Министерство науки и высшего образования РФ Федеральное государственное бюджетное образовательное учреждение высшего образования «Национальный исследовательский университет «МЭИ»

Направление подготовки/специальность: 11.03.04 Электроника и наноэлектроника

Наименование образовательной программы: Микроэлектроника и твердотельная электроника

Уровень образования: высшее образование - бакалавриат

Форма обучения: Очная

Оценочные материалы по дисциплине Импульсная техника

> Москва 2024

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ РАЗРАБОТАЛ:

Подписано электронной подписью ФГБОУ ВО «НИУ «МЭИ»

Сведения о владельце ЦЭП МЭИ

Владелец Ануфриев Ю.В.
Идентификатор Rb9c54598-AnufriyevYV-f797334f

Ю.В. Ануфриев

СОГЛАСОВАНО:

Разработчик

Руководитель образовательной программы

NOSO NOSO	Подписано электронной подписью ФГБОУ ВО «НИУ «МЭИ»				
See Transporter and	Сведения о владельце ЦЭП МЭИ				
-	Владелец	Баринов А.Д.			
» <u>МЭИ</u> »	Идентификатор	Ra98e1318-BarinovAD-f138ec4f			

А.Д. Баринов

Заведующий выпускающей кафедрой

a recussional parties	Подписано электронн	ой подписью ФГБОУ ВО «НИУ «МЭИ»			
	Сведения о владельце ЦЭП МЭИ				
	Владелец Мирошникова И.Н.				
³ M⊙N ₹	Идентификатор Р	d1db27a5-MiroshnikovaIN-70caf8¢			

И.Н. Мирошникова

ОБЩАЯ ЧАСТЬ

Оценочные материалы по дисциплине предназначены для оценки: достижения обучающимися запланированных результатов обучения по дисциплине, этапа формирования запланированных компетенций и уровня освоения дисциплины.

Оценочные материалы по дисциплине включают оценочные средства для проведения мероприятий текущего контроля успеваемости и промежуточной аттестации.

Формируемые у обучающегося компетенции:

1. ПК-1 Способен участвовать в проектировании интегральных схем ИД-1 Использует средства автоматизации схемотехнического проектирования

и включает:

для текущего контроля успеваемости:

Форма реализации: Допуск к лабораторной работе

- 1. "Биполярные ключи" (Лабораторная работа)
- 2. "Логические элементы на КМОП транзисторах" (Лабораторная работа)
- 3. Мультивибраторы (Лабораторная работа)
- 4. Работа ключа на активно-индуктивную и активно-емкостную нагрузку (Лабораторная работа)
- 5. Транзисторно-транзисторная логика (Лабораторная работа)
- 6. Триггеры (Лабораторная работа)

Форма реализации: Письменная работа

- 1. Ключевой режим работы электронных схем (Контрольная работа)
- 2. Триггеры и мультивибраторы (Контрольная работа)

БРС дисциплины

7 семестр

		Be	са конт	рольны	іх мероі	приятиі	й, %		
Раздел дисциплины	Индекс	КМ-	КМ-	КМ-	КМ-	КМ-	КМ-	КМ-	КМ-
т аздел дисциплины	KM:	1	2	3	4	5	6	7	8
	Срок КМ:	3	5	7	9	12	14	5	12
Ключевой режим работы схем									
Ключи на биполярном транзисторе		+	+	+	+			+	
Ключи на полевых транзисторах		+	+	+	+			+	
Логические элементы на транзисторах		+	+	+	+			+	
Триггерный режим работы схем									
Бистабильные ячейки					+	+	+	+	+
Статические триггеры					+	+	+	+	+

Базовые элементы импульсных схем								
Триггеры Шмитта	+	+	+	+		+		
Таймеры	+	+	+	+		+		
Аналоговые компараторы	+	+	+	+		+		
Мультивибраторы								
Автогенераторы					+			
Ждущие мультивибраторы					+			
Работа ключа на активную нагрузку								
Генераторы линейно изменяющегося напряжения	+	+	+	+			+	
Работа ключа на индуктивную нагрузку	+	+	+	+			+	
Принцип работы импульсных источников питания				+	+	+	+	+
Цифровые преобразователи напряжения								
Цифро-аналоговые преобразователи					+			
Аналогово-цифровые преобразователи					+			
Bec KM:	10	10	10	10	10	10	20	20

\$Общая часть/Для промежуточной аттестации\$

БРС курсовой работы/проекта

7 семестр

	Be	Веса контрольных мероприятий, %						
Раздел дисциплины	Индекс	КМ-	КМ-	КМ-	КМ-	КМ-	КМ-	
Газдел дисциплины	KM:	1	2	3	4	5	6	
	Срок КМ:	4	8	10	12	12	14	
Поиск и изучение литературных ист	очников по	+						
теме		Т						
На основе литературных данных сра	внение и		+	+	+	+		
выбор оптимального варианта решен	кин		T	T	T	Т		
Описание работы функциональных блоков и их			+	+	+	+		
расчет			'	'	'	'		
Согласование блоков между собой						+	+	
Проведение расчетов и моделирование			+	+	+	+	+	
Написание пояснительной записки и предоставление ее на проверку		+	+	+	+	+	+	
	Bec KM:	10	20	20	20	15	15	

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ТЕКУЩЕГО КОНТРОЛЯ

I. Оценочные средства для оценки запланированных результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций

Индекс	Индикатор	Запланированные	Контрольная точка
компетенции	1	результаты обучения по	•
		дисциплине	
ПК-1	ИД-1 _{ПК-1} Использует	Знать:	"Биполярные ключи" (Лабораторная работа)
	средства автоматизации	параметры и	"Логические элементы на КМОП - транзисторах" (Лабораторная
	схемотехнического	характеристики приборов,	работа)
	проектирования	схем и устройств	Транзисторно-транзисторная логика (Лабораторная работа)
		электроники и	Работа ключа на активно-индуктивную и активно-емкостную нагрузку
		наноэлектроники	(Лабораторная работа)
		различного	Мультивибраторы (Лабораторная работа)
		функционального	Триггеры (Лабораторная работа)
		назначения	Ключевой режим работы электронных схем (Контрольная работа)
		эффективные методики	Триггеры и мультивибраторы (Контрольная работа)
		экспериментального и	
		теоретического	
		исследования параметров и	
		характеристик приборов,	
		схем и устройств	
		электроники и	
		наноэлектроники	
		различного	
		функционального	
		назначения	
		Уметь:	
		проектировать простые	
		электронные схемы на	
		основе аналоговой и	
		цифровой элементной базы	

аргументированно выбирать и реализовывать на практике эффективную методику экспериментального исследования параметров и характеристик приборов,	
характеристик приооров, схем и устройств электроники и наноэлектроники различного	
функционального назначения	

II. Содержание оценочных средств. Шкала и критерии оценивания

КМ-1. "Биполярные ключи"

Формы реализации: Допуск к лабораторной работе Тип контрольного мероприятия: Лабораторная работа

Вес контрольного мероприятия в БРС: 10

Процедура проведения контрольного мероприятия: Устный опрос, предварительный

расчет параметров.

Краткое содержание задания:

Изучение сути работы биполярного транзистора в ключевом режиме подключенного на емкостную нагрузку

Контрольные вопросы/задания:

контрольные вопросы/задания.	
Знать: параметры и	1.Пояснить статический режим работы ключа на
характеристики приборов, схем	биполярном транзисторе
и устройств электроники и	2.Пояснить переходные процессы в транзисторном
наноэлектроники различного	ключе при работе на емкостную нагрузку
функционального назначения	
Уметь: аргументированно	1.Провести расчет токов потребления и уровней
выбирать и реализовывать на	выходных напряжений
практике эффективную методику	2.Провести теоретические оценки
экспериментального	характеристических времен, определяющих
исследования параметров и	быстродействие работы ключа
характеристик приборов, схем и	
устройств электроники и	
наноэлектроники различного	
функционального назначения	

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-2. "Логические элементы на КМОП - транзисторах"

Формы реализации: Допуск к лабораторной работе **Тип контрольного мероприятия:** Лабораторная работа

Вес контрольного мероприятия в БРС: 10

Процедура проведения контрольного мероприятия: Устный опрос, предварительный

расчет параметров.

Краткое содержание задания:

Изучение сути работы логических элементов на основе комплиментарных МОП транзисторов

Контрольные вопросы/задания:

контрольные вопросы/задания.	
Знать: параметры и	1.Статический режим работы КМОП- инвертора
характеристики приборов, схем	2.Переходные процессы в КМОП - схемах
и устройств электроники и	нагруженных на емкостную нагрузку
наноэлектроники различного	
функционального назначения	
Уметь: аргументированно	1. Теоретический расчет статических характеристик
выбирать и реализовывать на	КМОП схем
практике эффективную методику	2. Оценка влияния нагрузки на динамические
экспериментального	процессы в КМОП- схемах
исследования параметров и	
характеристик приборов, схем и	
устройств электроники и	
наноэлектроники различного	
функционального назначения	

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оиенка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-3. Транзисторно-транзисторная логика

Формы реализации: Допуск к лабораторной работе **Тип контрольного мероприятия:** Лабораторная работа

Вес контрольного мероприятия в БРС: 10

Процедура проведения контрольного мероприятия: Устный опрос, предварительный расчет параметров.

Краткое содержание задания:

Изучение сути работы логических элементов в ТТЛ базисе

Контрольные вопросы/задания:

поптрольные вопросы/задания:	
Знать: параметры и	1.Переходные и статические характеристики ТТЛ
характеристики приборов, схем	элементе без выходного усилителя
и устройств электроники и	2.Переходные и статические характеристики ТТЛ
наноэлектроники различного	элемента с усилителем
функционального назначения	3.Переходные процессы в ТТЛ
Уметь: аргументированно	1. Теоретический расчет характеристических уровней
выбирать и реализовывать на	напряжений и токов в ТТЛ
практике эффективную методику	2. Экстракция параметров схемы на основе
экспериментального	экспериментальных данных
исследования параметров и	
характеристик приборов, схем и	
устройств электроники и	
наноэлектроники различного	
функционального назначения	

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-4. Работа ключа на активно-индуктивную и активно-емкостную нагрузку

Формы реализации: Допуск к лабораторной работе

Тип контрольного мероприятия: Лабораторная работа

Вес контрольного мероприятия в БРС: 10

Процедура проведения контрольного мероприятия: Устный опрос, предварительный расчет параметров.

Краткое содержание задания:

Исследование существа работы биполярных и МОП транзисторов на индуктивную и большую емкостную нагрузку

Контрольные вопросы/задания:

контрольные вопросы/задания:	
Знать: параметры и	1.Переходные процессы в транзисторном ключе при
характеристики приборов, схем	работе на активно-емкостную нагрузку
и устройств электроники и	
наноэлектроники различного	
функционального назначения	
Знать: эффективные методики	1.Переходные процессы в транзисторном ключе при
экспериментального и	работе на активно-индуктивную нагрузку
теоретического исследования	
параметров и характеристик	
приборов, схем и устройств	
электроники и наноэлектроники	
различного функционального	
назначения	
Уметь: аргументированно	1.повышающие и понижающие напряжение
выбирать и реализовывать на	импульсные схемы
практике эффективную методику	2. генераторы линейно изменяющегося напряжения
экспериментального	
исследования параметров и	
характеристик приборов, схем и	
устройств электроники и	
наноэлектроники различного	
функционального назначения	

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-5. Мультивибраторы

Формы реализации: Допуск к лабораторной работе

Тип контрольного мероприятия: Лабораторная работа

Вес контрольного мероприятия в БРС: 10

Процедура проведения контрольного мероприятия: Устный опрос, предварительный расчет параметров

Краткое содержание задания:

Изучение сути работы мультивибраторов (Автогенераторов) и ждущих одновибраторов

Контрольные вопросы/задания:

топтроивные вопросы, задания	
Знать: эффективные методики	1.Мультивибратор на элементах ТТЛ с одной
экспериментального и	времязадающей цепочкой
теоретического исследования	2.Мультивибратор на элементах КМОП с двумя
параметров и характеристик	времязадающими цепочками
приборов, схем и устройств	3. Мультивибратор на операционном усилителе
электроники и наноэлектроники	4.Мультивибратор на дискретных элементах
различного функционального	
назначения	
Уметь: проектировать простые	1.Реализация схемы ждущего одновибратора на
электронные схемы на основе	основе схемы мультивибратора
аналоговой и цифровой	2.Реализация ждущего мультивибратора на
элементной базы	логических элементах "ИЛИ-НЕ" и "И-НЕ"
	3. Теоретический расчет переходных процессов в
	схеме мультивибратора

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оиенка: 2

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-6. Триггеры

Формы реализации: Допуск к лабораторной работе **Тип контрольного мероприятия:** Лабораторная работа

Вес контрольного мероприятия в БРС: 10

Процедура проведения контрольного мероприятия: Устный опрос, предварительный

расчет параметров

Краткое содержание задания:

Изучение принципов построения и работы триггеров

Контрольные вопросы/задания:

Знать: эффективные методики	1.Принцип работы триггера Шмидта	
экспериментального и	2. Асинхронные триггеры	
теоретического исследования	3. Триггеры синхронизируемые фронтом	
параметров и характеристик	синхросигнала	
приборов, схем и устройств		
электроники и наноэлектроники		

различного функционального	
назначения	
Уметь: аргументированно	1.Синтезировать схему последовательного счетчика
выбирать и реализовывать на	на D-триггерах
практике эффективную методику	2. Теоретический расчет порогов срабатывания
экспериментального	триггера Шмидта реализованного на ОУ и на
исследования параметров и	логических элементах
характеристик приборов, схем и	
устройств электроники и	
наноэлектроники различного	
функционального назначения	

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

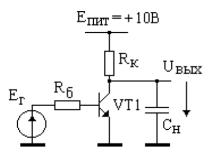
КМ-7. Ключевой режим работы электронных схем

Формы реализации: Письменная работа

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 20

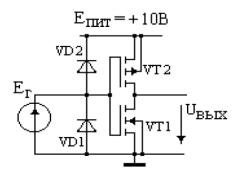
Процедура проведения контрольного мероприятия: Решается индивидуальное расчетное


задание

Краткое содержание задания:

Построение характеристических графиков и расчет рабочих параметров схем работающих в ключевом режиме

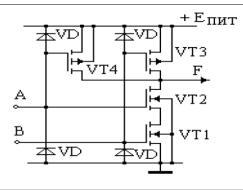
Контрольные вопросы/задания:


Знать: параметры и характеристики приборов, схем и устройств электроники и наноэлектроники различного функционального назначения

Дано: VT1-Si, β =50, $I_{\kappa 0}$ =0,1мкA, R_{K} =1к, R_{B} = 5к, C_{KB} \cong C $_{2B}$ \cong 0, C_{H} =1000 π Ф, τ_{α} =10⁻¹⁰c.

Опр: $U_{Bых}$, $I_K = f(t)$, если $E_\Gamma = 5B =$ идеальный прямоугольный импульс.

1.



Дано: VT1,VT2=Si, b_1 =5мA/B², b_2 =5мA/B² U_{01} =2B, U_{02} =3B.

Опр: $U_{\text{Вых}}$, $I_{\text{ПИТ}} = f(E_{\Gamma})$, Выполняемая логическая функция..

2.

Знать: эффективные методики экспериментального и теоретического исследования параметров и характеристик приборов, схем и устройств электроники и наноэлектроники различного функционального назначения

Дано: $E_{\Pi \Pi T}$ =+9 B, $|U_{O1}| = |U_{O2}| = 3B$, $|U_{O3}| = |U_{O4}| = 4B$, $b_n = 0.1 \text{ MA/B}$, $b_p = 0.2 \text{ MA/B}$.

Опр: U^1 , $U^0 == f(A,B)$ вывести логическую функцию, выполняемую схемой.

Описание шкалы оценивания:

Оценка: 5 Нижний порог выполнения задания в процентах: 70 Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2

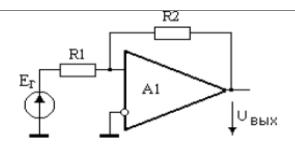
Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-8. Триггеры и мультивибраторы

Формы реализации: Письменная работа

Тип контрольного мероприятия: Контрольная работа

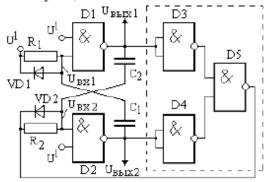
Вес контрольного мероприятия в БРС: 20


Процедура проведения контрольного мероприятия: Решается индивидуальное расчетное

задание

Краткое содержание задания:

Построение характеристических графиков и расчет рабочих параметров схем с положительной обратной связью

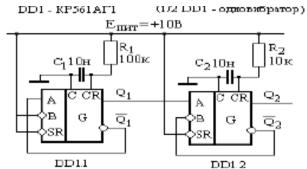

Контрольные вопросы/задания: R 100k Знать: эффективные методики экспериментального теоретического исследования D1 D2параметров характеристик И схем и устройств приборов, электроники и наноэлектроники различного функционального назначения Дано: D1÷D3 ЛЭ ТТЛ К155ЛН2, $E_{\Pi MT} = 5B$. Нарисовать осциллограммы в характерных точках, вычислить период и амплитуду колебаний.

Дано: A1 Кид=10³, гвхд= 10⁵ Ом, rвых= 50 Ом. Епит1=+10В, Епит2=-10В. R1=2к, R2=10k.

Рассчитать: пороги срабатывания, потенциалы Uвых. Привести осциллограмму

2. $U_{вых}$ в случае, если $E_{\Gamma} = A \, Sin \, \omega t$.

Дано: D1+D5 ЛЭ ТТЛ К155ЛА3,


Епит =5B, VD1=VD2=Si.

R1=1к, R2=5,1к, C1=C2=0,1мкФ.

Объяснитъработу схемы.

Нарисовать осциллограммы в характерных точках, вычислить период и амплитуду колебаний.

3.

Изложить суть работы одновибратора ΚΡ561ΑΓ1.

Представить осциллограммы в характерных точках схемы.

Вычислить период колебаний.

4.

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 60 Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 50 Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

7 семестр

Форма промежуточной аттестации: Экзамен

Пример билета

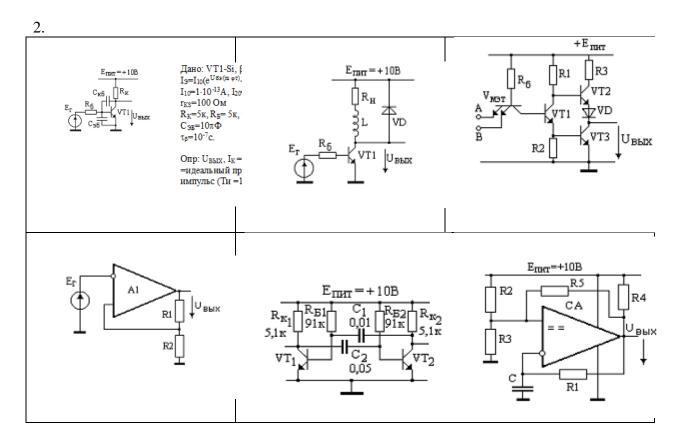
	"Утверждаю"
ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 1	Зав. кафедрой
	Д.т.н., проф.
Кафедра Электроники и наноэлектроники	Мирошникова И.Н.
Институт ИРЭ (ЭТФ)	
Дисциплина:	
Импульсная техника	2.06.2020г.
	Институт ИРЭ (ЭТФ) Дисциплина:

^{1.} Ключ на биполярном транзисторе с резистивной нагрузкой. Входная, выходная, передаточная характеристики. Ток, потребляемый схемой от источника питания.

Процедура проведения

Задача решается в письменном виде. При правильно решенной задаче заслушивается устный ответ по теоретическому вопросу

I. Перечень компетенций/индикаторов и контрольных вопросов проверки результатов освоения дисциплины

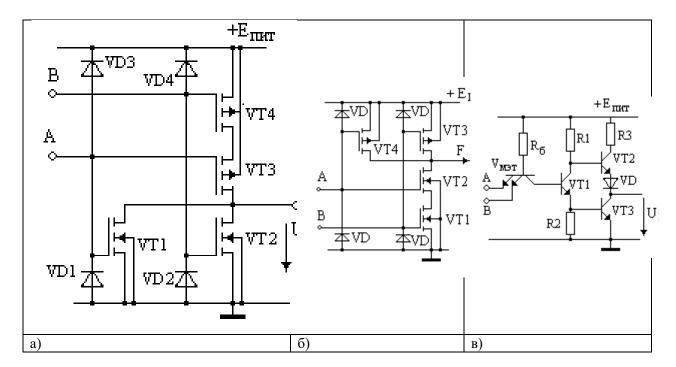

1. Компетенция/Индикатор: ИД- $1_{\Pi K-1}$ Использует средства автоматизации схемотехнического проектирования

Вопросы, задания

- 1.1. Ключ на биполярном транзисторе с резистивной нагрузкой. Входная, выходная, передаточная характеристики. Ток, потребляемый схемой от источника питания.
- 2. Ключ на полевом транзисторе с резистивной нагрузкой. Входная, выходная, передаточная характеристики. Ток, потребляемый схемой от источника питания.
- 3. Ключ на КМОП транзисторах. Входная, выходная, передаточная характеристики. Ток, потребляемый схемой от источника питания.
- 4. Переходные процессы в ключе на биполярном транзисторе при работе на активно емкостную нагрузку.
- 5. Работа ключа на биполярном транзисторе на активно-индуктивную нагрузку. Основные этапы переходного процесса.
- 6. Переходные процессы в ключе на КМОП транзисторах при работе на емкостную нагрузку.
- 7. Бистабильная ячейка на биполярных транзисторах. Обеспечение статического режима. Управление ячейкой.
- 8. Бистабильная ячейка на ЛЭ ТТЛ. Обеспечение статического режима. Управление ячейкой.
- 9. Бистабильная ячейка на ЛЭ КМОП. Обеспечение статического режима. Управление ячейкой.

^{2.}Решить задачу.

- 10. Мультивибратор на ЛЭ ТТЛ с двумя времязадающими емкостями. Переходные процессы. Период колебаний.
- 11. Мультивибратор на ЛЭ ТТЛ с одной времязадающей емкостью. Переходные процессы. Период колебаний.
- 12. Мультивибратор на ЛЭ КМОП с двумя времязадающими емкостями. Переходные процессы. Период колебаний.
- 13. Мультивибратор на ЛЭ КМОП с одной времязадающей емкостью. Переходные процессы. Период колебаний.
- 14. Мультивибратор на операционном усилителе. Переходные процессы. Период колебаний.
- 15. Мультивибратор на 1006ВИ1. Функционирование, переходные процессы, длительность генерируемого импульса.
- 16. Ждущий мультивибратор на ЛЭ ТТЛ. Обеспечение ждущего режима, запуск, переходные процессы, длительность генерируемого импульса.
- 17. Ждущий мультивибратор на ЛЭ КМОП. Обеспечение ждущего режима, запуск, переходные процессы, длительность генерируемого импульса.
- 18. Ждущий мультивибратор на ОУ. Обеспечение ждущего режима, запуск, переходные процессы, длительность генерируемого импульса.
- 19. Ждущий мультивибратор на микросхеме 1006 ВИ1. Обеспечение ждущего режима, запуск, переходные процессы, длительность генерируемого импульса.
- 20. Триггер Шмидта на ЛЭ КМОП. Функционирование. Передаточная характеристика.
- 21. Триггер Шмидта на ЛЭ ТТЛ. Функционирование. Передаточная характеристика.
- 22. Триггер Шмидта на ОУ. Функционирование. Передаточная характеристика.
- 23. ГЛИН на ОУ. Коэффициент нелинейности. Коэффициент использования напряжения источника питания.
- 24. Метод непосредственного преобразования напряжения в АЦП.
- 25. Принцип построения ЦАП на матрице R2R для суммирования токов.



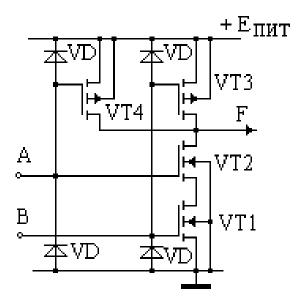
Материалы для проверки остаточных знаний

- 1.У какого логического базиса ток потребления минимальный? Ответы:
- а) Транзисторно-транзисторная логика
- б) Комплиментарная логика
- в) Эмиттерно-связанная логика

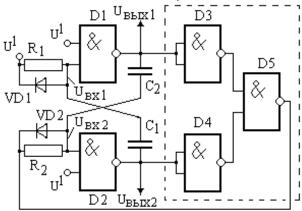
Верный ответ: б)

2.На каком рисунке приведена схема, выполняющая логическую функцию "2-И-НЕ"? Ответы:

Верный ответ: б) и в)

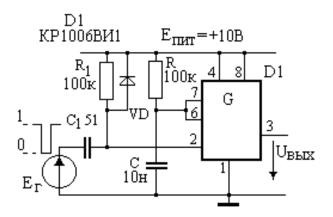

3. Какой триггер не имеет режима хранения данных?

Ответы:


- а) RS- триггер
- б) D- триггер
- в) триггер Шмидта

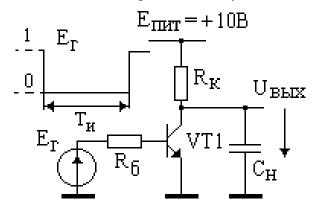
Верный ответ: в)

4. Для чего в данной схеме установлены диоды?



- а) Для повышения быстродействия схемы
- б) Защита схемы от статического разряда
- в) Для повышения нагрузочной способности логического элемента Верный ответ: б)
- 5. Для чего в данной схеме установлены диоды?

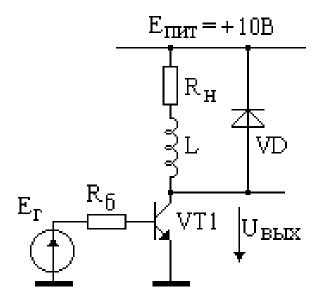
Ответы:


- а) Для повышения быстродействия схемы
- б) Защита схемы от статического разряда
- в) Для повышения нагрузочной способности логического элемента Верный ответ: a)
- 6. Какая схема микросхема установлена в данном ждущем мультивибраторе?

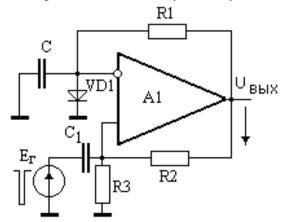
- а) Операционный усилитель
- б) Компаратор напряжения
- в) Таймер

Верный ответ: в)

7. Для достижения максимального коэффициента линейности генератора линейно изменяющегося напряжения следует?

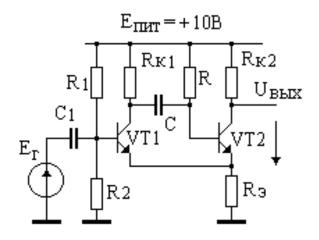


Ответы:


- а) Увеличивать длительность запускающего импульса
- б) Увеличивать сопротивление базового резистора
- в) Увеличивать значение емкости нагрузки

Верный ответ: в)

8. Что будет, если в схеме убрать диод?



- а) Возможен выход из строя биполярного транзистора
- б) Ничего не будет, только лучше станет работать
- в) Уменьшится напряжение на выходе схемы Верный ответ: а)
- 9. Каким образом из схемы ждущего мультивибратора можно сделать автогенератор?

Ответы:

- а) Просто убрать Ег
- б) Убрать диод VD1 и Ег
- в) Убрать конденсатор С и Ег Верный ответ: б)
- 10. Что изображено на данном рисунке?

- а) Триггер Шмидта
- б) Двухкаскадный усилитель
- в) Одновибратор Верный ответ: в)

II. Описание шкалы оценивания

Оценка: 5

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Работа выполнена в рамках "продвинутого" уровня. Ответы даны верно, четко сформулированные особенности практических решений

Оценка: 4

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Работа выполнена в рамках "базового" уровня. Большинство ответов даны верно. В части материала есть незначительные недостатки

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Работа выполнена в рамках "порогового" уровня. Основная часть расчетного задания выполнена верно.

Оценка: 2

Описание характеристики выполнения знания: Работа не выполнена или выполнена преимущественно неправильно

III. Правила выставления итоговой оценки по курсу

Для курсового проекта/работы:

7 семестр

Форма проведения: Защита КП/КР

І. Процедура защиты КП/КР

Защита КР осуществляется на основании принятых решений и расчетов трех разделов: 1) Расчет задающего частоту генератора импульсов 2) Расчет задающего длительность генератора одиночных импульсов 3) Расчет выходного усилителя, задающего амплитуду сигнала

II. Описание шкалы оценивания

Оиенка: 5

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Работа выполнена в рамках "продвинутого" уровня. Ответы даны верно, четко сформулированные особенности практических решений

Оценка: 4

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Работа выполнена в рамках "базового" уровня. Большинство ответов даны верно. В части материала есть незначительные недостатки

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Работа выполнена в рамках "порогового" уровня. Основная часть задания выполнена верно. на вопросы углубленного уровня

Оценка: 2

Описание характеристики выполнения знания: Работа не выполнена или выполнена преимущественно неправильно

ІІІ. Правила выставления итоговой оценки по курсу