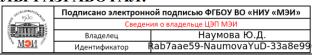
Министерство науки и высшего образования РФ Федеральное государственное бюджетное образовательное учреждение высшего образования «Национальный исследовательский университет «МЭИ»

Направление подготовки/специальность: 11.04.01 Радиотехника

Наименование образовательной программы: Радиотехнические системы

Уровень образования: высшее образование - магистратура


Форма обучения: Очная

Оценочные материалы по дисциплине Устройства приема и обработки сигналов

Москва 2025

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ РАЗРАБОТАЛ:

Разработчик

Ю.Д. Наумова

СОГЛАСОВАНО:

Руководитель образовательной программы

O HOUSE HOUSE	Подписано электронной подписью ФГБОУ ВО «НИУ «МЭИ»		
МЭИ	Сведения о владельце ЦЭП МЭИ		
	Владелец	Комаров А.А.	
	Идентификатор	R8495daf1-KomarovAlA-eada3f0e	

А.А. Комаров

Заведующий выпускающей кафедрой

O HE STATE OF THE	Подписано электронн	ой подписью ФГБОУ ВО «НИУ «МЭИ»
San Company	Сведен	ия о владельце ЦЭП МЭИ
	Владелец	Комаров А.А.
³ M ⊙ M ≶	Илонтификатор	R8495daf1-KomarovAIA-eada3f0e

А.А. Комаров

ОБЩАЯ ЧАСТЬ

Оценочные материалы по дисциплине предназначены для оценки достижения обучающимися запланированных результатов обучения по дисциплине, этапа формирования запланированных компетенций и уровня освоения дисциплины.

Оценочные материалы по дисциплине включают оценочные средства для проведения мероприятий текущего контроля успеваемости и промежуточной аттестации.

Формируемые у обучающегося компетенции:

- 1. ОПК-1 Способен представлять современную научную картину мира, выявлять естественнонаучную сущность проблем, определять пути их решения и оценивать эффективность сделанного выбора
 - ИД-1 Представляет современную научную картину мира, выявляет естественнонаучную сущность проблемы проектирования, производства и использования в практической деятельности радиоэлектронных устройств и систем ИД-2 Формулирует задачи, направленные на проведение исследований, проектирование и использование в практической деятельности радиоэлектронных устройств и систем, определяет пути их решения и оценивает эффективность выбора

и включает:

для текущего контроля успеваемости:

Форма реализации: Письменная работа

- 1. Алгоритмы оценки параметров в оптимальных корреляционных приемниках различного назначения (Контрольная работа)
- 2. Расчет характеристик РПУ при действии на входе смеси сигнала и шума (Контрольная работа)
- 3. Согласованные фильтры для импульсных сигналов (Контрольная работа)

Форма реализации: Проверка задания

1. Исследование на модели оптимального приемника импульсного сигнала (Лабораторная работа)

Форма реализации: Смешанная форма

- 1. Моделирование схемы формирования НЧ квадратурных составляющих и демодулятора АМ сигналов. Формирование квадратурного сигнала с помощью фильтра Гильберта (Лабораторная работа)
- 2. Прохождение смеси сигнала и шума через радиоприемный тракт (Лабораторная работа)

БРС дисциплины

1 семестр

Перечень контрольных мероприятий <u>текущего контроля</u> успеваемости по дисциплине:

- КМ-1 Расчет характеристик РПУ при действии на входе смеси сигнала и шума (Контрольная работа)
- КМ-2 Прохождение смеси сигнала и шума через радиоприемный тракт (Лабораторная работа)
- КМ-3 Моделирование схемы формирования НЧ квадратурных составляющих и демодулятора

- АМ сигналов. Формирование квадратурного сигнала с помощью фильтра Гильберта (Лабораторная работа)
- КМ-4 Исследование на модели оптимального приемника импульсного сигнала (Лабораторная работа)
- КМ-5 Алгоритмы оценки параметров в оптимальных корреляционных приемниках различного назначения (Контрольная работа)
- КМ-6 Согласованные фильтры для импульсных сигналов (Контрольная работа)

Вид промежуточной аттестации – Экзамен.

	В	Веса контрольных мероприятий, %					
Раздел дисциплины	Индекс	КМ-	КМ-	КМ-	КМ-	КМ-	КМ-
газдел дисциплины	KM:	1	2	3	4	5	6
	Срок КМ:	6	7	9	11	13	15
Прохождение смеси сигнала и шум	а через						
радиоприемный тракт							
Прохождение смеси сигнала и шума через БВЧ РПУ		+	+				
Демодуляция смеси сигнала и шума		+	+				
Цифровая обработка сигналов в РПУ							
Цифровая обработка сигналов в РПУ				+			
Основы оптимальной обработки сигналов							
Оптимальный корреляционный приемник					+	+	
Согласованная фильтрация							+
	Bec KM:	20	10	40	10	10	10

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ТЕКУЩЕГО КОНТРОЛЯ

I. Оценочные средства для оценки запланированных результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций

Индекс	Индикатор	Запланированные	Контрольная точка
компетенции	_	результаты обучения по	
		дисциплине	
ОПК-1	ИД-10ПК-1 Представляет	Знать:	КМ-1 Расчет характеристик РПУ при действии на входе смеси сигнала
	современную научную	понятие согласованного	и шума (Контрольная работа)
	картину мира, выявляет	фильтра и методику	КМ-2 Прохождение смеси сигнала и шума через радиоприемный тракт
	естественнонаучную	использования	(Лабораторная работа)
	сущность проблемы	согласованных фильтров в	КМ-3 Моделирование схемы формирования НЧ квадратурных
	проектирования,	составе оптимального	составляющих и демодулятора АМ сигналов. Формирование
	производства и	приемника	квадратурного сигнала с помощью фильтра Гильберта (Лабораторная
	использования в	математическое описание	работа)
	практической	смеси полезного сигнала и	КМ-5 Алгоритмы оценки параметров в оптимальных корреляционных
	деятельности	аддитивного белого шума,	приемниках различного назначения (Контрольная работа)
	радиоэлектронных	статистические	КМ-6 Согласованные фильтры для импульсных сигналов
	устройств и систем	характеристики шума,	(Контрольная работа)
		соотношения для расчета	
		отношения сигнал-шум в	
		различных точках	
		приемного тракта	
		Уметь:	
		синтезировать	
		структурные схемы для	
		оптимальной оценки	
		параметров полностью	
		известного сигнала и	
		сигнала с неизвестной	
		начальной фазой;	
		проводить расчет КИХ	

		фильтра Гильберта	
		требуемого порядка	
		синтезировать	
		структурные схемы	
		фильтров, согласованных с	
		импульсным сигналом;	
		получать отклик	
		согласованного фильтра на	
		сигнал, с которым он	
		согласован	
ОПК-1	ИД-2 _{ОПК-1} Формулирует	Знать:	КМ-2 Прохождение смеси сигнала и шума через радиоприемный тракт
OHK-1	, ,		(Лабораторная работа)
	задачи, направленные на	методику использования комплексной огибающей	КМ-3 Моделирование схемы формирования НЧ квадратурных
	проведение исследований,	· ·	составляющих и демодулятора АМ сигналов. Формирование
	проектирование и	для математического	
	использование в	представления	квадратурного сигнала с помощью фильтра Гильберта (Лабораторная
	практической	узкополосного сигнала,	работа)
	деятельности	методы получения НЧ	КМ-4 Исследование на модели оптимального приемника импульсного
	радиоэлектронных	квадратурных	сигнала (Лабораторная работа)
	устройств и систем,	составляющих, методы	
	определяет пути их	реализации квадратурной	
	решения и оценивает	демодуляции	
	эффективность выбора	принципы построения	
		оптимального	
		корреляционного	
		приемника, причины	
		возникновения и методы	
		уменьшения ошибок	
		оценки параметра в таком	
		приемнике;	
		критерии оценки	
		помехозащищенности	
		радиоприемного	
		устройства	

Уметь:	
проводить расчет	
характеристик шума в	
различных точках	
приемного тракта,	
анализировать	
помехозащищенность РПУ	
проводить моделирование	
и исследование схем	
квадратурных	
демодуляторов в пакете	
схемотехнического	
моделирования МісгоСар	

II. Содержание оценочных средств. Шкала и критерии оценивания

КМ-1. Расчет характеристик РПУ при действии на входе смеси сигнала и шума


Формы реализации: Письменная работа

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 20

Процедура проведения контрольного мероприятия: Каждый студент получает письменное индивидуальное задание, на выполнение отводится 30 минут, сдает преподавателю в письменном виде.

Краткое содержание задания:

На входе приёмника, схема которого изображена на рисунке, действует ЧМ сигнал с девиацией частоты $\Delta f_{\rm m} = 125~{\rm k}\Gamma_{\rm L}$ и частотой модуляции $F_{\rm M} = 25~{\rm k}\Gamma_{\rm L}$. АЧХ УПЧ прямоугольна, полоса пропускания согласована с шириной спектра сигнала. АЧХ БНЧ прямоугольна, верхняя частота согласована с частотой модуляции сигнала. Определить чувствительность приёмника, если требуемое отношение сигнал-шум на его выходе равно 40 дБ. Блоки РПУ имеют следующие параметры: шумовая температура антенны $T_{\rm A} = 200~{\rm K}$; физическая температура входной цепи $t_{\rm BL} = 30^{\circ}{\rm C}$; $K_{\rm P,BL} = 0.72$, $K_{\rm P,PV} = 9$, $K_{\rm P,TV} = 0.6$; коэффициенты шума $K_{\rm m,PV} = 1.5$, $K_{\rm m,TW} = 2.5$.

Контрольные вопросы/задания:

контрольные вопросы/задания.	
Запланированные результаты обучения по дисциплине	Вопросы/задания для
	проверки
Знать: математическое описание смеси полезного сигнала и	1.Дайте определение
аддитивного белого шума, статистические характеристики	"отношение
шума, соотношения для расчета отношения сигнал-шум в	сигнал/шум"
различных точках приемного тракта	2.Что такое шумовая
	температура

Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 55

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-2. Прохождение смеси сигнала и шума через радиоприемный тракт

Формы реализации: Смешанная форма

Тип контрольного мероприятия: Лабораторная работа

Вес контрольного мероприятия в БРС: 10

Процедура проведения контрольного мероприятия: Лабораторная работа выполняется на занятии. Необходимые для моделирования расчеты производятся в процессе ее выполнения. Результаты фиксируются. Отчет по работе выполняется дома индивидуально и предъявляется на проверку. После предварительной проверки проводится устная беседа по результатам моделирования.

Краткое содержание задания:

Контрольные вопросы/задания:

_ Контрольные вопросы/задания.	
Запланированные результаты обучения по	Вопросы/задания для проверки
дисциплине	
Знать: математическое описание смеси	1. Что такое спектральная плотность
полезного сигнала и аддитивного белого	мощности шума
шума, статистические характеристики шума,	
соотношения для расчета отношения сигнал-	
шум в различных точках приемного тракта	
Знать: критерии оценки	1.Описать причины возникновения
помехозащищенности радиоприемного	"порогового" эффекта при анализе
устройства	зависимости отношения сигнал/шум на
	выходе частотного детектора от
	отношения сигнал/шум на его входе
	2. Как повысить помехозащищенность
	приемника ЧМ сигналов
Уметь: проводить расчет характеристик	1.Рассчитать спектральную плотность
шума в различных точках приемного тракта,	мощности шума на выходе преселектора
анализировать помехозащищенность РПУ	при известных значениях параметров
	преселектора и спектральной мощности
	шума на его входе
	2.Рассчитать СКО шума на выходе ФСС
	при известных значениях параметров
	АЧХ ФСС и шума на его входе

Описание шкалы оценивания:

Оиенка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 55

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-3. Моделирование схемы формирования НЧ квадратурных составляющих и демодулятора АМ сигналов. Формирование квадратурного сигнала с помощью фильтра Гильберта

Формы реализации: Смешанная форма

Тип контрольного мероприятия: Лабораторная работа

Вес контрольного мероприятия в БРС: 40

Процедура проведения контрольного мероприятия: Лабораторная работа выполняется на занятии. Необходимые для моделирования расчеты производятся в процессе ее выполнения. Результаты фиксируются. Отчет по работе выполняется дома индивидуально предъявляется на проверку. После предварительной проверки проводится устная беседа по результатам моделирования.

Краткое содержание задания:

Демодуляция АМС

- - молулирующее напряжение и АМ сигнал
- модулирующее напряжение и AM сигнал
 напряжения на выходе ФНЧ двух каналов
 повторить моделирование, задав начальную фазу несущего колебания {pi/2+pi/4}
- (ригтрич)
 оценить искажения демодулированного сигнала по сравнению с модулирующим напряжением
 сравнить результаты, сделать выводы.

Контрольные вопросы/задания:

•	
Запланированные результаты обучения по	Вопросы/задания для проверки
дисциплине	
Знать: методику использования комплексной	1. Что такое низкочастотные
огибающей для математического представления	квадратурные составляющие
узкополосного сигнала, методы получения НЧ	2.Описать назначение блоков
квадратурных составляющих, методы реализации	схемы формирования
квадратурной демодуляции	низкочастотных квадратурных
	составляющих
Уметь: проводить расчет КИХ фильтра Гильберта	1.Рассчитайте коэффициенты
требуемого порядка	фильтра Гилберта 10-ого порядка
Уметь: проводить моделирование и исследование	1.Подобрать параметры опорных
схем квадратурных демодуляторов в пакете	колебаний, входящих в схему
схемотехнического моделирования МісгоСар	формирования низкочастотных
	квадратурных составляющих

Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 55

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-4. Исследование на модели оптимального приемника импульсного сигнала

Формы реализации: Проверка задания

Тип контрольного мероприятия: Лабораторная работа

Вес контрольного мероприятия в БРС: 10

Процедура проведения контрольного мероприятия: Студенты выполняют исследование на модели оптимального корреляционного приемника, предназначенного для оценки задержки времени прихода видеоимпульса. По результатам исследования студенты оформляют индивидуальный отчет, содержащий наблюдения, сделанные в ходе исследования, а также обобщающие выводы.

Краткое содержание задания:

- Исследовать влияние отношения сигнал/шум на ошибки измерения задержки
- При среднем значении отношения сигнал/шум оценить разброс величины ошибки измерения
- Исследовать влияние шага измерения задержки на ошибки измерения
- Составить структурную схему исследуемого приемника и описать назначение ее блоков

Контрольные вопросы/задания:

Запланированные результаты обучения по	Вопросы/задания для проверки
дисциплине	
Знать: принципы построения оптимального	1.Каким критерием руководствуются
корреляционного приемника, причины	для синтеза структурных схем
возникновения и методы уменьшения ошибок	оптимальных корреляционных
оценки параметра в таком приемнике;	приемников различного назначения
	2. Что такое апостериорная плотность
	вероятностей
	3. Что такое корреляционный интеграл

Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 75

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто, аналитическая часть отчета преимущественно выполнена верно

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено, аналитическая часть отчета преимущественно выполнена, но содержит грубые ошибки

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено. Отсутствуют аналитические обобщающие выводы, продемонстрированы только наблюдаемые в ходе работы результаты моделирования

КМ-5. Алгоритмы оценки параметров в оптимальных корреляционных приемниках различного назначения

Формы реализации: Письменная работа

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 10

Процедура проведения контрольного мероприятия: Каждый студент получает письменное индивидуальное задание, на выполнение отводится 30 минут, сдает преподавателю в письменном виде.

Краткое содержание задания:

Получить выражение для оценки и составить схему оптимального корреляционного приемника для оценки неизвестного параметра

Контрольные вопросы/задания:

контрольные вопросы/задания.	
Запланированные результаты	Вопросы/задания для проверки
обучения по дисциплине	
Уметь: синтезировать структурные	1.Получить выражение для оценки и составить
схемы для оптимальной оценки	схему оптимального приёмника для измерения
параметров полностью известного	частоты несущей радиоимпульсного сигнала
сигнала и сигнала с неизвестной	$s(t) = Uc(t)cos(2\pi fct + \varphi)$ при равномерном априорном
начальной фазой;	распределении частоты в интервале [fc min,fc
	max].
	2.Получить выражение для оценки и составить
	схему оптимального приёмника для измерения
	амплитуды прямоугольного радиоимпульса с
	неизвестной начальной фазой при равномерном
	априорном распределении амплитуды в интервале
	[Uc min,Uc max]

Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 75

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто, составлено выражение, позволяющее синтезировать структурную схему, содержащее негрубые ошибки

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено, однако при записи выражения для синтеза структурной схемы, допущены грубые ошибки

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-6. Согласованные фильтры для импульсных сигналов

Формы реализации: Письменная работа

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 10

Процедура проведения контрольного мероприятия: Каждый студент получает письменное индивидуальное задание, на выполнение отводится 30 минут, сдает преподавателю в письменном виде.

Краткое содержание задания:

Изобразить структурную схему СФ для приведенного сигнала. Изобразить эпюры напряжения в точках схемы при действии на входе сигнала, с которым согласован фильтр.

Контрольные вопросы/задания:

Запланированные результаты обучения	Вопросы/задания для проверки
по дисциплине	
Знать: понятие согласованного фильтра и	1.Дайте определение согласованного
методику использования согласованных	фильтра
фильтров в составе оптимального	2.Как связаны импульсная и частотные
приемника	характеристики согласованного фильтра с
	параметрами сигнала, с которым он
	согласован
Уметь: синтезировать структурные схемы	1.Изобразите структурную схему
фильтров, согласованных с импульсным	согласованного фильтра для приведенного
сигналом; получать отклик	импульсного сигнала. Изобразите отклик
согласованного фильтра на сигнал, с	данного фильтра на входное воздействие в
которым он согласован	виде сигнала, с которым он согласован

Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 75

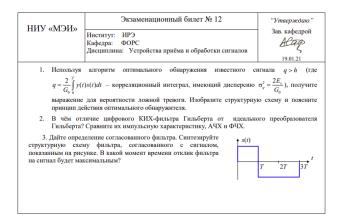
Описание характеристики выполнения знания: Оценка "хорошо" выставляется если работа выполнена преимущественно верно, допущены негрубые ошибки

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено, присутствует не более одной грубой ошибки

Оценка: 2 («неудовлетворительно»)


Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

1 семестр

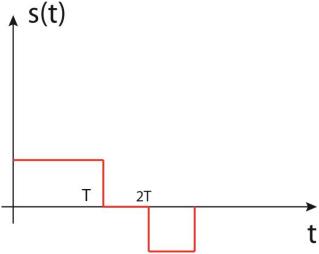
Форма промежуточной аттестации: Экзамен

Пример билета

Процедура проведения

Студент получает индивидуальный билет, готовится к ответу в течение не менее 60 минут Ответ преподавателю проходит в устной форме

Студент рассказывает подготовленный материал по вопросам билета


Студенту задают дополнительные вопросы по вопросам билета и разделам дисциплины На основании ответа студента формируется экзаменационная составляющая оценки

I. Перечень компетенций/индикаторов и контрольных вопросов проверки результатов освоения дисциплины

1. Компетенция/Индикатор: ИД-1_{ОПК-1} Представляет современную научную картину мира, выявляет естественнонаучную сущность проблемы проектирования, производства и использования в практической деятельности радиоэлектронных устройств и систем

Вопросы, задания

- 1.Получите выражение для нормированной огибающей автокорреляционной функции процесса на выходе узкополосного БВЧ приёмника с симметричной АЧХ при действии на входе белого шума. Изобразите типичный график АКФ такого случайного процесса. Чему равно максимальное значение АКФ?
- 2. Дайте определение согласованного фильтра. Получите структурную схему фильтра, согласованного с сигналом, показанным на рисунке.

3.Для радиоприёмника с прямоугольной АЧХ БВЧ качественно изобразите графики спектральной плотности шума на выходе частотного демодулятора при действии на входе смеси сигнала и узкополосного шума для различных значений отношения сигналшум. Используя эти графики, объясните причину порогового эффекта при приёме ЧМ сигналов. Изобразите типичную зависимость отношения сигнал-шум (в децибелах) на выходе приёмника от отношения сигнал-шум на входе.

Материалы для проверки остаточных знаний

1. Расширение полосы какого блока РПУ, предназначенного для приема ЧМ-сигналов, приведет к ухудшению отношения сигнал/шум на его выходе?

Ответы:

- БВЧ
- БНЧ
- ЧД

Верный ответ: БНЧ

- 2. Какое устройство используется для формирования сигнала сопряженного по Гильберту Ответы:
- преобразователь Гильберта
- фильтр Гильберта

Верный ответ: фильтр Гильберта

- 3. каким параметром можно описать интенсивность шумового процесса на входе РПУ Ответы:
- спектральная плотность мощности
- мощность
- амплитуда шумового напряжения

Верный ответ: спектральная плотность мощности

2. Компетенция/Индикатор: ИД-2_{ОПК-1} Формулирует задачи, направленные на проведение исследований, проектирование и использование в практической деятельности радиоэлектронных устройств и систем, определяет пути их решения и оценивает эффективность выбора

Вопросы, задания

1.Запишите и поясните алгоритм цифрового фазового демодулятора.

- 2.Приёмник предназначен для приёма ЧМ сигнала с девиацией частоты 200 кГц и частотой модуляции 20 кГц. Входное сопротивление БВЧ 100 Ом, АЧХ БВЧ и БНЧ прямоугольные. Рассчитайте отношение сигнал-шум (в децибелах) на выходе приёмника при действии на его входе смеси сигнала с амплитудой 20 мкВ и приведённого шума со спектральной плотностью 5⋅10-19 Вт/Гц.
- 3.Изобразите и поясните структурную схему оптимального корреляционного приёмника для различения двух полностью известных сигналов. При каких сигналах достигается наименьшая вероятность ошибки?

Материалы для проверки остаточных знаний

1. Какой параметр оказывает наибольшее влияние на чувствительность радиоприемного устройства

Ответы:

- коэффициент шума БВЧ
- коэффициент передачи БВЧ
- коэффициент потерь в фидере

Верный ответ: коэффициент шума БВЧ

2. Каким параметром необходимо задаться для того что бы оценить вероятность ложной тревоги в оптимальном обнаружителе сигнала

Ответы:

- величиной порога для порогового устройства
- отношением сигнал/шум на входе приемника
- величиной порога для порогового устройства и отношением сигнал/шум на входе приемника

Верный ответ: величиной порога для порогового устройства и отношением сигнал/шум на входе приемника

3.На вход квадратурного демодулятора поступает АМ-сигнал: частота модуляции 10кГц, частота несущей 1МГц. Какую частоту опорных генераторов следует использовать в схеме формирования низкочастотных квадратурных составляющих

Ответы:

- 10 кГц
- 1 МГц
- 20кГц
- 2 МГц

Верный ответ: 1МГц

II. Описание шкалы оценивания

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 85

Описание характеристики выполнения знания: Работа выполнена в рамках "продвинутого" уровня. Ответы даны верно, четко сформулированные по всем вопросам билета

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Работа выполнена в рамках "базового" уровня. Большинство ответов даны верно. В части материала есть незначительные недостатки или отсутствует часть рассуждений

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 60 Описание характеристики выполнения знания: Работа выполнена в рамках "порогового" уровня. Затронуты хотя бы частично все вопросы билета

Оценка: 2 («неудовлетворительно»)
Описание характеристики выполнения знания: Работа не выполнена или выполнена преимущественно неправильно

III. Правила выставления итоговой оценки по курсу

Оценка определяется в соответствии с Положением о балльно-рейтинговой системе для студентов НИУ «МЭИ» на основании семестровой и экзаменационной составляющих.