Министерство науки и высшего образования РФ Федеральное государственное бюджетное образовательное учреждение высшего образования «Национальный исследовательский университет «МЭИ»

Направление подготовки/специальность: 13.03.01 Теплоэнергетика и теплотехника

Наименование образовательной программы: Теплоснабжение и теплотехническое оборудование

Уровень образования: высшее образование - бакалавриат

Форма обучения: Заочная

Оценочные материалы по дисциплине Тепломассообмен

Москва 2022

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ РАЗРАБОТАЛ:

Преподаватель (должность)

Ю.В. <u>Шацких</u> (расшифровка подписи)

СОГЛАСОВАНО:

Руководитель образовательной программы

(должность, ученая степень, ученое звание)

Заведующий выпускающей кафедры

(должность, ученая степень, ученое звание)

NCM NCM	Подписано электронной подписью ФГБОУ ВО «НИУ «МЭИ»				
	Сведения о владельце ЦЭП МЭИ				
	Владелец		Хомченко Н.В.		
	Идентификатор	RI	d1b9495-KhomchenkoNV-644530		
(полись)					

Подписано электронной подписью ФГБОУ ВО «НИУ «МЭИ»

Сведения о владельце ЦЭП МЭИ

Владелец Гаряев А.Б.

Идентификатор R75984319-GariayevAB-a6831ea7

(подпись)

H.B.

Хомченко

(расшифровка подписи)

А.Б. Гаряев

(расшифровка подписи)

ОБЩАЯ ЧАСТЬ

Оценочные материалы по дисциплине предназначены для оценки: достижения обучающимися запланированных результатов обучения по дисциплине, этапа формирования запланированных компетенций и уровня освоения дисциплины.

Оценочные материалы по дисциплине включают оценочные средства для проведения мероприятий текущего контроля успеваемости и промежуточной аттестации.

Формируемые у обучающегося компетенции:

1. ОПК-4 Способен демонстрировать применение основных способов получения, преобразования, транспорта и использования теплоты в теплотехнических установках и системах

ИД-3 Демонстрирует понимание основных законов тепломассообмена и применяет их для расчетов элементов теплотехнических установок и систем

и включает:

для текущего контроля успеваемости:

Форма реализации: Компьютерное задание

- 1. Излучение в лучепрозрачной среде (Тестирование)
- 2. Основные понятия тепломассообмена (Тестирование)
- 3. Теплоотдача при фазовых переходах (Тестирование)

Форма реализации: Письменная работа

- 1. Вынужденная конвекция (Решение задач)
- 2. Задачи стационарной теплопроводности (Тестирование)
- 3. Массообмен (Контрольная работа)
- 4. Тепловой расчет теплообменного аппарата (Расчетно-графическая работа)
- 5. Теплообмен излучением в системе тел, заполненной поглощающей и излучающей средой (Решение задач)

БРС дисциплины

5 семестр

	Веса контрольных мероприятий, %				
Розден именунгий	Индекс	KM-1	KM-2	KM-3	KM-4
Раздел дисциплины	KM:				
	Срок КМ:	3	15	15	11
Основные понятия тепломасообмена					
Основные понятия тепломасообмена		+			
Теплопроводность					
Одномерные стационарные задачи теплопроводности		+			
Одномерные линейные нестационарные задачи теплопроводности		+			
Теплообмен излучением					

Законы излучения. Теплообмен излучением в прозрачной		+		
среде Теплообмен излучением в системе с излучающей и				
поглощающей газовой средой		+		
Свободная конвекция				
Уравнения теории конвективного теплообмена			+	
Свободная конвекция			+	
Вынужденная конвекция				
Конвективная теплоотдача при течении жидкости в трубах (каналах)				+
Внешняя задача конвективного теплообмена				+
Bec KM:	25	25	25	25

6 семестр

	Веса кон	трольні	ых мероі	приятий	, %
Doggov wygyymawyy	Индекс	KM-1	KM-2	KM-3	KM-4
Раздел дисциплины	KM:				
	Срок КМ:	3	7	7	11
Теплоотдача при фазовых превращениях теплон	осителя				
Теплообмен излучением в прозрачной среде		+	+		
Теплообмен излучением между излучающей и поглощающей средой		+	+		
Тепломассообменные аппараты					
Типы теплообменных аппаратов				+	+
Инженерные методы расчета тепломассообмена в энергетических установках				+	+
Основы массообмена					
Основные понятия массообмена				+	+
	Вес КМ:	25	25	25	25

\$Общая часть/Для промежуточной аттестации\$

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ТЕКУЩЕГО КОНТРОЛЯ

I. Оценочные средства для оценки запланированных результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций

Индекс	Индикатор	Запланированные	Контрольная точка
компетенции	-	результаты обучения по	•
		дисциплине	
ОПК-4	ИД-30ПК-4 Демонстрирует	Знать:	Основные понятия тепломассообмена (Тестирование)
	понимание основных	методики расчета	Задачи стационарной теплопроводности (Тестирование)
	законов тепломассообмена	процессов	Излучение в лучепрозрачной среде (Тестирование)
	и применяет их для	тепломассообмена при	Теплообмен излучением в системе тел, заполненной поглощающей и
	расчетов элементов	свободной и вынужденной	излучающей средой (Решение задач)
	теплотехнических	конвекции, двухфазного	Вынужденная конвекция (Решение задач)
	установок и систем	тепломассообмена	Массообмен (Контрольная работа)
		методики расчета	Теплоотдача при фазовых переходах (Тестирование)
		процессов	Тепловой расчет теплообменного аппарата (Расчетно-графическая
		теплопроводности и	работа)
		излучения в	
		теплообменном	
		оборудовании	
		основные механизмы	
		переноса теплоты и массы	
		и их особенности в	
		различных	
		теплоэнергетических	
		установках	
		Уметь:	
		проводить тепловой расчет	
		теплообменных аппаратов	
		рассчитывать процессы	
		теплообмена при	
		вынужденной и	

	естественной конвекции	
	рассчитывать	
	температурные поля в	
	элементах конструкций	
	тепловых установок	

II. Содержание оценочных средств. Шкала и критерии оценивания

5 семестр

КМ-1. Основные понятия тепломассообмена

Формы реализации: Компьютерное задание **Тип контрольного мероприятия**: Тестирование **Вес контрольного мероприятия в БРС**: 25

Процедура проведения контрольного мероприятия: Компьютерное тестирование

Краткое содержание задания:

Студенту предлагается ответить на тестовые вопросы, касающиеся основных понятий тепломассообмена, терминов и определений, используемых в данной дисциплине.

Контрольные вопросы/задания:

Контрольные вопросы/задания:	
Знать: методики расчета	1.Дайте определение плотности теплового потока
процессов теплопроводности и	1. Это количество тепловой энергии, передаваемое
излучения в теплообменном	через поверхность площадью 1 м2
оборудовании	2. Это количество тепловой энергии, передаваемое в
	единицу времени через поверхность площадью 1 м2
	3. Это количество теплоты, проходящее через
	произвольную поверхность в единицу времени
	Ответ: 2
	2. Дайте определение вектора плотности теплового
	потока
	1. Это вектор, в направлении которого интенсивность
	переноса теплоты наименьшая
	2.Поверхностный интеграл от скалярного
	произведения вектора q и единичного вектора
	нормали n0 к элементарной площадке поверхности
	3. Это вектор, проекция которого на произвольное
	направление есть местная плотность теплового
	потока, проходящего через площадку,
	перпендикулярную к этому направлению
	Ответ: 3

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 90 Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 80 Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто

Оценка: 3

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

КМ-2. Теплообмен излучением в системе тел, заполненной поглощающей и излучающей средой

Формы реализации: Письменная работа

Тип контрольного мероприятия: Решение задач **Вес контрольного мероприятия в БРС:** 25

Процедура проведения контрольного мероприятия: Студентам выдается типовое задание с индивидуальными исходными данными. Задание выполняется самостоятельно. Полностью готовая работа загружается в СДО "Прометей" для проверки преподавателем

Краткое содержание задания:

Вычислить плотность потока результирующего излучения, обусловленного лучеиспусканием от дымовых газов к поверхности газохода, поперечное сечение которого имеет размеры а x b x c. Газы содержат CO2 и H2O. Общее давление газов 98,1 кПа. Температура газов на входе в газоход te1 и на выходе te2; средняя температура поверхности газохода tc и степень черноты поверхности 0,85.

Контрольные вопросы/задания:

Знать: методики расчета	1. Что такое степень черноты?
процессов тепломассообмена	2.Укажите формулу для расчета эффективной длины
при свободной и вынужденной	луча
конвекции, двухфазного	
тепломассообмена	

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 85

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 75 Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто

Оценка: 3

Нижний порог выполнения задания в процентах: 60 Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

КМ-3. Теплоотдача при фазовых переходах

Формы реализации: Компьютерное задание **Тип контрольного мероприятия**: Тестирование **Вес контрольного мероприятия в БРС**: 25

Процедура проведения контрольного мероприятия: Компьютерное тестирование

Краткое содержание задания:

Студенту предлагается ответить на тестовые вопросы, касающиеся тепломассообмена при кипении и конденсации

Контрольные вопросы/задания:

Знать: основные механизмы переноса теплоты и массы и их особенности в различных теплоэнергетических установках

- 1. Укажите существующие способы передачи теплоты
- 1. конвекция, теплопередача, лучистый теплообмен
- 2.теплопроводность, конвективный теплообмен, излучение

3.лучистый теплообмен, конвекция, теплопроводность

4.теплоотдача, конвекция, лучистый теплообмен

Ответ: 3

2.Температурное поле - это

1. количество теплоты, передаваемое в единицу времени через единицу поверхности

2. геометрическое место точек, имеющих в данный момент времени одинаковую температуру

3. совокупность значений температур во всех точках рассматриваемого тела в данный момент времени 4. тепловая энергия, передаваемая от одного тела к

другому в течение какого-то времени

Ответ: 3

3.Изотермические поверхности:

1.не пересекаются

2.пересекаются

3. совпадают одна с другой

Ответ: 1

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 60 Описание характеристики выполнения знания: Оценка "хорошо" выставляется если

большинство вопросов раскрыто

Оценка: 3

Нижний порог выполнения задания в процентах: 50 Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

КМ-4. Вынужденная конвекция

Формы реализации: Письменная работа

Тип контрольного мероприятия: Решение задач

Вес контрольного мероприятия в БРС: 25

Процедура проведения контрольного мероприятия: Студентам выдается типовое задание с индивидуальными исходными данными. Задание выполняется самостоятельно. Полностью готовая работа загружается в СДО "Прометей" для проверки преподавателем

Краткое содержание задания:

Студенту предлагается решить задачи на темы "Вынужденная конвекция".

Контрольные вопросы/задания:

Konipos	вные вопрос	ы/заданил.	
Уметь:	проводить	тепловой	1.Горизонтально расположенная стальная труба с
расчет	тепло	ообменных	температурой 130 °C охлаждается окружающим
аппарато	В		воздухом, температура которого tвозд = 18 °C.
			Определить коэффициент теплоотдачи от стенки
			трубы к воздуху, если диаметр внешний трубы равен
			d2 =210 мм
			2.Запишите уравнение Ньютона-Рихмана
			3. Как называется процесс теплообмена,
			происходящий при непосредственном
			соприкосновении тел или внутри тела,
			обусловленный тепловым движением микрочасти?

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 93 Описание характеристики выполнения знания: полностью решены обе задачи

Оценка: 4

Нижний порог выполнения задания в процентах: 80 Описание характеристики выполнения знания: Полностью решена одна задача из двух, решение второй задачи содержит ошибки в вычислениях

Оценка: 3

Нижний порог выполнения задания в процентах: 53 Описание характеристики выполнения знания: Полностью решена одна из двух задач

6 семестр

КМ-1. Тепловой расчет теплообменного аппарата

Формы реализации: Письменная работа

Тип контрольного мероприятия: Расчетно-графическая работа

Вес контрольного мероприятия в БРС: 25

Процедура проведения контрольного мероприятия: Студентам выдается типовое задание с индивидуальными исходными данными. Задание выполняется самостоятельно. Полностью готовая работа загружается в СДО "Прометей" для проверки преподавателем

Краткое содержание задания:

Студенту предлагается решить две задачи по темам Тепловой расчет экономайзера

Контрольные вопросы/задания:

Vivori nagarije inam inamazi	1 OHDAHAHUTI HADANYHAATI HADAADA AKAHAMAYAADA ADA
Уметь: рассчитывать процессы	1.Определить поверхность нагрева экономайзера, его
теплообмена при вынужденной и	основные размеры и конструктивные характеристики
естественной конвекции	(длина и число па-раллельно включенных змеевиков,
	число рядов труб по ходу га-зов, число труб в ряду и
	др.)
	2.Дать схематический чертеж аппарата
	3. Произвести тепловой расчет змеевикового
	экономайзера
	4.Произвести тепловой расчет экономайзера
	5. Охарактеризуйте процесс теплопроводности, если
	температурное поле в теле изменяется во времени

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 85 Описание характеристики выполнения знания: Полностью решены обе задачи

Оценка: 4

Нижний порог выполнения задания в процентах: 75 Описание характеристики выполнения знания: Полностью решена одна задача из двух, решение второй задачи содержит ошибки в вычислениях

Оценка: 3

Нижний порог выполнения задания в процентах: 60 Описание характеристики выполнения знания: Полностью решена одна из двух задач

КМ-2. Массообмен

Формы реализации: Письменная работа

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 25

Процедура проведения контрольного мероприятия: Студентам выдается типовое задание с индивидуальными исходными данными. Задание выполняется самостоятельно. Полностью готовая работа загружается в СДО "Прометей" для проверки преподавателем

Краткое содержание задания:

Произвести расчет массообмена

Контрольные вопросы/задания:

Уметь: рассчитывать процессы	
теплообмена при вынужденной и	2.Укажите выражение для линейного коэффициента
естественной конвекции	теплопередачи через цилиндрическую стенку
	3. Установите соответствие между математической
	моделью и решаемой задачей
	4.Рассчитать коэффициент испарения воды

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 85
Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оиенка: 4

Нижний порог выполнения задания в процентах: 75 Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто

Оценка: 3

Нижний порог выполнения задания в процентах: 60 Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

КМ-3. Задачи стационарной теплопроводности

Формы реализации: Письменная работа

Тип контрольного мероприятия: Тестирование

Вес контрольного мероприятия в БРС: 25

Процедура проведения контрольного мероприятия: Компьютерное тестирование

Краткое содержание задания:

Студенту предлагается ответить на тестовые вопросы, касающиеся задач стационарной и нестационарной теплопроводности.

Контрольные вопросы/задания:

Уметь:	рассчитывать	1. Железобетонный бак покрыт тепловой изоляцией.
температурные пол	ля в элементах	Толщина стенки бака 10 мм, коэффициентом
конструкций	тепловых	теплопроводности железобетона 1,28 Вт/(м·К). Слой
установок		изоляции выполнен из шлаковой ваты толщиной 50
		мм с коэффициентом теплопроводности λ =0,069
		Вт/(м·К). Температуры внутренней поверхности
		стенки бака 270 °C и внешней поверхности изоляции
		50 °C. Вычислить температуру на границах слоев
		изоляции.
		1. 52 °C;
		2. 58

- 2. 58
- 3. 268°C.

Ответ: 3

2.1. Найти температуру наружной поверхности слоя изоляции стального (коэффициент теплопроводности 15 Вт/(м·К)) изолированного трубопровода диаметром 108/102 мм. По трубопроводу течет вода с температурой 150 °C. Температура воздуха в помещении, где проходит трубопровод, 18 °C. Коэффициент теплоотдачи со стороны воздуха 12 Вт/(м2·К), со стороны воды 1200 Вт/(м2·К). Толщина слоя изоляции 50 мм с коэффициентом теплопроводности 0,081 Вт/(м·К).

- 1. 58,6 °C;
- 2. 29,8 °C;
- 3. 18,1 °C.

Ответ: 2

Описание шкалы оценивания:

Оиенка: 5

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 60 Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оиенка: 3

Нижний порог выполнения задания в процентах: 50 Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

КМ-4. Излучение в лучепрозрачной среде

Формы реализации: Компьютерное задание **Тип контрольного мероприятия**: Тестирование **Вес контрольного мероприятия в БРС**: 25

Процедура проведения контрольного мероприятия: Компьютерное тестирование

Краткое содержание задания:

Студенту предлагается ответить на тестовые вопросы, касающиеся теплообмена излучением в лучепрозрачной среде, а также основных понятий теплообмена излучением

Контрольные вопросы/задания:

Контрольные вопросы/задания:		
Уметь:	рассчитывать	1.Три серых тела находятся при одной и той же
температурные поля в элементах		температуре. Поглощательная способность первого
конструкций	тепловых	равна $0,1$, второго $-0,9$, третьего $-0,5$. Для какого
установок		тела плотность потока собственного излучения
		наибольшая?
		1. Для первого тела
		2. Для второго тела
		3. Для третьего тела
		Правильный ответ: 2
		2.Две близко расположенные друг к другу пластины с
		температурами 220 °C и 80 °C и степенью черноты
		соответственно 0,15 и 0,9 обмениваются лучистой
		энергией. Определить плотность результирующего
		теплового потока между пластинами
		1. 314,4 B _T / _M 2;
		2. 1204,4 Bт/м2;
		3. 19,3 B _T / _M 2;
		4. 364,3 B _T / _M 2
		Правильный ответ: 2

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 85

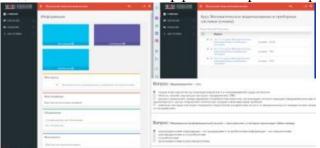
Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 75 Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто

Оценка: 3

Нижний порог выполнения задания в процентах: 60 Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено


СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

5 семестр

Форма промежуточной аттестации: Экзамен

Пример билета

Вид билета связан с интерфейсом сервиса "Прометей"

Процедура проведения

В тесте 20 вопросов встречаются вопросы следующих типов: 1. с одним вариантом ответа (в вопросах «один из многих», система сравнивает ответ слушателя с правильным ответом и автоматически выставляет за него назначенный балл) 2. с выбором нескольких вариантов ответов (в вопросах «многие из многих» система оценивает каждый ответ отдельно; есть возможность разрешить слушателю получить за вопрос 0,75 балла, если он выберет 3 правильных ответа из 4) 3. на соответствие слушатель должен привести в соответствие левую и правую часть ответа (в вопросах «соответствие» система оценивает каждый ответ отдельно; можно разрешить слушателю получить за вопрос 0,75 балла, если он выберет 3 правильных ответа из 4) 4. развернутый ответ, вводится в вручную в специально отведенное поле (ручная оценка преподавателем)

I. Перечень компетенций/индикаторов и контрольных вопросов проверки результатов освоения дисциплины

1. Компетенция/Индикатор: ИД-3_{ОПК-4} Демонстрирует понимание основных законов тепломассообмена и применяет их для расчетов элементов теплотехнических установок и систем

Вопросы, задания

- 1. Что такое теплопроводность
- 2. Дайте определение вектора плотности теплового потока
- 3. Какой режим нагрева/охлаждения тела называется регулярным
- 4. Какой процесс называется теплопроводностью?
- 5. Каким уравнением записывается закон Ньютона-Рихмана?
- 6.Укажите выражение для определения коэффициента температуропроводности
- 7. Укажите существующие способы передачи теплоты
- 8. Как называется процесс теплообмена, происходящий при непосредственном соприкосновении тел или внутри тела, обусловленный тепловым движением микрочасти?
- 9. Как называется процесс теплообмена, происходящий при непосредственном соприкосновении тел или внутри тела, обусловленный тепловым движением микрочасти?
- 10. Дайте определение плотности теплового потока

Материалы для проверки остаточных знаний

1. Укажите существующие способы передачи теплоты

Ответы:

1.конвекция, теплопередача, лучистый теплообмен 2.теплопроводность, конвективный теплообмен, излучение 3.лучистый теплообмен, конвекция, теплопроводность

4.теплоотдача, конвекция, лучистый теплообмен

Верный ответ: 3

2. Температурное поле - это

Ответы:

1. количество теплоты, передаваемое в единицу времени через единицу поверхности 2. геометрическое место точек, имеющих в данный момент времени одинаковую температуру 3. совокупность значений температур во всех точках рассматриваемого тела в данный момент времени 4. тепловая энергия, передаваемая от одного тела к другому в течение какого-то времени

Верный ответ: 3

3. Изотермические поверхности:

Ответы:

1.не пересекаются 2.пересекаются 3.совпадают одна с другой

Верный ответ: 1

4. Тепловой поток, проходящий через трехслойную плоскую стенку, будет:

Ответы

1. больше в два раза для 2-го слоя, чем для 3-го слоя 2. меньше в три раза для 1-го слоя, чем для 3-го слоя 3. меньше в два раза для 2-го слоя, чем для 3-го слоя 4. одинаков для 1-го, 2-го и 3-го слоев

Верный ответ: 4

5.Для математического описания нестационарного процесса теплопроводности дифференциальное уравнение необходимо дополнить условиями однозначности, в том числе граничными условиями:

Ответы:

1.I рода 2.II рода 3.III рода

Верный ответ: 3

6. При нестационарных процессах теплопроводности наиболее быстро температура изменяется:

Ответы:

1.на поверхности тела 2.в центральной плоскости тела 3.одинаково на поверхности и в центральной плоскости тела 4.в произвольных точках

Верный ответ: 1

7.Определить критерий Био для бетонная плита толщиной 0,3 м, если значения коэффициента теплопроводности для бетона составляет 1,28 $Bt/(M \cdot K)$. Коэффициент теплоотдачи с поверхности к воздуху принять равным 15 $Bt/(M2 \cdot K)$

Ответы:

1. 1.757 2. 3.515 3. 0.0256

Верный ответ: 1

8.По стальному (коэффициент теплопроводности 40 Bt/(м·K)) неизолированному трубопроводу диаметром 76/63 мм течет хладагент, температура которого -20° C. Температура воздуха в помещении, где проходит трубопровод, 20° C. Коэффициент теплоотдачи со стороны воздуха 10 Bt/(м2·K), со стороны хладагента 1000 Bt/(м2·K). Найти линейную плотность теплового потока

Ответы:

1. 394,77 BT/M 2. 94,15 BT/M 3. 387,05 BT/M2

Верный ответ: 2

9.По стальному паропроводу внутренним диаметром 250 мм и толщиной стенки 8 мм протекает пар с температурой 450°С. Паропровод покрыт слоем изоляции толщиной 150 мм, коэффициент теплопроводности которой 0,1 Вт/(м·К). Коэффициенты теплоотдачи со стороны пара и окружающего воздуха соответственно равны 200 Вт/(м2·К) и 16 Вт/(м2·К). Определить потери тепла на 1 пог. м паропровода и температуру наружной поверхности изоляции. Коэффициент теплопроводности стали принять равным 35 Вт/(м·К). Температура окружающего воздуха 20°С

Ответы:

1. 557,3 BT/M 2. 349,9 BT/M 3. 345,6 BT/M

Верный ответ: 3

10.Определить тепловой поток через 1 м2 кирпичной стены помещения толщиной 510 мм с коэффициентом теплопроводности 0,8 Вт/(м·°С). Температура воздуха внутри помещения 18 °С коэффициент теплоотдачи к внутренней поверхности стенк 7,5 Вт/(м2·°С) температура наружного воздуха -30 °С коэффициент теплоотдачи от наружной поверхности стены, обдуваемой ветром, 20 Вт/(м2·°С)

Ответы:

1. 58,41 Bt/m2 2. 47,85 Bt/m2 3. 29,23 Bt/m2

Верный ответ: 1

II. Описание шкалы оценивания

Оценка: 5

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Работа выполнена в рамках "продвинутого" уровня. Ответы даны верно, четко сформулированные особенности практических решений

Оценка: 4

Нижний порог выполнения задания в процентах: 70

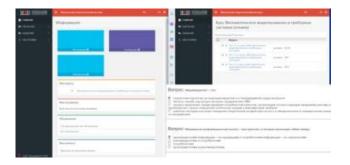
Описание характеристики выполнения знания: Работа выполнена в рамках "базового" уровня. Большинство ответов даны верно. В части материала есть незначительные нелостатки

Оценка: 3

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Работа выполнена в рамках "порогового" уровня. Основная часть задания выполнена верно. на вопросы углубленного уровня

ІІІ. Правила выставления итоговой оценки по курсу


Оценка определяется по совокупности результатов текущего контроля успеваемости в соответствии с Положением о бально-рейтинговой системе для студентов НИУ «МЭИ»

6 семестр

Форма промежуточной аттестации: Экзамен

Пример билета

Вид билета связан с интерфейсом сервиса "Прометей"

Процедура проведения

В тесте 20 вопросов встречаются вопросы следующих типов: 1. с одним вариантом ответа (в вопросах «один из многих», система сравнивает ответ слушателя с правильным ответом и автоматически выставляет за него назначенный балл) 2. с выбором нескольких вариантов ответов (в вопросах «многие из многих» система оценивает каждый ответ отдельно; есть возможность разрешить слушателю получить за вопрос 0,75 балла, если он выберет 3 правильных ответа из 4) 3. на соответствие слушатель должен привести в соответствие левую и правую часть ответа (в вопросах «соответствие» система оценивает каждый ответ отдельно; можно разрешить слушателю получить за вопрос 0,75 балла, если он выберет 3 правильных ответа из 4) 4. развернутый ответ, вводится в вручную в специально отведенное поле (ручная оценка преподавателем)

I. Перечень компетенций/индикаторов и контрольных вопросов проверки результатов освоения дисциплины

1. Компетенция/Индикатор: ИД-3_{ОПК-4} Демонстрирует понимание основных законов тепломассообмена и применяет их для расчетов элементов теплотехнических установок и систем

Вопросы, задания

- 1.Основные положения теплопроводности: температурное поле, градиент температуры, закон Фурье теплопроводности, коэффициент теплопроводности
- 2. Критериальные уравнения конвективного теплообмена. Физический смысл полученных безразмерных критериев
- 3. Среднелогарифмический температурный напор в рекуперативных теплообменниках
- 4. Горизонтально расположенная стальная труба с температурой 130 °C охлаждается окружающим воздухом, температура которого tвозд = 18 °C. Определить коэффициент теплоотдачи от стенки трубы к воздуху, если диаметр внешний трубы равен d2 =210 мм 5. Каким уравнением записывается закон Ньютона-Рихмана?
- 6. Как называется процесс теплообмена, происходящий при непосредственном соприкосновении тел или внутри тела, обусловленный тепловым движением микрочасти?
- 7.В каком виде можно представить дифференциальное уравнение теплопроводности для трехмерного нестационарного температурного поля без внутренних источников теплоты?
- 8. Как меняется температурное поле при прохождении теплового потока через однослойную цилиндрическую стенку с постоянным коэффициентом теплопроводности в условиях стационарного теплового режима?
- 9. Какие расчеты выполняются с использованием ИТ?
- 10. Какие программные продукты применяются?

Материалы для проверки остаточных знаний

1.По трубке диаметром 20 мм движется воздух с температурой на входе 20° С. Расход воздуха G=9 кг/ч. Средняя температура внутренней поверхности трубки 100° С. Какую длину должна иметь трубка, чтобы температура воздуха на выходе из нее была равна 60° С?

Ответы:

1. 0,785 м 2. 0,6 м 3. 520 мм

Верный ответ: 2

2. Конвективный теплообмен – включает в себя следующие одновременно проходящие процессы

Ответы:

1. теплообмен и массообмен 2. конвекция и теплоотдача 3. теплопроводность и конвекция 4. теплопередача и конвекция

Верный ответ: 3

3.В уравнении теплоотдачи Ньютона-Рихмана удельный тепловой поток равен произведению коэффициента теплоотдачи на разность температур

Ответы

- 1. наружной и внутренней поверхностей стенки 2. горячего и холодного теплоносителей
- 3. поверхности твердого тела и текущей жидкости

Верный ответ: 3

4. Если в дифференциальном уравнении энергии, проекции вектора скорости wx = wy = wz, то уравнение энергии превращается

Ответы:

1. в дифференциальное уравнение теплопроводности 2. в дифференциальное уравнение теплоотдачи 3. в дифференциальное уравнение движения 4. в дифференциальное уравнение неразрывности

Верный ответ: 1

5. Первая теорема подобия гласит:

Ответы:

1. любая зависимость между переменными, характеризующими какое- либо явление, может быть представлена в виде зависимости между критериями подобия 2. подобные между собой явления имеют численно одинаковые критерии подобия 3. подобны те явления, условия однозначности которых подобны, и критерии подобия, составленные из условий однозначности численно одинаковы 4. при полном подобии физических явлений все величины, характеризующие данные явления, должны находиться в определенных соотношениях для сходственных точек и сходственных моментов времени Верный ответ: 2

6. При использовании критериальных уравнений для расчета свободной конвекции при омывании вертикальной трубы за определяющий размер принимают:

Ответы

1. длину трубы 2. внутренний диаметр трубы 3. наружный диаметр трубы 4. отношение площади сечения на периметр трубы

Верный ответ: 3

7.В каком случае толщина теплового пограничного слоя превышает толщину динамического пограничного слоя?

Ответы:

1. Pr < 1 2. Pr > 1 3. Pr = 1 4. Pr = 0 5. Pr = 100

Верный ответ: 1

8.Определить коэффициент теплоотдачи с поверхности горизонтального паропровода в свободном потоке воздуха, если по паропроводу течет перегретый пар, имеющий температуру 400 °C. температура воздуха в помещении 30 °C. температура наружной

поверхности трубопровода принять равной температуре пара; наружный диаметр паропровода 200 мм

Ответы:

 $1.\ 21,3\ \mathrm{BT/(M2\cdot K)}\ 2.\ 4,12\ \mathrm{BT/(M2\cdot K)}\ 3.\ 4,28\ \mathrm{BT/(M2\cdot K)}\ 4.\ 81,7\ \mathrm{BT/(M2\cdot K)}$

Верный ответ: 3

9.По каналу прямоугольного течения 600×200 мм движется воздух со средне скоростью 12 м/с. Средняя температура по длине канала: воздуха 500 °C, стенки канала 150 °C. Определить коэффициент теплоотдачи

Ответы:

1. 21,3 Bт/(м2·K) 2. 4,12 Bт/(м2·K) 3. 4,28 Bт/(м2·K) 4. 81,7 Вт/(м2·K) Верный ответ: 1

10. Как называется тонкий слой жидкости вблизи поверхности тела, в котором происходит изменение скорости жидкости от значения скорости невозмущенного потока вдали от стенки до нуля, непосредственно на стенке:

Ответы:

1. тепловым пограничным слоем 2. гидродинамическим пограничным слоем 3. ламинарным подслоем турбулентного пограничного слоя 4. турбулентным подслоем ламинарного пограничного слоя

Верный ответ: 2

II. Описание шкалы оценивания

Оценка: 5

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Работа выполнена в рамках "продвинутого" уровня. Ответы даны верно, четко сформулированные особенности практических решений

Оценка: 4

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Работа выполнена в рамках "базового" уровня. Большинство ответов даны верно. В части материала есть незначительные недостатки

Оценка: 3

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Работа выполнена в рамках "порогового" уровня. Основная часть задания выполнена верно. на вопросы углубленного уровня

III. Правила выставления итоговой оценки по курсу

Оценка определяется по совокупности результатов текущего контроля успеваемости в соответствии с Положением о бально-рейтинговой системе для студентов НИУ «МЭИ»