Министерство науки и высшего образования РФ Федеральное государственное бюджетное образовательное учреждение высшего образования «Национальный исследовательский университет «МЭИ»

Направление подготовки/специальность: 11.04.01 Радиотехника

Наименование образовательной программы: Радиотехнические методы и устройства формирования и

обработки сигналов

Уровень образования: высшее образование - магистратура

Форма обучения: Очная

Оценочные материалы по дисциплине Оптические устройства

> Москва 2024

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ РАЗРАБОТАЛ:

Подписано электронной подписью ФГБОУ ВО «НИУ «МЭИ» New New Владимиров С.В. Rlaec6ade-VladimirovSerV-5140f78 Идентификатор

СОГЛАСОВАНО:

Руководитель образовательной программы

Разработчик

100 KIB . CE	Подписано электронной подписью ФГБОУ ВО «НИУ «МЭИ»			
	Сведения о владельце ЦЭП МЭИ			
	Владелец	Торина Е.М.		
» <u>Мэи</u> «	Идентификатор	Rf078b9d4-DrozdovaYM-9d5fc666		

Е.М. Торина

Владимиров

C.B.

Заведующий выпускающей кафедрой

a recommendation of the second	Подписано электронн	ой подписью ФГБОУ ВО «НИУ «МЭИ»		
	Сведения о владельце ЦЭП МЭИ			
Владелец		Остапенков П.С.		
» <u>Мэи</u> »	Идентификатор	R6356f55c-OstapenkovPS-854af18		

Подписано электронной подписью ФГБОУ ВО «НИУ «МЭИ»

П.С. Остапенков

ОБЩАЯ ЧАСТЬ

Оценочные материалы по дисциплине предназначены для оценки: достижения обучающимися запланированных результатов обучения по дисциплине, этапа формирования запланированных компетенций и уровня освоения дисциплины.

Оценочные материалы по дисциплине включают оценочные средства для проведения мероприятий текущего контроля успеваемости и промежуточной аттестации.

Формируемые у обучающегося компетенции:

- 1. ПК-2 Способность разрабатывать и модернизировать радиоэлектронные устройства и блоки
 - ИД-1 Разрабатывает структурные, функциональные и принципиальные схемы радиоэлектронных устройств

и включает:

для текущего контроля успеваемости:

Форма реализации: Выполнение задания

1. Расчетное задание (Проверочная работа)

Форма реализации: Письменная работа

- 1. Контрольное задание № 1 (Проверочная работа)
- 2. Контрольное задание № 2 (Проверочная работа)
- 3. Контрольное задание № 3 (Проверочная работа)

БРС дисциплины

3 семестр

	Веса контрольных мероприятий, %				
Doower wygyym wy y	Индекс	КМ-	КМ-	КМ-	КМ-
Раздел дисциплины	KM:	1	2	3	4
	Срок КМ:	4	8	12	15
Физические основы оптической обработки информации.					
Электродинамика в оптике		+	+		
Отражение и преломление света на границе раздела двух сред. Основы скалярной теории дифракции.			+		
Интерференция света. Геометрическая оптика. Распространение оптического излучения в изотропных средах.			+		
Компоненты оптических систем обработки информации					
Оптические преобразования и оптические системы.			+	+	
Базовые элементы оптических процессоров.			+	+	
Запись и обработка оптической информации					
Запись и обработка оптической информации				+	+

Акустооптические процессоры.					
Акустооптический модулятор.				+	+
Акустооптические процессоры корреляционного и спектрального типа.				+	+
	Bec KM:	20	20	20	40

^{\$}Общая часть/Для промежуточной аттестации\$

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ТЕКУЩЕГО КОНТРОЛЯ

I. Оценочные средства для оценки запланированных результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций

Индекс	Индикатор	Запланированные	Контрольная точка
компетенции	_	результаты обучения по	
		дисциплине	
ПК-2	ИД-1пк-2 Разрабатывает	Знать:	Контрольное задание № 1 (Проверочная работа)
	структурные,	основные типы оптических	Контрольное задание № 2 (Проверочная работа)
	функциональные и	приборов, их параметры и	Контрольное задание № 3 (Проверочная работа)
	принципиальные схемы	физические модели,	Расчетное задание (Проверочная работа)
	радиоэлектронных	зависимости	
	устройств	характеристик и	
		параметров от условий	
		эксплуатации	
		общие принципы	
		построения и	
		функционирования	
		оптических систем	
		различного типа	
		Уметь:	
		применять методы расчета	
		и математического	
		моделирования для	
		анализа работы	
		простейших оптических	
		узлов аппаратуры	

II. Содержание оценочных средств. Шкала и критерии оценивания

КМ-1. Контрольное задание № 1

Формы реализации: Письменная работа

Тип контрольного мероприятия: Проверочная работа

Вес контрольного мероприятия в БРС: 20

Процедура проведения контрольного мероприятия: Каждый студент получает билет с

вопросами.

Краткое содержание задания:

Необходимо ответить на вопросы:

- 1. Явления дифракции
- 2. Модель плоской электромагнитной волны
- 3. Поляризация электромагнитных волн
- 4. Метод расчета рупорной антенны
- 5. Спектр прямоугольного сигнала

Контрольные вопросы/задания:

Знать:	общие	принципы	1. Цилиндрическая модель электромагнитной волны.
построен	ия и функц	ионирования	2.Сферическая модель электромагнитной волны.
оптически	их систем	различного	3.Интерференция электромагнитных волн.
типа		_	4.Дифракция Френеля.

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-2. Контрольное задание № 2

Формы реализации: Письменная работа

Тип контрольного мероприятия: Проверочная работа

Вес контрольного мероприятия в БРС: 20

Процедура проведения контрольного мероприятия: Каждый студент получает билет с вопросами.

Краткое содержание задания:

1. 1. Диэлектрический волоконный градиентный световод имеет аксиально-симметричное распределение показателя преломления

n(r) = 2,5-1,2(r/R)2,

rде r — расстояние от оси волновода до точки наблюдения, R — радиус волновода. Определить вид и параметры траектории лучей в световоде.

2. Диаметр лазерного пучка на выходе оптического квантового генератора известен. Рассчитайте параметры оптической схемы коллиматора, увеличивающего диаметр пучка до заданного значения.

Контрольные вопросы/задания:

nonipolibile bonpoebi, suguini.	
Знать: общие принципы	1. Какие два основных вида линз выделяют?
построения и функционирования	2. Что такое функция пропускания тонкой линзы?
оптических систем различного	
типа	
Знать: основные типы	1. Что такое эйконал?
оптических приборов, их	2. Как называются траектории распространения
параметры и физические модели,	световых волн?
зависимости характеристик и	
параметров от условий	
эксплуатации	

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 75

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оиенка: 2

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-3. Контрольное задание № 3

Формы реализации: Письменная работа

Тип контрольного мероприятия: Проверочная работа

Вес контрольного мероприятия в БРС: 20

Процедура проведения контрольного мероприятия: Каждый студент получает билет с вопросами.

Краткое содержание задания:

- 1.Постоянная составляющая тока лавинного фотодиода равна 10 = 20 мкА. Определить мощность падающего на фотодиод излучения, если его длина волны равна 1=0,63 мкм, квантовая эффективность выхода фотодетектора -0,2, а коэффициент лавинного размножения -30.
- 2. Принцип действия голографического фильтра Вандер-Люгта. Получение заданной комплексной функции пропускания фильтра. Ответ поясните оптическими схемами.

Контрольные вопросы/задания:

топтрольные вопросы/задания:	
Знать: основные типы	1. Назовите виды когерентных источников.
оптических приборов, их	2. Что такое квантовая эффективность?
параметры и физические модели,	3. Что такое темновой ток?
зависимости характеристик и	
параметров от условий	
эксплуатации	
Уметь: применять методы	1.Поясните схему записи голограммы (схема Лейта-
расчета и математического	Упатнискса)
моделирования для анализа работы простейших оптических узлов аппаратуры	зеркало лазер зеркало фотопластинка
	2.Опишите методику восстановления предметной
	волны.
	3.За счет чего можно добиться одномодового режима
	работы когерентного источника излучения?
	4.Изобразите схему включения фотодиода.

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 75

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

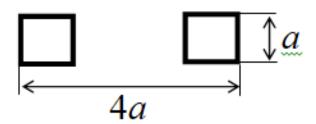
Оценка: 2

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-4. Расчетное задание

Формы реализации: Выполнение задания

Тип контрольного мероприятия: Проверочная работа


Вес контрольного мероприятия в БРС: 40

Процедура проведения контрольного мероприятия: Каждый студент получает

индивидуальное задание.

Краткое содержание задания:

1. Рассчитать дифракционную картину в зоне Фраунгофера, образующуюся при нормальном падении плоской монохроматической волны на непрозрачный экран с двумя квадратными отверстиями.

2. Акустооптический модулятор (AOM), имеющий параметры: толщина звукопровода - 4 мм, длина звукопровода – 30 мм, скорость распространения акустической волны в материале звукопровода – 750 м/с, освещается широким коллимированным оптическим пучком с длиной волны 0,63 мкм, падающим под углом $2,4^{\circ}$ к оптической оси системы. На пьезопреобразователь AOM подается электрический сигнал вида

$$u(t) = 5\cos(6.3 \cdot 10^8 t - 30^\circ),$$
 B.

3. Опишите акустооптические корреляторы с временным интегрированием (АОКВИ). Схема и принцип действия видеочастотного АОКВИ (прямой алгоритм). Определите разрешающую способность анализатора спектра оптического диапазона волн, построенного на базе дифракционной решетки. Что такое период решетки, порядок дифракции?

Контрольные вопросы/задания:

Уметь: применять методы	1.Приведите примеры пространственной
расчета и математического	фильтрации.
моделирования для анализа	2.Приведите функциональную схему
работы простейших оптических	акустооптического анализатора спектра с временным
узлов аппаратуры	интегрированием (АОСВИ).

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 75

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 60 Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 50 Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

3 семестр

Форма промежуточной аттестации: Зачет с оценкой

Пример билета

- 1. Изобразите функциональную схему и опишите принцип действия пространственного фильтра. Что понимается под коэффициентом передачи пространственного фильтра?
- 2. Акустооптические корреляторы с временным интегрированием (АОКВИ). Схема и принцип действия радиочастотного АОКВИ (косвенный алгоритм).
- 3. Определите мощность излучения с длиной волны 0,56 мкм, падающего на фотокатод фотоэлектронного умножителя, если известно, что квантовая эффективность фотокатода равна 0,05, коэффициент умножения Φ ЭУ 2x10*6, а среднее значение анодного тока 0,05 мА.

Процедура проведения

Зачет проводится по билетам. Каждый билет содержит 3 вопроса.

- I. Перечень компетенций/индикаторов и контрольных вопросов проверки результатов освоения дисциплины
- **1. Компетенция/Индикатор:** ИД- $1_{\Pi K-2}$ Разрабатывает структурные, функциональные и принципиальные схемы радиоэлектронных устройств

Вопросы, задания

- 1. Акустооптические модуляторы (АОМ). Принцип действия, параметры и режимы работы АОМ.
- 2. Акустооптические процессоры корреляционного типа с пространственным интегрированием (АОКПИ).
- 3. Акустооптические корреляторы с временным интегрированием (АОКВИ).

Материалы для проверки остаточных знаний

1.Выберите правильный ответ (один или несколько)

Какие математические модели электромагнитных волн существуют?

Ответы:

- а) Плоская волна
- б) Сферическая волна
- в) Цилиндрическая волна
- г) Каноническая волна

Верный ответ: а) Плоская волна б) Сферическая волна в) Цилиндрическая волна

2.Выберите правильный ответ (один или несколько)

Поверхности равных фаз называются?

Ответы:

- а) Равнофазовыми поверхностями
- б) Геометрическими волновыми фронтами
- в) Потенциальными поверхностями
- г) Гранулитами

Верный ответ: б) Геометрическими волновыми фронтами

3.Выберите правильный ответ (один или несколько)

Траектории распространения световых волн, направленные по нормали к волновому фронту, называются...

Верный ответ: а) Волновыми каналами б) Световыми полосами в) Лучами г) Квантовыми путями

4. Выберите правильный ответ (один или несколько)

Какие оптические волокна используются в системах связи для передачи информации?

Ответы:

- а) Многомодовое волокно
- б) Одномодовое волокно
- в) Диффузионное волокно
- г) Градиентное волокно

Верный ответ: а) Многомодовое волокно б) Одномодовое волокно г) Градиентное волокно

5.Выберите правильный ответ (один или несколько)

Из перечисленных фотодетекторов выберите детектор с наибольшей квантовой эффективностью.

Ответы:

- а) Фоторезистор
- б) Фототранзистор
- в) Фотодиод
- г) ФЭУ

Верный ответ: г) ФЭУ

II. Описание шкалы оценивания

Оценка: 5

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Работа выполнена в рамках "продвинутого" уровня. Ответы даны верно, четко сформулированные особенности практических решений

Оиенка: 4

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Работа выполнена в рамках "базового" уровня. Большинство ответов даны верно. В части материала есть незначительные недостатки

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Работа выполнена в рамках "порогового" уровня. Основная часть задания выполнена верно. на вопросы углубленного уровня

Оценка: 2

Описание характеристики выполнения знания: Работа не выполнена или выполнена преимущественно неправильно

III. Правила выставления итоговой оценки по курсу

Итоговая оценка ставится на основании зачета и оценок за предыдущие контрольные мероприятия.