, а вертикальное расстояние между
	ми присоединения приборов 2,5 м (манометр
<u> </u>	ложен выше). Коэффициент полезного действия а принять равным 0,75
3.Опр	еделить потребляемую мощность привода
	ельного насоса Nэ производительностью Gб =
	ч, если давление в барабане Рб = 12 МПа, потери
	ния в всасывающем и нагнетательном
= *	проводах соответственно ΔP всас = 0,15 МПа, $r = 0,3$ МПа, давление в даэраторе $P \Pi = 0,1$
МПа,	КПД пнас = 0,65, геометрическая отметка
даэрат	гора Нвсас = 10 м, геометрическая отметка
бараба	ана котла Ннагн = 22 м. По нормам
проек	тирования давление и подача должна идти с
	$p_{M} Kp = 1,2, KG = 1,15$
<u> </u>	еделить мощность электродвигателя для привода
	ельного насоса для котельной с максимальной
	роизводительностью Dmax = 8,34 кг/с, если
	тны давление в барабане котла $P6 = 2,4 \text{ M}\Pi a,$,
	ние в деаэраторе Рд = 0,1 МПа, сопротивление
	вающего и нагнетательного трубопроводов $\Delta P =$
	Па, коэффициент запаса по
<u> </u>	роизводительности котельной $k1 = 1,2,$
	оициент запаса по напору k 2 = 1,1 и КПД
	ельного насоса η = 0,8. Деаэратор и барабан
	расположены на одной геодезической отметке ова разница в потребляемой насосом мощности
	россельном и частотном регулировании, если
1	тны параметры: длина трубопровода L = 320 м,
	паметр $d = 150$ мм, эквивалентная длина местных
	тивлений Lэкв = 85 м, статический напор Нст =
	коэффициент трения $\hat{\lambda}=0,1,$ исходную
	водительность и напор насоса в рабочей точке
-	елить графическим способом, требуемая
1	водительность насоса в новой рабочей точке
40 m3/	-

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 80 Описание характеристики выполнения знания: оценка "отлично" выставляется, если задание выполнено верно

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: оценка "хорошо" выставляется, если задание выполнено верно с незначительными ошибками, выбрано верное направление решения

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: оценка "удовлетворительно" выставляется, если задание выполнено преимущественно верно, допущены ошибки при выборе направления решения

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: оценка "неудовлетворительно" выставляется, если не выполнены критерии для оценки "удовлетворительно"

КМ-2. Вентиляторы и компрессоры

Формы реализации: Компьютерное задание

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 25

Процедура проведения контрольного мероприятия: Выполненное задание отправляется в

СДО "Прометей" в рамках функционала "Письменная работа".

Краткое содержание задания:

Контрольная точка направлена на оценку освоения компетенции по вопросам: вентиляторы и компрессоры

Контрольные вопросы/задания:

Контрольные вопросы/задані	ля:
Запланированные результаты	Вопросы/задания для проверки
обучения по дисциплине	
Знать: строение и свойства	1. Какое взаимное пространственное расположение
материалов	входного и выходного патрубков у центробежного
	вентилятора?
	1.Вдоль одной оси
	2.Под углом 90°
	3.Параллельно друг другу
	4.Под углом 120°
	Ответ: 2
	2. Какой параметр идеального компрессора можно
	рассчитать по уравнению Эйлера?
	1.Производительность
	2.Напор
	3. Частоту вращения
	4.Степень сжатия
	Ответ: 2
	3. Какая зависимость напора от плотности сжимаемого газа?
	1. Чем выше плотность газа на всасе в компрессор, тем
	больше напор
	2.Чем меньше плотность газа на всасе в компрессор, тем
	меньше напор
	3. Чем меньше плотность газа на всасе в компрессор, тем
	больше напор
	4.Напор одинаковый для газов с любой плотностью
	Ответ: 4
	4. Какой способ регулирования компрессоров является
	самым простым для реализации на практике?
	1. Дросселирование на входе в компрессор
	2.Изменение частоты вращения

Запланированные результаты	Вопросы/задания для проверки
обучения по дисциплине	3.Поворот направляющих лопаток входе в компрессор 4.Частичный сброс сжатого газа Ответ: 4 5.Какой способ регулирования компрессоров является самым энергетически эффективным? 1.Дросселирование на выходе из компрессора 2.Изменение частоты вращения компрессора 3.Поворот направляющих лопаток на выходе из компрессора 4.Частичный сброс сжатого газа Ответ: 2
Уметь: выполнять расчеты и выбирать защитные средства при проведении электротехнических работ	1.Определить геометрические размеры цилиндров двухступенчатого воздушного поршневого компрессора, выполненного в отдельных цилиндрах с промежуточным охлаждением. Производительность компрессора по условиям всасывания Q1 = 10 м3/мин, tвс1 = 5°C, tвс2 = 30°C, Pвс = 0,1 МПа, Pнг = 4 МПа, ат = 0,05, n = 500 об/мин, отношение s/D = 0,5, \(\lambda\)вс = 0,96, показатель политропы k = 1,35 2.Определить объемную и массовую производительность одноступенчатого воздушного поршневого компрессора, если диаметр цилиндра D = 120 мм, а ход поршня s = 60 мм. Относительный объем мертвого пространства ат = 0,07, Pвс = 0,1 МПа, Pнг = 0,8 МПа; частота вращения коленвала компрессора n = 1000 об/мин; показатель политропы k = 1,3; tвс = 0°C, \(\lambda\)вс = 0,95, газовая постоянная для воздуха R = 287 Дж/(кг·К)
Уметь: организовывать безопасное проведение работ и вести надзор за ними	1.Определить полное давление, создаваемое вентилятором при производительности Q = 5 м3/с, работающим со всасывающей трубой длиной 11 = 15 м, диаметром d1 = 600 мм и нагнетательной трубой длиной 12 = 40 м, диаметром d2 = 450 мм, оканчивающейся диффузором с d3 = 0,7 м. Построить профиль изменения давления по длине воздуховода, принимая потери в диффузоре ΔРд = 100 Па при плотности воздуха ρ = 1,2 кг/м3, λ = 0,015 2.Определить удельную работу ступеней 2-ух ступенчатого воздушного компрессора с промежуточным охлаждением. Температура на всасе ступени низкого давления Твс1 = 278 K, ступени высокого давления Твс2 = 303 K. Степень повышения давления компрессора ε = 20, показатель политропы k = 1,4, КПД каждой ступени η = 0,85, газовая постоянная для воздуха R = 287 Дж/(кг·К). Как изменится работа при отсутствии промежуточного охлаждения? 3.Дымосос расположен у основания дымовой трубы, высота которой составляет L = 100 м. Определить потребляемую мощность насоса с учетом самотяги дымовой трубы, если известно: производительность Q =

Запланированные результаты	Вопросы/задания для проверки
обучения по дисциплине	
	40000 м3/ч, температура газов tгаз = 170 °C (Rгаз =
	202,5 Дж/(кг·К)), температура воздуха $tвозд = 10 ^{\circ}C$
	(Rвозд = $284,5 \text{Дж/(кг·K)}$), сопротивление дымовой
	трубы $\Delta h = 25$ мм вод. ст., диаметр устья дымовой трубы
	d = 1,5 м, разряжение газа перед дымососом hpasp =20
	мм вод. ст., КПД дымососа η = 0,75, атмосферное
	давление Ратм = 0,1 МПа

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: оценка "отлично" выставляется, если задание выполнено верно

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: оценка "хорошо" выставляется, если задание выполнено верно с незначительными ошибками, выбрано верное направление решения

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: оценка "удовлетворительно" выставляется, если задание выполнено преимущественно верно, допущены ошибки при выборе направления решения

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: оценка "неудовлетворительно" выставляется, если не выполнены критерии для оценки "удовлетворительно"

КМ-3. Газотурбинные и газопоршневые установки

Формы реализации: Письменная работа

Тип контрольного мероприятия: Тестирование **Вес контрольного мероприятия в БРС:** 25

Процедура проведения контрольного мероприятия: Технология проверки связана с выполнением контрольного теста по изученной теме. Тестирование проводится с использованием СДО "Прометей". К тестированию допускается пользователь, изучивший материалы, авторизованный уникальным логином и паролем.

Краткое содержание задания:

Контрольная точка направлена на проверку знаний по газотурбинным и газопоршневым установкам

Контрольные вопросы/задания:

Запланированные результаты обучения по	Вопросы/задания для проверки
дисциплине	
Знать: методические, нормативные и	1. Какой из этих элементов не входит в
руководящие материалы по безопасности	состав типовой одновальной ГТУ?
эксплуатации электроустановок	1.Воздушный компрессор
	2.Камера сгорания
	3.Газовая турбина
	4.Котел

Запланированные результаты обучения дисциплине	и по	Вопросы/задания для проверки
дисциплинс		Ответ: 4
		2. Какую функцию выполняет осевой компрессор ГТУ?
		1.Подача природного газа в камеру
		сгорания
		2.Подача воздуха в камеру сгорания
		3.Подача смазочного масла в
		подшипники
		4.Подача воздуха на охлаждение корпуса ГТУ
		Ответ: 2
		3.В качестве рабочего тела в газовой
		турбине служат дымовые газы?
		1.Да
		2.Нет
		Ответ: 1
		4.Что такое коэффициент избытка
		воздуха?
		1.Отношение расхода воздуха к расходу топлива
		2.Отношение количества воздуха,
		необходимого для сжигания 1 кг топлива
		к теоретически необходимому
		3. Количество воздуха, теоретически
		необходимого, для сжигания 1 кг топлив
		4.Расход воздуха для сжигания 1 кг
		топлива
		Ответ: 2
		5.Снижение температуры воздуха на
		всасе в воздушный компрессор ГТУ
		приводит к росту КПД ГТУ?
		1.Да
		2.Нет
		Ответ: 1

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: оценка "отлично" выставляется, если задание выполнено в установленном объеме в соответствии со шкалой

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: оценка "хорошо" выставляется, если задание выполнено в установленном объеме в соответствии со шкалой

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: оценка "удовлетворительно" выставляется, если задание выполнено в установленном объеме в соответствии со шкалой

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: оценка "неудовлетворительно" выставляется, если задание выполнено ниже порогового уровня, установленного шкалой

КМ-4. Паротурбинные установки

Формы реализации: Компьютерное задание Тип контрольного мероприятия: Тестирование Вес контрольного мероприятия в БРС: 25

Процедура проведения контрольного мероприятия: Технология проверки связана с выполнением контрольного теста по изученной теме. Тестирование проводится с использованием СДО "Прометей". К тестированию допускается пользователь, изучивший материалы, авторизованный уникальным логином и паролем.

Краткое содержание задания:

Контрольная точка направлена на проверку знаний по паротурбинным установкам

Контрольные вопросы/задания:	
Запланированные результаты обучения по	Вопросы/задания для проверки
дисциплине	
Знать: сущность явлений, происходящих в	1. Что означает буква К в маркировке
материалах при их обработке и в условиях	российских паровых турбин?
эксплуатации изделий	1.Компрессорная
	2.Конденсационная
	3.Компенсационная
	4.Комбинированная
	Ответ: 2
	2.Рабочим телом в паровой турбине
	является водяной пар?
	1.Да
	2.Нет
	Ответ: 1
	3. Как в среднем соотносится номинальная
	электрическая и тепловая мощности в
	турбине типа Т?
	 На 1 МВт электрической энергии
	приходится 1 МВт тепловой энергии
	2.На 1 МВт электрической энергии
	приходится 0,5 MBт тепловой энергии
	3.На 1 МВт электрической энергии
	приходится 2 МВт тепловой энергии
	Ответ: 3
	4.Как влияет рост температуры и давления
	пара на входе в турбину на термический
	КПД агрегата?
	1. Приводят к росту КПД
	2. Приводят к снижению КПД
	3. Температура и давление пара на входе в
	турбину не влияет на КПД
	Ответ: 1
	010011.1
	5.Какая функция конденсатора в
	паросиловом цикле?

Запланированные результаты обучения по	Вопросы/задания для проверки
дисциплине	
	1. Конденсация водяного пара после последней ступени паровой турбины 2. Конденсация водяного пара после
	пароперегревателя 3. Конденсация водяного пара после
	сетевого подогревателя Ответ: 1

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: оценка "отлично" выставляется, если задание выполнено в установленном объеме в соответствии со шкалой

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: оценка "хорошо" выставляется, если задание выполнено в установленном объеме в соответствии со шкалой

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: оценка "удовлетворительно" выставляется, если задание выполнено в установленном объеме в соответствии со шкалой

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: оценка "неудовлетворительно" выставляется, если задание выполнено ниже порогового уровня, установленного шкалой

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

8 семестр

Форма промежуточной аттестации: Экзамен

Пример билета

- 1. Газодинамическая характеристика компрессора.
- 2.Идеальный цикл ПТУ (цикл Ренкина).
- 3. Центробежный насос перекачивает воду из резервуара с отметкой Z1=3 м в резервуар с отметкой Z2=10 м по двум последовательно соединенным трубопроводам 11=9 м, d1=100 мм ($\epsilon 1=6, \lambda 1=0,02$) и 12=20 м, d2=75 мм ($\epsilon 2=10, \lambda 2=0,03$). Применяемый насос развивает подачу Q=10 л/с при КПД $\eta=55$ %. Определить потребляемую мощность привода.

Процедура проведения

Требования по выполнению Итоговой письменной работы:

- · Задания необходимо выполнять строго в соответствии со своим вариантом. Работы, выполненные не в соответствии с персональным номером варианта рассматриваться не будут.
- · По всем вопросам варианта нужно дать подробный письменный ответ.
- · Выполненная работа прикрепляется одним файлом и отправляется на проверку преподавателю в СДО Прометей.
- \cdot Выполненная работа должна быть представлена на проверку в сроки проведения контрольного мероприятия.

Оформление письменной работы:

- · Письменная работа оформляется на листах формата A4 (210x297).
- · Перед ответом на задания контрольного мероприятия укажите Ваши ФИО, группу, номер варианта и дату выполнения. Текст пишется четко и аккуратно (или набирается с использованием компьютера).

I. Перечень компетенций/индикаторов и контрольных вопросов проверки результатов освоения дисциплины

1. Компетенция/Индикатор: ИД- $2_{\Pi K-1}$ Принимает участие в разработке принципиальных схем и оборудования для объектов теплоэнергетики и теплотехники

Вопросы, задания

- 1.Основы гидро-аэродинамики нагнетателей. Уравнение Бернулли для неразрывного потока.
- 2. Теорема Эйлера об изменении количества движения в рабочем колесе центробежного нагнетателя.
- 3. Конструкция и принцип действия центробежного насоса.
- 4. Конструкция и принцип действия осевого насоса.
- 5. Гидравлическая характеристика центробежного насоса.

Материалы для проверки остаточных знаний

- 1. Как меняется статическое давление жидкости на стенки в сужающемся трубопроводе? Ответы:
- 1. Увеличивается
- 2.Уменьшается

- 3.Остаётся постоянным
- 4. Непрерывно изменяется в обе стороны

Верный ответ: 2

2. Какая зависимость динамического сопротивления сети от расхода?

Ответы:

- 1. Прямо пропорциональная
- 2. Квадратичная
- 3. Кубическая
- 4.Зависимость отсутствует

Верный ответ: 2

3. Как меняется напор насоса при его регулировании дросселированием?

Ответы:

- 1. Напор насоса увеличивается
- 2. Напор насоса уменьшается
- 3. Непрерывно изменяется в обе стороны
- 4. Напор насоса не меняется

Верный ответ: 1

4. Как меняется напор насоса при его регулировании путём уменьшения частоты вращения насоса?

Ответы:

- 1. Напор насоса увеличивается
- 2. Напор насоса уменьшается
- 3. Непрерывно изменяется в обе стороны
- 4. Напор насоса не меняется

Верный ответ: 2

5. Какое взаимное пространственное расположение входного и выходного патрубков у центробежного вентилятора?

Ответы:

- 1. Вдоль одной оси
- 2. Под углом 90°
- 3.Параллельно друг другу
- 4.Под углом 120°

Верный ответ: 2

6. Какой параметр идеального компрессора можно рассчитать по уравнению Эйлера?

Ответы:

- 1. Производительность
- 2. Напор
- 3. Частоту вращения
- 4.Степень сжатия

Верный ответ: 2

7. Какая зависимость напора от плотности сжимаемого газа?

Ответы:

- 1. Чем выше плотность газа на всасе в компрессор, тем больше напор
- 2. Чем меньше плотность газа на всасе в компрессор, тем меньше напор
- 3. Чем меньше плотность газа на всасе в компрессор, тем больше напор
- 4. Напор одинаковый для газов с любой плотностью

Верный ответ: 4

8. Какой способ регулирования компрессоров является самым простым для реализации на практике?

Ответы:

- 1. Дросселирование на входе в компрессор
- 2.Изменение частоты вращения

- 3. Поворот направляющих лопаток входе в компрессор
- 4. Частичный сброс сжатого газа

Верный ответ: 4

2. Компетенция/Индикатор: ИД-4_{ПК-1} Принимает участие в оценке энергетической эффективности объектов теплоэнергетики и теплотехники

Вопросы, задания

- 1.Зависимость параметров ГТУ от температуры наружного воздуха.
- 2.Зависимость КПД ГТУ от степени сжатия компрессора.
- 3.Схема и идеальный цикл парогазовой установи (ПГУ).
- 4.Тепловой баланс и КПД ПГУ.
- 5.Идеальный цикл ПТУ (цикл Ренкина).

Материалы для проверки остаточных знаний

1. Какой из этих элементов не входит в состав типовой одновальной ГТУ?

Ответы:

- 1. Воздушный компрессор
- 2. Камера сгорания
- 3.Газовая турбина
- 4.Котел

Верный ответ: 4

2. Какую функцию выполняет осевой компрессор ГТУ?

Ответы

- 1. Подача природного газа в камеру сгорания
- 2.Подача воздуха в камеру сгорания
- 3. Подача смазочного масла в подшипники
- 4.Подача воздуха на охлаждение корпуса ГТУ

Верный ответ: 2

3. Что такое коэффициент избытка воздуха?

Ответы:

- 1.Отношение расхода воздуха к расходу топлива
- 2.Отношение количества воздуха, необходимого для сжигания 1 кг топлива к теоретически необходимому
- 3. Количество воздуха, теоретически необходимого, для сжигания 1 кг топлива
- 4. Расход воздуха для сжигания 1 кг топлива

Верный ответ: 2

- 4. Каков диапазон электрического КПД одновальных энергетических ГТУ? Ответы:
- 1.15 30 %
- 2.31 45 %
- 3.46 60 %
- 4.61 85 %

Верный ответ: 2

5. Что означает термин «Парогазовая установка» (ПГУ)?

Ответы:

- 1. Наличие паросилового контура на выхлопе газовой турбины
- 2.Использование в качестве рабочего тела ГТУ парогазовой смеси

Верный ответ: 1

6. Что означает термин «Конденсационная ПГУ»?

Ответы:

- 1.ПГУ вырабатывает только электрическую энергию
- 2.ПГУ вырабатывает только тепловую энергию
- 3.ПГУ вырабатывает электрическую и тепловую энергию Верный ответ: 1
- 7. Как зависит частота вращения коленвала и мощность ГПУ? Ответы:
- 1. Мощность ГПУ не изменяется при изменении частоты вращения коленвала
- 2. Мощность ГПУ растет при росте частоты вращения коленвала
- 3. Мощность ГПУ падает при росте частоты вращения коленвала Верный ответ: 2
- 8.Как влияет степень сжатия на КПД ГПУ?

Ответы:

- 1.С ростом степени сжатия КПД ГПУ растет
- 2.С ростом степени сжатия КПД ГПУ падает
- 3.С ростом степени сжатия КПД ГПУ не изменяется Верный ответ: 1

II. Описание шкалы оценивания

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: оценка "отлично" выставляется, если задание выполнено в установленном объеме в соответствии со шкалой

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: оценка "хорошо" выставляется, если задание выполнено в установленном объеме в соответствии со шкалой

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: оценка "удовлетворительно" выставляется, если задание выполнено в установленном объеме в соответствии со шкалой

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: оценка "неудовлетворительно" выставляется, если задание выполнено ниже порогового уровня, установленного шкалой

III. Правила выставления итоговой оценки по курсу

Оценка определяется в соответствии с Положением о балльно-рейтинговой системе для студентов НИУ «МЭИ» на основании семестровой и аттестационной составляющих.