Министерство науки и высшего образования РФ Федеральное государственное бюджетное образовательное учреждение высшего образования «Национальный исследовательский университет «МЭИ»

Направление подготовки/специальность: 13.03.01 Теплоэнергетика и теплотехника

Наименование образовательной программы: Технологии теплоэнергетики (тепловые электрические станции; теплоснабжение и теплотехническое оборудование; технология воды и топлива; автоматизированные теплоэнергетические системы)

Уровень образования: высшее образование - бакалавриат

Форма обучения: Заочная

Оценочные материалы по дисциплине Гидрогазодинамика

> Москва 2025

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ РАЗРАБОТАЛ:

Н.И. Почернина Н.И. R1d8f33d8-PocherninaNI-bbd4793 Почернина Идентификатор

СОГЛАСОВАНО: Руководитель образовательной

программы

Разработчик

1030 V					
Сведения о владельце ЦЭП МЭИ	Сведения о владельце ЦЭП МЭИ				
Владелец Бураков И.А.					
* МЭИ * Идентификатор R6e8dfb19-BurakovIA-8740	0e32				

И.А. Бураков

Заведующий выпускающей кафедрой

NGO NGO	Подписано электронн	ой подписью ФГБОУ ВО «НИУ «МЭИ»		
1	Сведения о владельце ЦЭП МЭИ			
	Владелец	Щербатов И.А.		
» <u>МЭИ</u> »	Идентификатор Р	6b2590a8-ShcherbatovIA-d91ec17		

И.А. Щербатов

ОБЩАЯ ЧАСТЬ

Оценочные материалы по дисциплине предназначены для оценки достижения обучающимися запланированных результатов обучения по дисциплине, этапа формирования запланированных компетенций и уровня освоения дисциплины.

Оценочные материалы по дисциплине включают оценочные средства для проведения мероприятий текущего контроля успеваемости и промежуточной аттестации.

Формируемые у обучающегося компетенции:

- 1. ОПК-4 Способен демонстрировать применение основных способов получения, преобразования, транспорта и использования теплоты в теплотехнических установках и системах
 - ИД-1 Демонстрирует понимание основных законов механики жидкости и газа и применяет их для расчета элементов теплотехнических установок и систем

и включает:

для текущего контроля успеваемости:

Форма реализации: Защита задания

1. Расчет гидродинамических характеристик (Расчетно-графическая работа)

Форма реализации: Компьютерное задание

- 1. Гидростатика (Тестирование)
- 2. Свойства жидких сред (Тестирование)

БРС дисциплины

5 семестр

Перечень контрольных мероприятий <u>текущего контроля</u> успеваемости по дисциплине:

- КМ-1 Свойства жидких сред (Тестирование)
- КМ-2 Гидростатика (Тестирование)
- КМ-3 Расчет гидродинамических характеристик (Расчетно-графическая работа)

Вид промежуточной аттестации – Зачет с оценкой.

	Веса контрольных мероприятий, %			
Раздел дисциплины	Индекс	KM-	КМ-	КМ-
	KM:	1	2	3
	Срок КМ:	3	6	9
Свойства и модели жидких сред				
Предмет, методы и аксиоматика гидроаэромеханики				
Жидкая частица и жидкий объем, местная мгновенная скорость				

Физические свойства жидкости. Модели жидких сред	+		
Гидростатика			
Уравнение Эйлера		+	
Абсолютное, вакуумметрическое и избыточное давления; пьезометрическая и вакуумметрическая высоты. Пьезометрический напор, Относительный покой жидкости		+	
Общие выражения для сил давления. Силы равномерно распределенного давления		+	
Гидравлические сопротивления			
Основные закономерности процесса диссипации механической энергии			+
Классификация и характер гидравлических сопротивлений, структура общих формул для потерь напора			+
Местные сопротивления			+
Bec KM:	30	30	40

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ТЕКУЩЕГО КОНТРОЛЯ

I. Оценочные средства для оценки запланированных результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций

Индекс	Индикатор	Запланированные	Контрольная точка
компетенции		результаты обучения по	
		дисциплине	
ОПК-4	ИД-10ПК-4 Демонстрирует	Знать:	КМ-1 Свойства жидких сред (Тестирование)
	понимание основных	основы теории подобия	КМ-2 Гидростатика (Тестирование)
	законов механики	при описании	КМ-3 Расчет гидродинамических характеристик (Расчетно-
	жидкости и газа и	гидрогазодинамических	графическая работа)
	применяет их для расчета	процессов	
	элементов	основные понятия и	
	теплотехнических	законы гидростатики и	
	установок и систем	гидрогазодинамики	
		Уметь:	
		рассчитывать основные	
		элементы	
		технологического	
		оборудования	

II. Содержание оценочных средств. Шкала и критерии оценивания

КМ-1. Свойства жидких сред

Формы реализации: Компьютерное задание Тип контрольного мероприятия: Тестирование Вес контрольного мероприятия в БРС: 30

Процедура проведения контрольного мероприятия: Технология проверки связана с выполнением контрольного теста по изученной теме. Время, отведенное на выполнение задания, устанавливается не более 70 минут. Количество попыток не более 3х. Тестирование проводится с использованием СДО "Прометей". К тестированию допускается пользователь, изучивший материалы, авторизированный уникальным логином и паролем.

Краткое содержание задания:

Контрольная точка направлена на проверку знаний по моделям и свойствам жидких сред

Контрольные вопросы/задани	ия:	
Запланированные результаты		Вопросы/задания для проверки
обучения по дисциплине		
Знать: основные понятия	И	1.Все случаи с определенным перечнем учитываемых
законы гидростатики	И	физических свойств жидкости или газа объединяются
гидрогазодинамики		в понятии (указать правильный вариант):
		1. 1. модель течения
		2. 2. закон сохранения энергии
		3. 3. свойство вязкости
		4. 4. модель жидкой среды
		5. 5. сплошность жидкости и газа
		6. 6. все варианты верны
		7. Ответ: 4
		8.
		2. Течение, по длине которого живое сечение и
		профиль скорости остаются неизменными,
		называется (указать правильный вариант):
		1. 1. установившимся
		1. 1. yeldilebibiliniesi
		2. стационарным
		3. одномерным
		4. одинаковым
		5. ламинарным
		Ответ: 3
		3. Упрощенная модель материальной среды с
		непрерывным распределением массы по объему
		называется (указать правильный вариант):
		1. 1. жидкой средой
		2. сплошной средой
		3. текучей средой
		4. тяжелой жидкостью
		5. идеальной жидкостью
		6. все варианты не верны

Запланированные результаты	Вопросы/задания для проверки
обучения по дисциплине	0 2
	 Ответ: 2 4.Для деформационного движения жидкой среды справедливо (указать неверное утверждение): 1. 1. различают угловые и линейные составляющие деформационного движения 2. 2. линейные деформации связаны с непрерывным сдвигом одной границы слоя жидкости относительно другой его границы 3. скорости угловых деформаций определяются угловыми скоростями жидких отрезков 4. в равномерном ламинарном течении присутствуют только угловые деформации 5. Ответ: 2
	 5.Состояние жидкости при недостатке абсолютного давления до атмосферного называется (указать правильный вариант): 1. 1. вакуумметрическим давлением 2. избыточным давлением 3. абсолютным давлением 4. вакуумом 5. разрежением 6. Ответ: 4
	 6.Число Рейнольдса является определяющим критерием (указать верное утверждение): 1. для напорного течения идеальной несжимаемой жидкости 2. для установившегося напорного течения вязкой несжимаемой жидкости 3. для установившегося напорного течения вязкой сжимаемой жидкости 4. для установившегося безнапорного течения вязкой несжимаемой жидкости 5. для установившегося напорного течения невязкой несжимаемой жидкости 6. для неустановившегося напорного течения вязкой сжимаемой жидкости 7. Ответ: 2
	 7.Для модели идеальной жидкости справедливо (указать верное утверждение): 1. р = const 2. граничное условие на твердой неподвижной стенке: u = 0 3. в потоке идеальной жидкости присутствуют как силы вязкости, так и силы давления 4. касательные напряжения равны нулю 5. газ не может быть идеальной жидкостью

Запланированные ре	зультаты	Вопросы/задания для проверки
обучения по дисциплине		
		Ответ: 4
		 8.Относительно поверхностных сил, сил вязкости и давления, действующих в жидкости, справедливо (указать неверное утверждение): 1. 1. по причинам возникновения поверхностные силы подразделяются на силы вязкости и силы давления 2. силы вязкости имеют касательные и нормальные составляющие относительно соответствующей поверхности 3. силы давления имеют касательные и нормальные
		составляющие относительно соответствующей поверхности
		 4. направление нормали к границе объема жидкости принято определять единичным вектором нормали →n, направленным наружу от данного объема
		5. 5. сила вязкости зависит от динамического коэффициента вязкости
		6. 6. сила вязкости зависит от кинематического коэффициента вязкости
		7. Ответ: 3

Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-2. Гидростатика

Формы реализации: Компьютерное задание Тип контрольного мероприятия: Тестирование Вес контрольного мероприятия в БРС: 30

Процедура проведения контрольного мероприятия: Технология проверки связана с выполнением контрольного теста по изученной теме. Время, отведенное на выполнение задания, устанавливается не более 70 минут. Количество попыток не более 3х. Тестирование

проводится с использованием СДО "Прометей". К тестированию допускается пользователь, изучивший материалы, авторизированный уникальным логином и паролем.

Краткое содержание задания:

Контрольная точка направлена на проверку знаний по теме гидростатика

Контрольные вопросы/задания:

Контрольные вопросы/задания:	
Запланированные результаты	Вопросы/задания для проверки
обучения по дисциплине	
Знать: основы теории подобия	1. Уравнение F-1/ ρ grad ρ = 0 называется (указать
при описании	правильный ответ):
гидрогазодинамических	1. 1. уравнением сохранения количества движения
процессов	2. 2. уравнением гидростатического равновесия
	3. 3. основным уравнением Эйлера
	4. 4. уравнением Навье-Стокса
	5. 5. уравнением Эйлера для гидростатики
	6. 6. уравнением Паскаля
	7. Ответ: 5
	2. Если <i>р</i> в вакуумметрическое давление, то величина
	$p_{\rm B}/\rho_{\rm g}$ является (указать верное утверждение):
	1. 1. пьезометрическим напором
	2. 2. величиной заглубления под пьезометрическую
	плоскость
	3. 3. пьезометрической высотой
	4. 4. гидростатическим напором
	5. 5. удельным вакуумметрическим давлением
	6. 6. все утверждения не верны
	7. Ответ: 6
	3. Для горизонтальной составляющей вектора силы давления тяжелой жидкости на криволинейной поверхности <i>S</i> справедливо (указать верное утверждение): 1.
	2. 1. $\rightarrow Pz = \rightarrow k \rho ghcSz$, где $\rightarrow k$ — орт горизонтальной оси z ,
	направленной в объем жидкости; Sz — площадь проекции
	криволинейной поверхности на вертикальную
	координатную плоскость (хОу) с пьезометрической
	высотой <i>hc</i> в ее центре тяжести
	3. 2. $\rightarrow Pz = \rightarrow k \rho ghcSz$, где $\rightarrow k$ — орт горизонтальной оси z ,
	направленной в объем жидкости; Sz — площадь проекции
	криволинейной поверхности на вертикальную
	координатную плоскость (хОz) с пьезометрической
	высотой <i>hc</i> в ее центре тяжести
	4. 3. $\rightarrow Pz = \rightarrow kpghcSz$, где $\rightarrow k$ — орт горизонтальной оси z ,
	направленной из объема жидкости; <i>Sz</i> — площадь
	проекции криволинейной поверхности на вертикальную
	координатную плоскость (<i>x</i> 0 <i>y</i>) с давлением <i>рс</i> в ее центре
	давления
	5. 4. $Pz = \rightarrow k \rho ghcSz$, где $\rightarrow k$ — орт горизонтальной оси z ,
	направленной из объема жидкости; <i>Sz</i> — площадь

Запланированные результаты обучения по дисциплине	Вопросы/задания для проверки
обутения по диециплине	проекции криволинейной поверхности на вертикальную координатную плоскость (z0y) с пьезометрической высотой hc в ее центре давления 6. 5.→Pz = →kpghcSz, где →k — орт горизонтальной оси z, направленной из объема жидкости; Sz — площадь проекции криволинейной поверхности на вертикальную координатную плоскость (x0y) с пьезометрической высотой hc в ее центре тяжести 7.
	8. Ответ: 5
	 4.В основной формуле гидростатики p = p 0 + ρgh' величина h' является (указать правильный вариант): 1. пьезометрической высотой 2. пьезометрическим напором 3. глубиной жидкости в точке с давлением p 4. глубиной жидкости в точке с давлением p0 5. размером жидких частиц 6. Ответ: 3
	 5.В основной формуле гидростатики p = p0 + ρgh' давление p0 может называться (указать неверное утверждение): 1. абсолютным 2. гидростатическим 3. вакуумметрическим 4. избыточным 5. внешним 6. Ответ: 3
	6.В разновидности основной формулы гидростатики $p2 = p1 \pm \rho gh$ знак минус используется (указать правильный вариант): 1. если точка 2 расположена выше точки 1 2. если $h < 0$ 3. если давление $p1$ является вакуумметрическим 4. если давление $p2$ является вакуумметрическим 5. в неоднородной тяжелой жидкости 6. все варианты не верны Ответ: 1
	7.В поле сил тяжести гидростатическое давление постоянно (указать верное утверждение):1. по вертикалям односвязного объема однородной жидкости
	 по времени в определенных точках жидкости во всем односвязном объеме однородной жидкости в горизонтальных плоскостях односвязного объема однородной жидкости на дне водохранилища

Запланированные	результаты	Вопросы/задания для проверки
обучения по дисципл	пине	
		Ответ: 4

Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-3. Расчет гидродинамических характеристик

Формы реализации: Защита задания

Тип контрольного мероприятия: Расчетно-графическая работа

Вес контрольного мероприятия в БРС: 40

Процедура проведения контрольного мероприятия: Решенные задания по вариантам отправляются в СДО "Прометей" в рамках функционала "письменная работа".

Краткое содержание задания:

Контрольная точка направлена на проверку знаний по гидростатике (сопротивление)

Контрольные вопросы/задания:

Запланированные	Вопросы/задания для проверки
результаты обучения по	
дисциплине	
Уметь: рассчитывать	1.Определить гидродинамические характеристики
основные элементы	одномерного потока несжимаемой жидкости, включая расчет
технологического	потерь гидродинамического напора на местных
оборудования	сопротивлениях и сопротивлениях по длине
	2.Расчет гидродинамических характеристик одномерных
	напорных течений
	3.Определить напор на турбине <i>H</i> т (так называемый «напор
	нетто») при заданных геометрическом напоре $H =,$
	расходе $Q =,$ избыточном давлении $p0 =$ в верхнем и
	вакуумметрическом давлении p в = в нижнем баках.
	Заданы также диаметр трубопровода $d1 =$ до и после
	турбины, его суммарная длина $L=,$ эквивалентная
	шероховатость $\Delta \mathfrak{b} = \dots$ и коэффициент кинематической
	вязкости жидкости ($\nu =$), коэффициенты потерь на

Запланированные	Вопросы/задания для проверки
результаты обучения по	
дисциплине	
	задвижке ($\zeta_3 =$), диафрагме ($\zeta_4 =$), колене ($\zeta_K =$),
	коэффициент полноты удара диффузора (ф =) и диаметр
	на его выходе ($d2 =$)

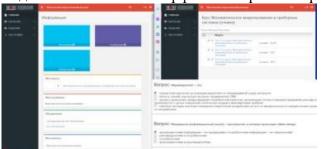
Описание шкалы оценивания:

Оценка: «зачтено»

Описание характеристики выполнения знания: Оценка "зачтено" выставляется если задание выполнено правильно или с незначительными недочетами

Оценка: «не зачтено»

Описание характеристики выполнения знания: Оценка "не зачтено" выставляется если задание не выполнено в отведенный срок или результат не соответствует заданию


СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

5 семестр

Форма промежуточной аттестации: Зачет с оценкой

Пример билета

Вид билета связан с интерфейсом сервиса "Прометей"

Процедура проведения

В тесте 20 вопросов встречаются вопросы следующих типов:

- 1. с одним вариантом ответа (в вопросах «один из многих», система сравнивает ответ слушателя с правильным ответом и автоматически выставляет за него назначенный балл)
- 2. с выбором нескольких вариантов ответов (в вопросах «многие из многих» система оценивает каждый ответ отдельно; есть возможность разрешить слушателю получить за вопрос 0,75 балла, если он выберет 3 правильных ответа из 4)
- 3. на соответствие слушатель должен привести в соответствие левую и правую часть ответа (в вопросах «соответствие» система оценивает каждый ответ отдельно; можно разрешить слушателю получить за вопрос 0,75 балла, если он выберет 3 правильных ответа из 4)
- 4. развернутый ответ, вводится в вручную в специально отведенное поле (ручная оценка преподавателем)

I. Перечень компетенций/индикаторов и контрольных вопросов проверки результатов освоения дисциплины

1. Компетенция/Индикатор: ИД- $1_{\rm OHK-4}$ Демонстрирует понимание основных законов механики жидкости и газа и применяет их для расчета элементов теплотехнических установок и систем

Вопросы, задания

- 1. На чем базируются законы движения жидкостей и газов
- 2. Что позволяет заменить малость молекулярных расстояний и чему она равна
- 3. Что называется жидкой частицей
- 4. Чем определяется физический смысл уравнения Эйлера для движения идеальной жидкости
- 5. Что свободной поверхностью
- 6. Распространённый прибор для измерения давления
- 7. Как называется избыток гидростатического давления над атмосферным
- 8. Что называют гидравлическими сопротивлениями
- 9. Что называют сопротивлением и потерями по длине
- 10.От чего зависит коэффициент потерь

Материалы для проверки остаточных знаний

1. Водяной насос прогоняет воду через некоторое отверстие. Во сколько раз надо увеличить его мощность, чтобы вдвое увеличить поток воды через отверстие? Работой против трения в движущихся частях вентилятора и его влиянием в отверстии стенки на струю пренебречь.

Ответы:

1. 4 2. 2 3. 18 4. 8

Верный ответ: 4

2.Скольким килопаскалям равно давление на дне озера глубиной 5 м, если атмосферное давление равно 100 кПа?

Ответы:

1. 100 2. 150 3. 50 4. 200

Верный ответ: 2

3. Как изменяется скорость движения нефти по нефтепроводу при уменьшении площади поперечного сечения трубы на некотором участке в 3,6 раза?

Ответы:

1. увеличивается в 7,2 раза 2. не изменяется 3. уменьшается в $\sqrt{3}$,6 раза 4. увеличивается в 3,6 раза

Верный ответ: 4

4.Три цилиндрических сосуда, высоты которых h1>h2>h3, а площади основания S123, доверху заполнены жидкостями, плотности которых p1>p2>p3. Сравните давления этих жидкостей p1, p2 и p3 на дно сосудов.

Ответы:

1.
$$p1 > p2 > p3$$
 2. $p1 < p2 < p3$ 3. $p1 = p2 = p3$ 4. $p2 > p3 = p1$

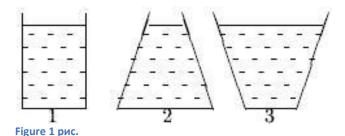
Верный ответ: 1

5. Какова высота столба керосина (м), который в сообщающихся сосудах уравновешивает столб ртути высотой 3 см? Плотность керосина равна 0,8, а ртути – 13,6 г/см3.

Ответы:

1. 0,34 2. 5,1 3. 2,7 4. 0,51

Верный ответ: 4


6. При какой высоте (см) заполненной водой цилиндрической кастрюли радиусом 20 см сила давления воды на дно и на стенки будет одинаковой (см)?

Ответы:

1. 10 2. 20 3. 5 4. 50

Верный ответ: 2

7.В три сосуда различной формы (см. рис) до одинаковой высоты налита одна и та же жидкость. Сравните давления жидкости на дно сосудов, если площади основания сосудов S2>S1>S3.

Ответы:

$$1. P2 > P1 < P3 \ 2. P1 = P2 = P3 \ 3. P1 = P3 < P2 \ 4. P2 > P1 > P3$$

Верный ответ: 2

8.Укажите правильное соотношение между давлениями P1, P2 и P3 во время течения воды по трубам разной площади поперечного сечения S1, S2и S3(см. рис.)?

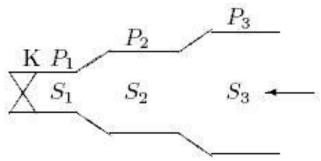


Figure 2 рис.

Ответы:

1.
$$P1 = P2 < P3$$
 2. $P3 > P2 > P1$ 3. $P1 = P2 = P3$ 4. $P1 > P2 > P3$

Верный ответ: 2

9. Определите давление столба воды высотой 40 м (кПа). Плотность воды 1000 кг/м3, g=10 м/c2.

Ответы:

1. 35 2. 350 3. 400 4. 40

Верный ответ: 3

10.Одно и тоже тело погружают поочередно в сосуды с разными жидкостями. Как видно из рисунка, тело занимает в них различные положения. Учитывая это, определите соотношение плотностей жидкостей.

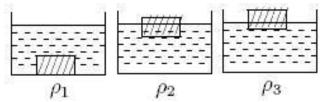


Figure 3 рис.

Ответы:

1.
$$\rho$$
1 < ρ 2 < ρ 3 2. ρ 1 > ρ 2 > ρ 3 3. ρ 1 = ρ 2 = ρ 3 4. ρ 2 < ρ 3 > ρ 1 Верный ответ: 4

II. Описание шкалы оценивания

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Работа выполнена в рамках "продвинутого" уровня. Ответы даны верно, четко сформулированные особенности практических решений

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Работа выполнена в рамках "базового" уровня. Большинство ответов даны верно. В части материала есть незначительные недостатки

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Работа выполнена в рамках "порогового" уровня. Основная часть задания выполнена верно. на вопросы углубленного уровня

Оценка: 2 («неудовлетворительно») Описание характеристики выполнения знания: Работа не выполнена или выполнена преимущественно неправильно

ІІІ. Правила выставления итоговой оценки по курсу

Оценка определяется в соответствии с Положением о балльно-рейтинговой системе для студентов НИУ «МЭИ» на основании семестровой и аттестационной составляющих.