Министерство науки и высшего образования РФ Федеральное государственное бюджетное образовательное учреждение высшего образования «Национальный исследовательский университет «МЭИ»

Направление подготовки/специальность: 11.03.04 Электроника и наноэлектроника

Наименование образовательной программы: Промышленная электроника

Уровень образования: высшее образование - бакалавриат

Форма обучения: Очная

Оценочные материалы по дисциплине Пассивные компоненты электронных схем

Москва 2021

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ РАЗРАБОТАЛ:

Преподаватель (должность)

Подписано электронной подписью ФГБОУ ВО «НИУ «МЭИ»		
Сведения о владельце ЦЭП МЭИ		
Владелец	Воронин И.П.	
Идентификатор	R7098c29a-VoroninIP-ac13e555	
(подпись)		

И.П. Воронин

(расшифровка подписи)

СОГЛАСОВАНО:

Руководитель образовательной программы

(должность, ученая степень, ученое звание)

Заведующий выпускающей кафедры (должность, ученая степень, ученое

звание)

NOSO PER	ой подписью ФГБОУ ВО «НИУ «МЭИ»	
Сведения о владельце ЦЭП МЭИ		ия о владельце ЦЭП МЭИ
	Владелец	Рашитов П.А.
* <u>M</u> ON *	Идентификатор	R66e8dfb1-RashitovPA-1953162c
(поличек)		

(подпись)

ANSO MANAGE	Подписано электронн	ой подписью ФГБОУ ВО «НИУ «МЭИ»
	Сведения о владельце ЦЭП МЭИ	
MOM	Владелец	Асташев М.Г.
	Идентификатор	R7a29e524-AstashevMG-0583186

(подпись)

П.А.

Рашитов

(расшифровка подписи)

 $M.\Gamma.$ Асташев

(расшифровка подписи)

ОБЩАЯ ЧАСТЬ

Оценочные материалы по дисциплине предназначены для оценки: достижения обучающимися запланированных результатов обучения по дисциплине, этапа формирования запланированных компетенций и уровня освоения дисциплины.

Оценочные материалы по дисциплине включают оценочные средства для проведения мероприятий текущего контроля успеваемости и промежуточной аттестации.

Формируемые у обучающегося компетенции:

- 1. ПК-1 Способен строить физические и математические модели принципиальных схем, блоков, устройств и установок электроники и наноэлектроники, осуществлять моделирование и анализ с использованием стандартных программных средств компьютерного моделирования
 - ИД-1 Знает базовые структуры, характеристики и математические модели активных и пассивных компонентов электронных схем

и включает:

для текущего контроля успеваемости:

Форма реализации: Письменная работа

- 1. Конденсаторы (Контрольная работа)
- 2. Магнитные компоненты (Контрольная работа)
- 3. Пассивные компоненты с распределенными параметрами (Контрольная работа)
- 4. Резисторы (Контрольная работа)

БРС дисциплины

4 семестр

	Веса контрольных мероприятий, %				
Раздел дисциплины	Индекс	КМ-	КМ-	КМ-	КМ-
газдел дисциплины	KM:	1	2	3	4
	Срок КМ:	4	8	12	15
Резисторы и резистивные материалы					
Резистор как пассивный компонент электронной	схемы	+			
Конденсаторы и конденсаторные материалы					
Конденсатор как пассивный компонент электронной схемы			+		
Магнитные компоненты и материалы					
Дроссель и трансформатор как пассивные компоненты электронной схемы				+	
Пассивные компоненты с распределенными параметрами					
Пассивные компоненты с распределенными пара конструкциях силовых схем	метрами в				+
Bec KM:		25	25	25	25

\$Общая часть/Для промежуточной аттестации\$

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ТЕКУЩЕГО КОНТРОЛЯ

I. Оценочные средства для оценки запланированных результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций

Индекс	Индикатор	Запланированные	Контрольная точка
компетенции	-	результаты обучения по	
		дисциплине	
ПК-1	ИД-1 _{ПК-1} Знает базовые	Знать:	Резисторы (Контрольная работа)
	структуры,	схемы замещения и	Конденсаторы (Контрольная работа)
	характеристики и	математические модели	Магнитные компоненты (Контрольная работа)
	математические модели	конденсаторов	Пассивные компоненты с распределенными параметрами
	активных и пассивных	схемы замещения и	(Контрольная работа)
	компонентов электронных	математические модели	
	схем	магнитных компонентов	
		схемы замещения и	
		математические модели	
		резисторов	
		схемы замещения и	
		математические модели	
		пассивных компонентов с	
		распределенными	
		параметрами	
		Уметь:	
		рассчитывать потери	
		мощности в дросселях	
		рассчитывать потери	
		мощности в конденсаторах	
		рассчитывать потери	
		мощности в резисторах	
		определять параметры	
		схем замещения пассивных	
		компонентов с	

	паспреледенными	
	распределенными	
	параметрами	

II. Содержание оценочных средств. Шкала и критерии оценивания

КМ-1. Резисторы

Формы реализации: Письменная работа

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 25

Процедура проведения контрольного мероприятия: Каждый студент получает

индивидуальное задание.

Краткое содержание задания:

Умение рисовать эквивалентную схему резистора и определять ее параметры, расчитывать потери в резисторах.

Контрольные вопросы/задания:	
Знать: схемы замещения и	1. Через проволочный резистор сопротивлением R
математические модели	протекает синусоидальный ток амплитудой Імакс.
резисторов	Удельная мощность рассеяния тепла для материала
	проволоки Ро. Диаметр изолирующего основания
	резистора D . Определить минимально необходимую
	длину ${f L}$ изолирующего основания.
	$2.$ Тонкая пленка резистора сопротивлением ${f R}$ имеет
	толщину d и ширину b . Определить длину пленки L ,
	если удельная электропроводность материала пленки
	равна σ.
	3. Заданная плотность тока для стабильного
	проволочного резистора сопротивлением ${f R}$ равна ${f J}$.
	Определить необходимый диаметр проволоки \mathbf{d} , если
	к резистору приложено выпрямленное
	синусоидальное напряжение двухполупериодной
	формы с амплитудой Uмакс .
	4.Определить удельное поверхностное
	сопротивление пленки рп, если через пленочный
	резистор протекает выпрямленный синусоидальный
	ток однополупериодной формы с амплитудой Імакс.
	При этом в резисторе выделяется средняя мощность
	PR.
	Геометрические размеры пленки: длина ${f L}$ и ширина
	b.
Уметь: рассчитывать потери	1. Нарисовать эквивалентную схему замещения
мощности в резисторах	проволочного резистора на высоких частотах.
	2. Нарисовать эквивалентную схему замещения
	пленочного резистора на высоких частотах.
	3. Рассчитать среднее и действующее значение
	выпрямленного напряжения однополупериодной
	формы.
	4. Рассчитать среднее и действующее значение
	выпрямленного напряжения двухполупериодной
	формы.

Описание шкалы оценивания:

Оиенка: 5

Нижний порог выполнения задания в процентах: 90 Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 70 Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто, выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 50 Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

КМ-2. Конденсаторы

Формы реализации: Письменная работа

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 25

Процедура проведения контрольного мероприятия: Каждый студент получает

индивидуальное задание.

Краткое содержание задания:

Умение рисовать эквивалентную схему конденсатора и определять ее параметры, расчитывать активные потери в диэлектрике конденсатора.

Контрольные во	просы/задания:	
Знать: схемы	замещения и	1. Через конденсатор емкостью С протекает
математические	модели	синусоидальный ток амплитудой Імакс. и частотой f.
конденсаторов		Определить мощность активных потерь в
		диэлектрике, если тангенс диэлектрических потерь
		для данного конденсатора равен $\mathbf{tg}oldsymbol{\delta}$.
		2. Через конденсатор емкостью С протекает
		синусоидальный ток амплитудой Імакс . и частотой f .
		При этом мощность активных потерь в диэлектрике
		составляет значение Р. Определить величину
		сопротивлений последовательного и параллельного
		резисторов для соответствующих схем замещения
		конденсатора.
		3. Напряжение между обкладками конденсатора
		поддерживается на постоянном уровне и составляет
		величину Uc. Как изменится поверхностная
		плотность заряда о на обкладках конденсатора, если
		увеличить в М раз ширину металлизированных
		обкладок конденсатора и уменьшить в N раз
		толщину диэлектрика между обкладками
		конденсатора.
		4.К двум последовательно соединенным
		конденсаторам емкостью С1 и С2 подключили
		параллельно дополнительный конденсатор.
		Определить емкость С3 дополнительного

	конденсатора, если после его подключения эквивалентная емкость системы конденсаторов увеличилась в M раз.
Уметь: рассчитывать потери мощности в конденсаторах	1. Нарисовать эквивалентную схему замещения неполярного конденсатора на высоких частотах. 2. Нарисовать эквивалентную схему замещения полярного конденсатора на высоких частотах. 3. Нарисовать эквивалентную схему последовательного соединения трех конденсаторов с учетом потерь в диэлектрике. 4. Нарисовать эквивалентную схему параллельного соединения трех конденсаторов с учетом потерь в диэлектрике.

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 50 Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

КМ-3. Магнитные компоненты

Формы реализации: Письменная работа

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 25

Процедура проведения контрольного мероприятия: Каждый студент получает

индивидуальное задание.

Краткое содержание задания:

Умение рисовать эквивалентную схему дросселя и трансформатора, определять их параметры, расчитывать активные потери в обмотках и сердечнике.

Контрольные вопросы/задания:

	, ·
Знать: схемы замещения и	1.Площадь сечения прямоугольного магнитного
математические модели	сердечника S, средняя длина магнитной силовой
магнитных компонентов	линии Lcp , ширина воздушного зазора G ,
	относительная магнитная проницаемость µ. На
	сердечник намотана обмотка с количеством витков w.
	Используя метод электромагнитной аналогии,
	рассчитать индуктивность обмотки.
	2.Площадь сечения прямоугольного магнитного
	сердечника без зазора равна S, средняя длина
	магнитной силовой линии Lcp, относительная

	магнитная проницаемость µ. На сердечник намотаны две обмотки с количеством витков w1 на первичной стороне и w2 на вторичной. Рассчитать индуктивность намагничивания для первичной и вторичной стороны обмоток. 3.Да приемника энергии, обладающие сопротивлениями R1 и R2, индуктивностями L1 и L2 и взаимной индуктивностью N соединены параллельно и согласованно. Найти эквивалентное комплексное сопротивление данной цепи. 4.Да приемника энергии, обладающие сопротивлениями R1 и R2, индуктивностями L1 и L2 и взаимной индуктивностью N соединены параллельно и встречно. Найти эквивалентное
Уметь: рассчитывать потери мощности в дросселях	комплексное сопротивление данной цепи. 1. Нарисовать эквивалентную схему замещения дросселя с сердечником без зазора и с зазором. 2. Нарисовать эквивалентную схему замещения идеального и реального транфсорматора 3. Нарисовать эквивалентную схему для двух магнитно-связанных дросселей при согласованном включении их обмоток. 4. Нарисовать эквивалентную схему для двух магнитно-связанных дросселей при встречном включении их обмоток.

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 90 Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задани выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 70 Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 50 Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

КМ-4. Пассивные компоненты с распределенными параметрами

Формы реализации: Письменная работа

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 25

Процедура проведения контрольного мероприятия: Каждый студент получает индивидуальное задание.

Краткое содержание задания:

Умение рисовать эквивалентную схему однородной цепи с распределенными параметрами и определять ее параметры.

Контрольные вопросы/задания:

Знать: схемы замещения и	1. Керамическая плата прямоугольной формы
'	± * * ± ±
математические модели	(ширина X, длина Y, толщина Z, относительная
пассивных компонентов с	диэлектрическая проницаемость керамики ϵ) и
распределенными параметрами	металлизированными основаниями помещена в окно
	плоского магнитного сердечника. Площадь сечения
	магнитного сердечника S, средняя длина магнитной
	силовой линии Lcp, ширина воздушного зазора Lo,
	относительная магнитная проницаемость µ. Показать
	каким образом с помощью данной конструкции
	можно построить последовательный LC контур и
	рассчитать его основные параметры.
	2. Керамическая плата прямоугольной формы
	(ширина ${f a}$, длина ${f b}$, толщина ${f c}$, относительная
	диэлектрическая проницаемость керамики ε) и
	металлизированными основаниями помещена в окно
	плоского магнитного сердечника. Площадь сечения
	магнитного сердечника ${f S}$, средняя длина магнитной
	силовой линии Lcp, ширина воздушного зазора Lo,
	относительная магнитная проницаемость µ. Показать
	каким образом с помощью данной конструкции
	можно построить параллельный LC контур и
	рассчитать его основные параметры.
Уметь: определять параметры	1. Нарисовать эквивалентную схему однородной цепи
схем замещения пассивных	с распределенными параметрами.
компонентов с распределенными	2. Нарисовать П-образную эквивалентную схему
параметрами	однородной цепи с распределенными параметрами.

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 90 Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 70 Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 50 Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

4 семестр

Форма промежуточной аттестации: Зачет с оценкой

Пример билета

Нарисовать схему замещения конденсатора с последовательным и параллельным резистором. Определить её основные параметры.

Процедура проведения

Каждый студент получает индивидуальное задание

- I. Перечень компетенций/индикаторов и контрольных вопросов проверки результатов освоения дисциплины
- **1. Компетенция/Индикатор:** ИД- $1_{\Pi K-1}$ Знает базовые структуры, характеристики и математические модели активных и пассивных компонентов электронных схем

Вопросы, задания

- 1. Конструкция проволочного резистора и расчет его основных параметров
- 2. Конструкция пленочного резистора и расчет его основных параметров
- 3. Эквивалентная схема резистора. Расчет средней мощности потерь в резисторе
- 4. Конструкция плоского конденсатора. Расчет емкости плоского конденсатора
- 5. Тангенс диэлектрических потерь, Расчет мощности активных потерь в конденсаторе
- 6. Эквивалентная схема конденсатора. Пульсации напряжения на обкладках конденсатора
- 7. Расчет индуктивности дросселя на магнитном сердечнике с зазором. Расчет мощности активных потерь в дросселе
- 8. Расчет индуктивности дросселя на магнитном сердечнике с неоднородной магнитной проницаемостью
- 9. Расчет последовательного LC контура для конструкции с распределенными параметрами
- 10. Расчет LC фильтра для конструкции с распределенными параметрами

Материалы для проверки остаточных знаний

1. Как изменится индуктивность дросселя, если в три раза увеличить количество его витков?

Ответы:

- а) индуктивность дросселя не изменится
- б) индуктивность дросселя уменьшится в 9 раз
- в) индуктивность дросселя увеличится в 3 раза
- г) индуктивность дросселя увеличится в 9 раз
 - Верный ответ: г) индуктивность дросселя увеличится в 9 раз
- 2. Как изменится индуктивность дросселя, если площадь сечения магнитного сердечника увеличится в два раза?

Ответы:

- а) индуктивность дросселя не изменится
- б) индуктивность дросселя уменьшится в 2 раза
- в) индуктивность дросселя увеличится в 4 раза
- г) индуктивность дросселя увеличится в 2 раза

Верный ответ: г) индуктивность дросселя увеличится в 2 раза

3. Как изменится индуктивность дросселя, если средняя длинна магнитной силовой линии уменьшится в два раза?

Ответы:

- а) индуктивность дросселя не изменится
- б) индуктивность дросселя уменьшится в 2 раза
- в) индуктивность дросселя увеличится в 2 раза
- г) индуктивность дросселя увеличится в 4 раза

Верный ответ: в) индуктивность дросселя увеличится в 2 раза

4. Как изменится сопротивление потерь в последовательной схеме замещения конденсатора, если тангенс диэлектрических потерь в диэлектрике увеличится в три раза?

Ответы:

- а) сопротивление не изменится
- б) сопротивление уменьшится в 3 раза
- в) сопротивление увеличится в 3 раза
- г) сопротивление увеличится в 9 раз

Верный ответ: в) сопротивление увеличится в 3 раза

5. Как изменится сопротивление потерь в параллельной схеме замещения конденсатора, если тангенс диэлектрических потерь в диэлектрике увеличится в три раза?

Ответы:

- а) сопротивление не изменится
- б) сопротивление уменьшится в 3 раза
- в) сопротивление увеличится в 3 раза
- г) сопротивление увеличится в 9 раз

Верный ответ: б) сопротивление уменьшится в 3 раза

6. Через конденсатор протекает переменный ток. Квадрату какого тока пропорциональна средняя активная мощность потерь в диэлектрике конденсатора?

Ответы:

- а) квадрату максимального тока
- б) квадрату мгновенного тока
- в) квадрату среднего тока
- г) квадрату действующего тока

Верный ответ: г) квадрату действующего тока

7. Через резистор протекает переменный ток. Квадрату какого тока пропорциональна средняя мощность потерь в резисторе?

Ответы:

- а) квадрату максимального тока
- б) квадрату мгновенного тока
- в) квадрату среднего тока
- г) квадрату действующего тока

Верный ответ: г) квадрату действующего тока

8. Как изменятся потери мощности в обмотке дросселя, если площадь сечения медного провода уменьшить в два раза при неизменных длине провода и величине действующего тока?

Ответы:

- а) потери мощности увеличатся в 2 раза
- б) потери мощности увеличатся в 4 раза
- в) потери мощности уменьшатся в 4 раза
- г) потери мощности уменьшатся в 2 раза

Верный ответ: а) потери мощности увеличатся в 2 раза

9. Чему равна эквивалентная индуктивность двух обмоток при согласном их соединении, если индуктивности обмоток равны L, а их взаимная индуктивность равна L/2 ?

Ответы:

- a) 2L
- б) 4L
- в) 3L
- г) 2,5L

Верный ответ: в) 3L

10. Чему равна эквивалентная индуктивность двух обмоток при встречном их соединении, если индуктивности обмоток равны L, а их взаимная индуктивность равна L/2?

Ответы:

- a) L
- б) 2L
- в) 3L
- г) 0,5L

Верный ответ: a) L

11.Индуктивность намагничивания первичной обмотки трансформатора равна L, а индуктивность намагничивания вторичной равна 4L. Чему равна взаимная индуктивность обмоток?

Ответы:

- a) L
- б) 2L
- в) 4L
- г) 8L

Верный ответ: б) 2L

12.Индуктивность намагничивания первичной обмотки трансформатора равна L, а индуктивность намагничивания вторичной равна 4L. Чему равно отношение витков первичной обмотки ко вторичной?

Ответы:

- a) 1
- 6)0,5
- в) 2
- Γ) 0,25

Верный ответ: б) 0,5

II. Описание шкалы оценивания

Оценка: 5

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: Задание выполнено в рамках "продвинутого" уровня. Ответы даны верно, четко сформулированные особенности решений

Оценка: 4

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Задание выполнено в рамках "базового" уровня. Большинство ответов даны верно. Есть незначительные недостатки

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Задание выполнено в рамках "порогового" уровня. Основная часть заданий выполнена в целом верно.

ІІІ. Правила выставления итоговой оценки по курсу

Оценка определяется в соответствии с Положением о балльно-рейтинговой системе для студентов НИУ «МЭИ» на основании семестровой и аттестационной составляющих.