Министерство науки и высшего образования РФ Федеральное государственное бюджетное образовательное учреждение высшего образования

«Национальный исследовательский университет «МЭИ»

Направление подготовки/специальность: 11.04.01 Радиотехника

Наименование образовательной программы: Радиотехнические системы

Уровень образования: высшее образование - магистратура

Форма обучения: Очная

Рабочая программа дисциплины МАТЕМАТИЧЕСКИЕ МЕТОДЫ ЭЛЕКТРОДИНАМИКИ

Блок:	Блок 1 «Дисциплины (модули)»
Часть образовательной программы:	Часть, формируемая участниками образовательных отношений
№ дисциплины по учебному плану:	Б1.Ч.05.02.02
Трудоемкость в зачетных единицах:	3 семестр - 3;
Часов (всего) по учебному плану:	108 часов
Лекции	3 семестр - 16 часов;
Практические занятия	3 семестр - 16 часов;
Лабораторные работы	не предусмотрено учебным планом
Консультации	проводится в рамках часов аудиторных занятий
Самостоятельная работа	3 семестр - 75,7 часа;
в том числе на КП/КР	не предусмотрено учебным планом
Иная контактная работа	проводится в рамках часов аудиторных занятий
включая: Тестирование Контрольная работа Расчетно-графическая работа	
Промежуточная аттестация:	
Зачет с оценкой	3 семестр - 0,3 часа;

Москва 2020

ПРОГРАММУ СОСТАВИЛ:

Преподаватель

(должность)

10 1030 Per	Подписано электронн	ой подписью ФГБОУ ВО «НИУ «МЭИ»
2 818 1000 1000 1000 1000	Сведен	ия о владельце ЦЭП МЭИ
	Владелец	Михайлов М.С.
» <u>МэИ</u> «	Идентификатор	R88495daf-MikhailovMS-74da3f0e

(подпись)

М.С. Михайлов (расшифровка подписи)

СОГЛАСОВАНО:

Руководитель образовательной программы

(должность, ученая степень, ученое звание)

Заведующий выпускающей кафедры

(должность, ученая степень, ученое звание)

NC-BELLOBATE PAGE	Подписано электронн	ой подписью ФГБОУ ВО «НИУ «МЭИ»
100 100 100 100 100 100 100 100 100 100	Сведен	ия о владельце ЦЭП МЭИ
-	Владелец	Комаров А.А.
» <u>М≎И</u> «	Идентификатор	R8495daf1-KomarovAlA-eada3f0e

(подпись)

NOSO NOSO	Подписано электрон	ной подписью ФГБОУ ВО «НИУ «МЭИ»
	Сведе	ения о владельце ЦЭП МЭИ
	Владелец	Комаров А.А.
» <u>М≎И</u> «	Идентификатор	R8495daf1-KomarovAlA-eada3f0e

(подпись)

А.А. Комаров

(расшифровка подписи)

А.А. Комаров

(расшифровка подписи)

1. ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Цель освоения дисциплины: состоит в изучении математических методов прикладной электродинамики, дающих представление о совокупности математических методов, используемых в электродинамике, формулировке математических моделей, выборе методов и алгоритмов, применяемых при разработке пакетов прикладных программ.

Задачи дисциплины

- изучение совокупности математических методов, применяемых в современной электродинамике, с упором на их практическое применение;
- освоение методов выбора конкретных решений при разработке математических моделей антенн и СВЧ/КВЧ устройств и систем.

Формируемые у обучающегося компетенции и запланированные результаты обучения по дисциплине, соотнесенные с индикаторами достижения компетенций:

Код и наименование компетенции	Код и наименование индикатора достижения компетенции	Запланированные результаты обучения
ПК-1 Способен проводить исследования в целях совершенствования радиоэлектронных систем	ИД-3 _{ПК-1} Разрабатывает алгоритмы и проводит исследования в целях совершенствования функциональных узлов радиоэлектронных систем	знать: - математические методы анализа практических задач прикладной электродинамики, антенн, СВЧ/КВЧ устройств и систем; - математические модели процессов и явлений, лежащих в основе решения практических задач прикладной электродинамики, антенн, СВЧ/КВЧ устройств и систем. уметь: - формулировать и решать задачи, грамотно использовать математический аппарат, включающий аналитические, численные, асимптотические, гибридные методы для решения практических задач прикладной электродинамики, антенн, СВЧ/КВЧ устройств и систем;; - применять программы расчета электромагнитных полей антенн и СВЧ/КВЧ устройств и систем.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ ВО

Дисциплина относится к основной профессиональной образовательной программе Радиотехнические системы (далее – ОПОП), направления подготовки 11.04.01 Радиотехника, уровень образования: высшее образование - магистратура.

Базируется на уровне среднего общего образования.

Результаты обучения, полученные при освоении дисциплины, необходимы при выполнении выпускной квалификационной работы.

3. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

3.1 Структура дисциплины Общая трудоемкость дисциплины составляет 3 зачетных единицы, 108 часов.

	D/	В			Распр	еделе	ние труд	цоемкости	праздела (в часах) по ви	дам учебно	й работы				
No	Разделы/темы дисциплины/формы	асод	стр	стр	стр	стр				Конта	ктная раб	ота				СР	Содержание самостоятельной работы/
п/п	промежуточной	0 48 0 43	Семестр					льтация	ИК	P		Работа в	Подготовка к	методические указания			
	аттестации	Всего часов на раздел	ű	Лек	Лаб	Пр	КПР	ГК	ИККП	ТК	ПА	семестре	аттестации /контроль				
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15			
1	Введение в дисциплину, постановка задачи, актуальность дисциплины. Обзор программных продуктов.	14	3	2	-	2	-	-	-	-	-	10	-	<u>Изучение материалов литературных</u> <u>источников:</u> [2], стр. 517-528			
1.1	Введение в дисциплину, постановка задачи, актуальность дисциплины. Обзор программных продуктов.	14		2	-	2	-	-	-	-	-	10	-				
2	Основные положения электродинамики: уравнения Максвелла и интегральные соотношения, среды, поверхности и граничные условия.	20		4	-	4	-	-	-	-	-	12	-	<u>Изучение материалов литературных</u> <u>источников:</u> [1], стр.86-103 [2], стр. 16-58			
2.1	Основные положения электродинамики: уравнения Максвелла и интегральные соотношения, среды, поверхности и граничные условия.	20		4	-	4	-	-	-	-	-	12	-				

	11	1.0		1	1 2		1	T	T	1	1.2	I	77
3	Излучение в свободное пространство и параметры антенн	16	2	-	2	-	-	-	-	-	12	-	<u>Изучение материалов литературных</u> <u>источников:</u> [2], стр. 169-193
3.1	Излучение в свободное пространство и параметры антенн	16	2	-	2	-	-	-	-	-	12	-	
4	Электродинамика СВЧ многополюсников	10	2	-	2	-	-	-	-	-	6	-	<u>Изучение материалов литературных</u> <u>источников:</u> [2], стр. 568-584
4.1	Электродинамика СВЧ многополюсников	10	2	-	2	-	-	-	-	-	6	-	
5	Асимптотические и гибридные методы решения граничных задач	16	2	-	2	-	-	-	-	-	12	-	<u>Изучение материалов литературных</u> <u>источников:</u> [3], стр. 22-57
5.1	Асимптотические и гибридные методы решения граничных задач	16	2	-	2	-	-	-	-	-	12	-	
6	Строгие численные методы решения электродинамических задач	14	4	-	4	-	-	-	-	-	6	-	<u>Изучение материалов литературных</u> <u>источников:</u> [1], стр. 129-142
6.1	Строгие численные методы решения электродинамических задач	14	4	-	4	-	-	-	-	-	6	-	
	Зачет с оценкой	18.0	-	-	-	-	-	-	-	0.3	-	17.7	
	Всего за семестр	108.0	16	-	16	-	-	-	-	0.3	58	17.7	
	Итого за семестр	108.0	16	-	16		-	-		0.3		75.7	

Примечание: Лек – лекции; Лаб – лабораторные работы; Пр – практические занятия; КПР – аудиторные консультации по курсовым проектам/работам; ИККП – индивидуальные консультации по курсовым проектам/работам; ГК- групповые консультации по разделам дисциплины; СР – самостоятельная работа студента; ИКР – иная контактная работа; ТК – текущий контроль; ПА – промежуточная аттестация

3.2 Краткое содержание разделов

1. Введение в дисциплину, постановка задачи, актуальность дисциплины. Обзор программных продуктов.

- 1.1. Введение в дисциплину, постановка задачи, актуальность дисциплины. Обзор программных продуктов.
- 1.1. Цели и задачи курса, его актуальность. 1.2. Современные системы электродинамического моделирования (ЭДМ) и их краткая характеристика. 1.3. Системы 3-х мерного и 2.5 мерного моделирования. 1.4. Метода решения граничных задач электродинамики и их краткая характеристика. 1.5. Сравнительный анализ решения задач электродинамики с помощью программных про-дуктов, использующих различные методы..

2. Основные положения электродинамики: уравнения Максвелла и интегральные соотношения, среды, поверхности и граничные условия.

- 2.1. Основные положения электродинамики: уравнения Максвелла и интегральные соотношения, среды, поверхности и граничные условия.
- 2.1. Уравнения Максвелла и квадратичные (интегральные) соотношения для электромагнит-ного поля: закон сохранения энергии, теорема взаимности, теорема эквивалентности, един-ственность решения. 2.2. Среды в системах ЭДМ, виды сред и их описание, изотропные магнито-диэлектрики, анизотропные среды, металлы, гиротропные среды, бианизотропные (киральные) среды, ме-таматериалы. 2.3. Поверхности и граничные условия. Идеальные электрическая и магнитная стенки, импедансные непрозрачные стенки: изотропные, анизотропные, нелокальные импедансные граничные условия, условия Щукина-Леонтовича Сосредоточенные элементы и R,L,C граничные условия. Поверхности излучения и идеально согласованные слои, поверхности симметрии и принцип зеркального изображения. Периодические граничные условия, теория Флоке..

3. Излучение в свободное пространство и параметры антенн

- 3.1. Излучение в свободное пространство и параметры антенн
- 3.1. Функция Грина свободного пространства. Дальняя зона и представление функции Грина в дальней зоне. Электромагнитное поле в дальней зоне. 3.2. Диаграмма направленности, виды диаграмм направленности: по вектору Пойнтинга, по полю, амплитудная и фазовая диаграммы. 3.3. Вторичные параметры антенн: коэффициент направленного действия, коэффициент усиления, реализованный коэффициент усиления. 3.4. Поляризационные параметры поля излучения: типовые виды поляризации поля, коэффициент эллиптичности, кросс-поляризация и поляризационные потери..

4. Электродинамика СВЧ многополюсников

- 4.1. Электродинамика СВЧ многополюсников
- 4.1. Собственные волны линий передачи, задачи на собственные волны, параметры собственных волн, обобщенные амплитуды собственных волн, обобщенные напряжения и ток в линии передачи. 4.2. Волновой и сосредоточенный порты, порты и собственные волны, пределы применимо-сти сосредоточенных портов. 4.3. Матричное описание СВЧ многополюсников, одномодовые матрицы рассеяния и матрицы передачи, многомодовые и обобщенные матрицы рассеяния, декомпозиция СВЧ схем, пределы применимости декомпозиции. 4.4. Анализ сложных СВЧ схем, метод матрицы рассеяния соединений, блок Schematic. 4.5. Матрицы рассеяния недиссипативных и взаимных многополюсников. 4.6.

Матрицы рассеяния симметричных четырехполюсников, шестиполюсников и восьмиполюсников...

5. Асимптотические и гибридные методы решения граничных задач

- 5.1. Асимптотические и гибридные методы решения граничных задач
- 6.1. Метод геометрической оптики, лучевые трубки и закон сохранения энергии, лучи и трассировка в геометрической оптике. 6.2. Теорема эквивалентности и метод физической оптики, применение метода физической оптики для решения задач рассеяния на объектах с большими электрическими размерами. 6.3. Метод геометрической теории дифракции. Ключевые структуры и ключевые задачи. Дифракция плоской волны на металлическом клине. Представление поля в рамках метода геометрической теории дифракции. 6.4. Метод физической теории дифракции. Понятие краевой волны электрического тока. Представление рассеянного поля в рамках метода физической теории дифракции. 6.5. Гибридные методы решения задач рассеяния. Метод интегральных уравнений в сочета-нии с методом физической оптики..

6. Строгие численные методы решения электродинамических задач

- 6.1. Строгие численные методы решения электродинамических задач
- 5.1. Метод интегральных уравнений для трехмерных структур, вывод интегральных уравне-ний, базисные и тестовые функции, метод Галеркина, использование априорной информации при выборе базисных функций, переход от интегрального уравнения к системе линейных алгебраических уравнений (СЛАУ). 5.2. Метод интегральных уравнений для 2.5 мерных структур, анализ печатных схем СВЧ, функция Грина плоско-слоистой структуры, применение магнитных токов для анализа щелевых структур. 5.3. Метод конечных элементов в частотной области, дискретизация пространства, базисные функции в виде интерполяционных полиномов, функционалы поля, минимизация функцио-нала поля, формирование СЛАУ на примере анализа коаксиальной линии передачи с про-водниками произвольной формы..

3.3. Темы практических занятий

- 1. Базовые блоки современных систем электродинамического моделирования: ввод исходных данных, алгоритм решения задачи и представление результатов;
- 2. Среды и поверхности в системах ЭДМ, основные виды поверхностей и граничных условий;
- 3. Виртуальные поверхности в системах ЭДМ: поверхности симметрии и их применение, по-верхности излучения и идеально согласованные слои;
- 4. Собственные волны линий передачи и порты;
- 5. Периодические структуры, граничные условия периодичности, порты Флоке, применение периодических граничных условий для анализа фазированных антенных решеток;
- 6. Методы геометрической и физической оптики, рассеяние электромагнитных волн на объ-ектах больших электрических размеров;
- 7. Методы дискретизации уравнений Максвелла, сводящие задачу электродинамики к системе линейных алгебраических уравнений: метод конечных элементов, метод интегральных уравнений.

3.4. Темы лабораторных работ

не предусмотрено

3.5 Консультации

3.6 Тематика курсовых проектов/курсовых работ Курсовой проект/ работа не предусмотрены

3.7. Соответствие разделов дисциплины и формируемых в них компетенций

5.7. Соответствие разделов дисциплины и формируемых в	IIIA KUMIICICII	A KI KI	**					
			Ho	мер	разд	ела		Оценочное средство
Запланированные результаты обучения по дисциплине	Коды		дис	цип	лині	ы (в		(тип и наименование)
(в соответствии с разделом 1)	индикаторов	co	отве	тсте	вии с	с п.3	.1)	
· · · · · · · · · · · · · · · · · · ·	_	1	2	3	4	5	6	
Знать:								
математические модели процессов и явлений, лежащих в								Тестирование/Тест «Математические
основе решения практических задач прикладной	ИД-3 _{ПК-1}			+	+			модели антенн и устройств
электродинамики, антенн, СВЧ/КВЧ устройств и систем								СВЧ/КВЧ»
математические методы анализа практических задач								Тестирование/Тест «Основные
прикладной электродинамики, антенн, СВЧ/КВЧ устройств и	ИД-3 _{ПК-1}	+	+					понятия и положения
систем								вычислительной электродинамики»
Уметь:								
применять программы расчета электромагнитных полей	ИД-3 _{ПК-1}						+	Расчетно-графическая работа/Защита
антенн и СВЧ/КВЧ устройств и систем	ИД-ЗПК-1							расчетного задания
формулировать и решать задачи, грамотно использовать								Контрольная работа/Контрольная
математический аппарат, включающий аналитические,								работа «Анализ излучения
численные, асимптотические, гибридные методы для								прямоугольной апертуры в
решения практических задач прикладной электродинамики,	ИД-3 _{ПК-1}				+	+		приближении физической оптики»
антенн, СВЧ/КВЧ устройств и систем;								Тестирование/Тест «Методы решения
								граничных задач электродинамики»
	1							трапичных задач электродинамики»

4. КОМПЕТЕНТНОСТНО-ОРИЕНТИРОВАННЫЕ ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ КОНТРОЛЯ ОСВОЕНИЯ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ (ТЕКУЩИЙ КОНТРОЛЬ УСПЕВАЕМОСТИ, ПРОМЕЖУТОЧНАЯ АТТЕСТАЦИЯ ПО ДИСЦИПЛИНЕ)

4.1. Текущий контроль успеваемости

3 семестр

Форма реализации: Письменная работа

- 1. Защита расчетного задания (Расчетно-графическая работа)
- 2. Контрольная работа «Анализ излучения прямоугольной апертуры в приближении физической оптики» (Контрольная работа)
- 3. Тест «Математические модели антенн и устройств СВЧ/КВЧ» (Тестирование)
- 4. Тест «Методы решения граничных задач электродинамики» (Тестирование)
- 5. Тест «Основные понятия и положения вычислительной электродинамики» (Тестирование)

Балльно-рейтинговая структура дисциплины является приложением А.

4.2 Промежуточная аттестация по дисциплине

Зачет с оценкой (Семестр №3)

Оценка определяется в соответствии с Положением о больно-рейтинговой системе для студентов НИУ «МЭИ» на основании семестровой и зачетной составляющих.

Примечание: Оценочные материалы по дисциплине приведены в фонде оценочных материалов ОПОП.

5. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

5.1 Печатные и электронные издания:

- 1. Гринев, А. Ю. Математические основы и методы решения задач электродинамики : учебное пособие по специальностям "Радиотехника", "Радиоэлектронные системы и комплексы" / А. Ю. Гринев, А. И. Гиголо . М. : Радиотехника, 2015 . 216 с. ISBN 978-5-93108-095-6 .;
- 2. Григорьев А. Д.- "Электродинамика и микроволновая техника", (2-е изд.), Издательство: "Лань", Санкт-Петербург, 2021 (704 с.) https://e.lanbook.com/book/167679;
- 3. Комаров, А. А. Асимптотические и численные методы современной электродинамики. Часть 1: учебное пособие по курсу "Специальные вопросы электродинамики" по направлениям "Радиоэлектронные системы и комплексы", "Радиотехника" / А. А. Комаров, М. С. Михайлов, В. А. Пермяков; ред. В. А. Пермяков; Нац. исслед. ун-т "МЭИ". М.: Изд-во МЭИ, 2017. 60 с. ISBN 978-5-7046-1803-4.

 $http://elib.mpei.ru/action.php?kt_path_info=ktcore.SecViewPlugin.actions.document\&fDocumentId=9415.$

5.2 Лицензионное и свободно распространяемое программное обеспечение:

- 1. СДО "Прометей";
- 2. Office;
- 3. Windows;
- 4. Matlab;
- 5. Ansvs:
- 6. Майнд Видеоконференции;

7. Python.

5.3 Интернет-ресурсы, включая профессиональные базы данных и информационносправочные системы:

- 1. ЭБС Лань https://e.lanbook.com/
- 2. ЭБС "Университетская библиотека онлайн" -

http://biblioclub.ru/index.php?page=main_ub_red

- 3. Научная электронная библиотека https://elibrary.ru/
- 4. **База данных ВИНИТИ online** http://www.viniti.ru/
- 5. База данных журналов издательства Elsevier https://www.sciencedirect.com/
- 6. Электронные ресурсы издательства Springer https://link.springer.com/
- 7. База данных Web of Science http://webofscience.com/
- 8. База данных Scopus http://www.scopus.com
- 9. Национальная электронная библиотека https://rusneb.ru/
- 10. ЭБС "Консультант студента" http://www.studentlibrary.ru/
- 11. Электронная библиотека МЭИ (ЭБ МЭИ) http://elib.mpei.ru/login.php

6. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Тип помещения	Номер аудитории,	Оснащение
	наименование	
Учебные аудитории для	Е-612, Учебная	парта со скамьей, стол компьютерный,
проведения лекционных	аудитория каф.	стул, вешалка для одежды, доска меловая,
занятий и текущего	"РТП и АС"	компьютерная сеть с выходом в Интернет,
контроля		мультимедийный проектор, экран,
		компьютер персональный
	Ж-120, Машинный	сервер, кондиционер
	зал ИВЦ	
Учебные аудитории для	Е-612, Учебная	парта со скамьей, стол компьютерный,
проведения практических	аудитория каф.	стул, вешалка для одежды, доска меловая,
занятий, КР и КП	"РТП и АС"	компьютерная сеть с выходом в Интернет,
		мультимедийный проектор, экран,
		компьютер персональный
	Ж-120, Машинный	сервер, кондиционер
	зал ИВЦ	
Учебные аудитории для	Е-612, Учебная	парта со скамьей, стол компьютерный,
проведения	аудитория каф.	стул, вешалка для одежды, доска меловая,
промежуточной	"РТП и АС"	компьютерная сеть с выходом в Интернет,
аттестации		мультимедийный проектор, экран,
		компьютер персональный
	Ж-120, Машинный	сервер, кондиционер
	зал ИВЦ	
Помещения для	E-614,	стол, стол компьютерный, стул, шкаф для
самостоятельной работы	Компьютерный	документов, доска меловая, компьютерная
	класс каф. "РТП и	сеть с выходом в Интернет,
	AC"	мультимедийный проектор, экран,
		компьютер персональный, кондиционер
Помещения для	Е-612, Учебная	парта со скамьей, стол компьютерный,
консультирования	аудитория каф.	стул, вешалка для одежды, доска меловая,
	"РТП и АС"	компьютерная сеть с выходом в Интернет,
		мультимедийный проектор, экран,
		компьютер персональный

Помещения для хранения оборудования и учебного	Е-800/7, Архив каф. "РТП и АС"	стол, стул, шкаф для документов, вешалка для одежды, холодильник
инвентаря		

БАЛЛЬНО-РЕЙТИНГОВАЯ СТРУКТУРА ДИСЦИПЛИНЫ

Математические методы электродинамики

(название дисциплины)

3 семестр

Перечень контрольных мероприятий текущего контроля успеваемости по дисциплине:

- КМ-1 Тест «Основные понятия и положения вычислительной электродинамики» (Тестирование)
- КМ-2 Тест «Математические модели антенн и устройств СВЧ/КВЧ» (Тестирование)
- КМ-3 Тест «Методы решения граничных задач электродинамики» (Тестирование)
- КМ-4 Контрольная работа «Анализ излучения прямоугольной апертуры в приближении физической оптики» (Контрольная работа)
- КМ-5 Защита расчетного задания (Расчетно-графическая работа)

Вид промежуточной аттестации – Зачет с оценкой.

**		Индекс КМ:	KM-	КМ-	КМ-	КМ-	KM-
_	Номер Раздел дисциплины		1	2	3	4	5
раздела	2 30 7 01 7 11 11 11 11	Неделя КМ:	4	8	10	12	15
	Введение в дисциплину, постановка зад	ачи,					
1	актуальность дисциплины. Обзор прогр	аммных					
	продуктов.						
	Введение в дисциплину, постановка зад	ачи,					
1.1	актуальность дисциплины. Обзор прогр	аммных	+				
	продуктов.	. Waaniiaiiia					
2	Основные положения электродинамики Максвелла и интегральные соотношени	• 1					
2	поверхности и граничные условия.	я, среды,					
	Основные положения электродинамики	· waniieiiia					
2.1	Максвелла и интегральные соотношени	• 1	+				
2.1	поверхности и граничные условия.	и, среды,	'				
	Излучение в свободное пространство и	параметры					
3	антенн	1 1					
3.1	Излучение в свободное пространство и	параметры					
5.1	антенн			+			
4	Электродинамика СВЧ многополюсник	ОВ					
4.1	Электродинамика СВЧ многополюсник	ов		+	+	+	
5	Асимптотические и гибридные методы	решения					
3	граничных задач						
5.1	Асимптотические и гибридные методы	решения			+	+	
3.1	граничных задач				7		
6	Строгие численные методы решения						
	электродинамических задач						
6.1	Строгие численные методы решения						+
0.1	электродинамических задач						'

Bec KM, %: 10 10 20 20
