Министерство науки и высшего образования РФ Федеральное государственное бюджетное образовательное учреждение высшего образования

«Национальный исследовательский университет «МЭИ»

Направление подготовки/специальность: 11.04.01 Радиотехника

Наименование образовательной программы: Радиотехнические системы

Уровень образования: высшее образование - магистратура

Форма обучения: Очная

Рабочая программа дисциплины АВТОНОМНАЯ НАВИГАЦИЯ БЕСПИЛОТНЫХ СИСТЕМ

Блок:	Блок 1 «Дисциплины (модули)»
Часть образовательной программы:	Часть, формируемая участниками образовательных отношений
№ дисциплины по учебному плану:	Б1.Ч.01.01.03
Трудоемкость в зачетных единицах:	2 семестр - 3; 3 семестр - 2; всего - 5
Часов (всего) по учебному плану:	180 часов
Лекции	2 семестр - 16 часов;
Практические занятия	2 семестр - 16 часов;
Лабораторные работы	не предусмотрено учебным планом
Консультации	3 семестр - 32 часа;
Самостоятельная работа	2 семестр - 75,7 часа; 3 семестр - 35,7 часа; всего - 111,4 часов
в том числе на КП/КР	3 семестр - 35,7 часа;
Иная контактная работа	3 семестр - 4 часа;
включая: Проверочная работа	
Промежуточная аттестация:	
Зачет с оценкой Защита курсового проекта	2 семестр - 0,3 часа; 3 семестр - 0,3 часа; всего - 0,6 часа

Москва 2025

ПРОГРАММУ СОСТАВИЛ:

Преподаватель

OCON TO STANK	Подписано электронн	ой подписью ФГБОУ ВО «НИУ «МЭИ»				
110	Сведения о владельце ЦЭП МЭИ					
	Владелец	Глухов О.В.				
NOM &	Идентификатор	R5a634a8b-GlukhovOV-e664c6c7				

СОГЛАСОВАНО:

Руководитель образовательной программы

NASO NASO	Подписано электронной подписью ФГБОУ ВО «НИУ «МЭИ»								
SHIP THE PROPERTY AND S	Сведен	ия о владельце ЦЭП МЭИ							
	Владелец	Комаров А.А.							
» <u>МэИ</u> «	Идентификатор	R8495daf1-KomarovAlA-eada3f0e							

А.А. Комаров

О.В. Глухов

Заведующий выпускающей кафедрой

a recognitional transport	Подписано электронн	ой подписью ФГБОУ ВО «НИУ «МЭИ»				
	Сведения о владельце ЦЭП МЭИ					
	Владелец	Комаров А.А.				
» <u>МэИ</u> «	Идентификатор	R8495daf1-KomarovAlA-eada3f0e				

А.А. Комаров

1. ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Цель освоения дисциплины: Дать обучающимся системное представление об основных задачах, методах, алгоритмических принципах и алгоритмах автономной навигации беспилотных систем, а также приёмах их математического моделирования для анализа и синтеза систем управления и навигации..

Задачи дисциплины

- Изучить основные подходы, методы и алгоритмы, используемые для автономной навигации беспилотных систем, включая управление движением, планирование маршрутов и уклонение от препятствий.;
- Освоить приёмы математического моделирования автономных систем для анализа их работы и синтеза оптимальных решений в условиях реальных ограничений.;
- Ознакомиться с современными технологиями интеграции сенсоров, исполнительных механизмов, систем навигации и связи в беспилотных системах.;
- Применить полученные знания и навыки для решения научных и практических задач, связанных с разработкой, внедрением и тестированием автономных беспилотных систем в условиях городской и промышленной инфраструктуры..

Формируемые у обучающегося **компетенции** и запланированные **результаты обучения** по дисциплине, соотнесенные с **индикаторами достижения компетенций**:

Код и наименование компетенции	Код и наименование индикатора достижения компетенции	Запланированные результаты обучения
ПК-2 Способен разрабатывать и модернизировать радиоэлектронные системы	ИД-1 _{ПК-2} Разрабатывает структурные, функциональные и принципиальные схемы радиоэлектронных систем	знать: - Технологии интеграции сенсоров, исполнительных механизмов и модулей связи в беспилотных системах
ПК-2 Способен разрабатывать и модернизировать радиоэлектронные системы	ИД-2 _{ПК-2} Использует средства компьютерного моделирования в целях модернизации и совершенствования радиоэлектронных систем	уметь: - Интегрировать сенсоры, исполнительные устройства и коммуникационные модули в единую систему
РПК-1 Способен решать задачи цифровизации в своей профессиональной области	ИД-1 _{РПК-1} Знает средства программного моделирования и аппаратного макетирования области своей профессиональной деятельности	знать: - Основные принципы и подходы к проектированию автономных навигационных систем.; - Алгоритмы и методы управления движением, уклонения от препятствий и планирования маршрутов.; - Основы математического моделирования для анализа и синтеза систем управления и навигации
РПК-1 Способен решать задачи цифровизации в своей профессиональной области	ИД-2 _{РПК-1} Владеет навыками программного моделирования, аппаратного макетирования и экспериментальных работ в области своей профессиональной	уметь: - Разрабатывать алгоритмы управления и навигации для беспилотных систем с использованием современных методов и подходов.; - Применять математическое моделирование для оптимизации работы автономных систем

Код и наименование компетенции	Код и наименование индикатора достижения компетенции	Запланированные результаты обучения
	деятельности	

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ ВО

Дисциплина относится к основной профессиональной образовательной программе Радиотехнические системы (далее – ОПОП), направления подготовки 11.04.01 Радиотехника, уровень образования: высшее образование - магистратура.

Требования к входным знаниям и умениям:

- знать высшую математику
- знать основы теории цепей
- знать физику
- знать информатику
- уметь читать и понимать материал на иностранном (английском) языке
- уметь использовать базовые алгоритмы обработки данных

Результаты обучения, полученные при освоении дисциплины, необходимы при выполнении выпускной квалификационной работы.

3. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

3.1 Структура дисциплины Общая трудоемкость дисциплины составляет 5 зачетных единиц, 180 часов.

	D/	В			Распределение трудоемкости раздела (в часах) по видам учебной работы									
Nº	Разделы/темы дисциплины/формы	асод	стр		Контактная работа								CP	Содержание самостоятельной работы/
п/п	промежуточной	сего часо) на раздел	Семестр				Консу	льтация	ИК	P		Работа в	Подготовка к	методические указания
	аттестации	Всего часов на раздел	Э	Лек	Лаб	Пр	КПР	ГК	ИККП	ТК	ПА	семестре	аттестации /контроль	
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	Основы автономной навигации и методы планирования пути	37.7	2	6	-	6	-	-	-	-	-	25.7	-	Подготовка к текущему контролю: Повторение материала по разделу "Основы автономной навигации и методов
1.1	Основы кинематики колесных роботов. Интеграция сенсоров, исполнительных устройств и коммуникационных модулей в единую систему	19.7		2	-	2	-	-	-	-	-	15.7	-	планирования пути" <u>Самостоятельное изучение</u> <u>теоретического материала:</u> Изучение дополнительного материала по разделу "Основы автономной навигации и методов планирования пути" <u>Изучение материалов литературных</u> <u>источников:</u>
1.2	Детерминированные локальные алгоритмы автономной навигации	18		4	-	4	-	-	-	-	-	10	-	[3], 31-50
2	Алгоритмы управления и планирования движения	28		4	-	4	-	-	-	-	-	20	-	Подготовка к текущему контролю: Повторение материала по разделу "Алгоритмы управления и планирования движения"
2.1	Глобальное планирование на основе графов	14		2	-	2	-	-	-	-	-	10	-	<u>Самостоятельное изучение</u> <u>теоретического материала:</u> Изучение дополнительного материала по разделу
2.2	Оптимальное управление в планировании пути и траектории	14		2	-	2	-	-	-	-	-	10	-	"Алгоритмы управления и планирования движения" <u>Изучение материалов литературных</u> <u>источников:</u> [1], 16-50
3	Реактивная навигация	42		6	-	6	- .	-	=	-	-	30	-	Подготовка к текущему контролю:

	и децентрализованные системы													Повторение материала по разделу "Реактивная навигация и
3.1	Итерационное планирование и уклонение от препятствий	14		2	-	2	-	-	-	-	-	10	-	децентрализованные системы" <u>Самостоятельное изучение</u> <u>теоретического материала:</u> Изучение дополнительного материала по разделу
3.2	Децентрализованная автономная навигация роботизированных ансамблей	14		2	-	2	-	-	-	-	-	10	-	"Реактивная навигация и децентрализованные системы" <u>Изучение материалов литературных источников:</u>
3.3	Применение нейронных сетей	14		2	-	2	-	-	-	-	-	10	-	[2], 41-65
	Зачет с оценкой	0.3		-	-	-	-	-	-	-	0.3	=	-	
	Всего за семестр	108.0		16	-	16	-	-	-	-	0.3	75.7	-	
	Итого за семестр	108.0		16	-	16		-	-		0.3		75.7	
	Курсовой проект (КП)	72.0	3	-	-	-	32	-	4	-	0.3	35.7	-	
	Всего за семестр	72.0		-	-	-	32	-	4	-	0.3	35.7	-	
	Итого за семестр	72.0		-	-	-		32	4	ı	0.3		35.7	
	ИТОГО	180.0	-	16	-	16		32	4		0.6		111.4	

Примечание: Лек – лекции; Лаб – лабораторные работы; Пр – практические занятия; КПР – аудиторные консультации по курсовым проектам/работам; ИККП – индивидуальные консультации по курсовым проектам/работам; ГК- групповые консультации по разделам дисциплины; СР – самостоятельная работа студента; ИКР – иная контактная работа; ТК – текущий контроль; ПА – промежуточная аттестация

3.2 Краткое содержание разделов

1. Основы автономной навигации и методы планирования пути

1.1. Основы кинематики колесных роботов. Интеграция сенсоров, исполнительных устройств и коммуникационных модулей в единую систему

Понятие, основные задачи и концепции автономной навигации. Обзор и классификация подходов. Типы колесных роботов: дифференциальный привод, машиноподобные роботы, омнимобильные системы. Сенсоры, исполнительные устройства и коммуникационные модули.

1.2. Детерминированные локальные алгоритмы автономной навигации

Группа Bug (алгоритмов автономной навигации для мобильных роботов) и её развитие. Поведенческий и картографический подходы. Типы карт: геометрические, структурнологические, сетка занятости. Клеточное разбиение: трапецеидальная декомпозиция, декомпозиция Морса, метод Brushfire. Дорожные карты: графы видимости, мозаика, граф Вороного, метод Форчуна.. Случайное и детерминированное сэмплирование: последовательности Халтона, Хаммерсли, сетка Сухарева. Инкрементальное сэмплирование и планирование.

2. Алгоритмы управления и планирования движения

2.1. Глобальное планирование на основе графов

Поиск в ширину и глубину, алгоритм Дейкстры, А*. Оптимальное планирование, дискретное динамическое программирование.

2.2. Оптимальное управление в планировании пути и траектории Принцип максимума Понтрягина. Управление с прогнозирующими моделями.

3. Реактивная навигация и децентрализованные системы

3.1. Итерационное планирование и уклонение от препятствий

Методы гистограмм, динамического окна, отслеживания границы. Уклонение от динамических препятствий: метод пространственно-временного континуума.

- 3.2. Децентрализованная автономная навигация роботизированных ансамблей Алгоритмы достижения консенсуса. Построение формаций, автономное покрытие областей.
 - 3.3. Применение нейронных сетей Нейронные сети для адаптивного управления.

3.3. Темы практических занятий

- 1. Интеграция сенсоров, исполнительных устройств и коммуникационных модулей в единую систему;
- 2. Детерминированные локальные алгоритмы автономной навигации;
- 3. Глобальное планирование на основе графов;
- 4. Оптимальное управление в планировании пути и траектории;
- 5. Итерационное планирование и уклонение от препятствий;
- 6. Децентрализованная автономная навигация роботизированных ансамблей;

7. Применение нейронных сетей.

3.4. Темы лабораторных работ

не предусмотрено

3.5 Консультации

<u>Текущий контроль (ТК)</u>

- 1. Консультации направлены на получение индивидуального задания для выполнения контрольных мероприятий по разделу "Основы автономной навигации и методов планирования пути"
- 2. Консультации направлены на получение индивидуального задания для выполнения контрольных мероприятий по разделу "Алгоритмы управления и планирования движения"
- 3. Консультации направлены на получение индивидуального задания для выполнения контрольных мероприятий по разделу "Реактивная навигация и децентрализованные системы"

3.6 Тематика курсовых проектов/курсовых работ 3 Семестр

Курсовой проект (КП)

Темы:

- Реализация автономной навигации для беспилотных систем

График выполнения курсового проекта

		/ 1	
Неделя	1 - 8	9 - 16	Зачетная
Раздел	1	2	Защита
курсового			курсового
проекта			проекта
Объем	60	40	-
раздела, %			
Выполненный	60	100	-
объем			
нарастающим			
итогом, %			

Номер раздела	Раздел курсового проекта						
1	Написание отчета с описанием реализации проекта и пояснением кода						
2	Защита проекта с демонстрацией работы системы						

3.7. Соответствие разделов дисциплины и формируемых в них компетенций

3.7. Соответствие разделов дисциплины и формируемых и	B IIIIA KOMIICICII	ции			
			мер ра		Оценочное средство (тип и наименование)
Запланированные результаты обучения по дисциплине	Коды	дисциплины (в			(тип и наименование)
(в соответствии с разделом 1)	индикаторов	соответствии с			
(B coorbererbini e puortenom 1)	шдшагоров		п.3.1		
		1	2	3	
Знать:					
Технологии интеграции сенсоров, исполнительных	тип 1				Проверочная работа/Основы автономной
механизмов и модулей связи в беспилотных системах.	ИД-1 _{ПК-2}	+			навигации и методы планирования пути
Основы математического моделирования для анализа и					Проверочная работа/Методы
синтеза систем управления и навигации.	ИД-1 _{РПК-1}			+	представления сцены и глобального
					планирования
Алгоритмы и методы управления движением, уклонения от					Проверочная работа/Методы дорожной
препятствий и планирования маршрутов.	ИД-1 _{РПК-1}	+			карты и сэмплирования для планирования
					пути
Основные принципы и подходы к проектированию					Проверочная работа/Методы
автономных навигационных систем.	ИД-1 _{РПК-1}		+		представления сцены и глобального
					планирования
Уметь:					
Интегрировать сенсоры, исполнительные устройства и	ИД-2 _{ПК-2}			+	Проверочная работа/Основы автономной
коммуникационные модули в единую систему.	11/1-2 11K-2			H	навигации и методы планирования пути
Применять математическое моделирование для		_			Проверочная работа/Методы дорожной
оптимизации работы автономных систем.	ИД-2 _{РПК-1}		+		карты и сэмплирования для планирования
					пути
Разрабатывать алгоритмы управления и навигации для					Проверочная работа/Основы автономной
беспилотных систем с использованием современных	ИД-2 _{РПК-1}			+	навигации и методы планирования пути
методов и подходов.					

4. КОМПЕТЕНТНОСТНО-ОРИЕНТИРОВАННЫЕ ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ КОНТРОЛЯ ОСВОЕНИЯ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ (ТЕКУЩИЙ КОНТРОЛЬ УСПЕВАЕМОСТИ, ПРОМЕЖУТОЧНАЯ АТТЕСТАЦИЯ ПО ДИСЦИПЛИНЕ)

4.1. Текущий контроль успеваемости

2 семестр

Форма реализации: Письменная работа

- 1. Методы дорожной карты и сэмплирования для планирования пути (Проверочная работа)
- 2. Методы представления сцены и глобального планирования (Проверочная работа)
- 3. Основы автономной навигации и методы планирования пути (Проверочная работа)

Балльно-рейтинговая структура дисциплины является приложением А. Балльно-рейтинговая структура курсового проекта является приложением Б.

4.2 Промежуточная аттестация по дисциплине

Зачет с оценкой (Семестр №2)

Оценка определяется в соответствии с Положением о балльно-рейтинговой системе для студентов НИУ «МЭИ» на основании семестровой составляющей

Курсовой проект (КП) (Семестр №3)

Итоговая оценка формируется на основе: 50% - промежуточная аттестация. Учитывается выполнение тестовых и письменных работ, демонстрация знаний и умений. 50% - курсовой проект. Учитывается качество выполнения проекта, успешность демонстрации результатов и защита проекта. Итоговая оценка может корректироваться преподавателем на основании общей активности и успеваемости студента.

В диплом выставляется оценка за 2 семестр.

Примечание: Оценочные материалы по дисциплине приведены в фонде оценочных материалов ОПОП.

5. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

5.1 Печатные и электронные издания:

1. Демкин, Д. В. Разработка системы компьютерного зрения для управления беспилотным летательным аппаратом типа «квадрокоптер» : магистерская диссертация / Д. В. Демкин, Нац. исслед. ун-т "МЭИ", Кафедра теоретической механики и мехатроники. – М., 2014. – 68 с. – фонд НЧ3.

http://elib.mpei.ru/elib/view.php?id=5875;

- 2. Сайфутдинов, Р. М. Разработка автоматической системы позиционирования беспилотного летательного аппарата относительно движущегося объекта : магистерская диссертация / Р. М. Сайфутдинов, Нац. исслед. ун-т "МЭИ", Кафедра вычислительных машин, систем и сетей (ВМСиС). М., 2017. 70 с. диссертация только в электронном виде, для чтения перейдите в электронную библиотеку МЭИ.
- http://elib.mpei.ru/elib/view.php?id=9892;
- 3. Фетисов В. С.,Неугодникова Л. М.- "Беспилотные авиационные системы: терминология, классификация, структура", Издательство: "Лань", Санкт-Петербург, 2024 (132 с.) https://e.lanbook.com/book/422474.

5.2 Лицензионное и свободно распространяемое программное обеспечение:

- 1. Office / Российский пакет офисных программ;
- 2. Python;
- 3. OC Linux.

5.3 Интернет-ресурсы, включая профессиональные базы данных и информационносправочные системы:

- 1. ЭБС Лань https://e.lanbook.com/
- 2. Научная электронная библиотека https://elibrary.ru/
- 3. Национальная электронная библиотека https://rusneb.ru/
- 4. Электронная библиотека МЭИ (ЭБ МЭИ) http://elib.mpei.ru/login.php

6. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Тип помещения	Номер аудитории,	Оснащение
	наименование	
Учебные аудитории для	Ж-120, Машинный	сервер, кондиционер
проведения лекционных	зал ИВЦ	
занятий и текущего	А-400, Учебная	парта, стул, доска меловая, экран
контроля	аудитория "А"	интерактивный, колонки звуковые,
		мультимедийный проектор, доска
		маркерная, компьютер персональный
Учебные аудитории для	Б-318, Учебная	парта со скамьей, стул, стол письменный,
проведения	аудитория	доска меловая, доска маркерная,
практических занятий,	_	кондиционер
КР и КП		_
Учебные аудитории для	E-703/12,	стеллаж, стол, стул, вешалка для одежды,
проведения	Лаборатория каф.	компьютерная сеть с выходом в Интернет,
лабораторных занятий	"ФОРС"	лабораторный стенд, оборудование
-		специализированное, компьютер
		персональный, принтер, книги, учебники,
		пособия
Учебные аудитории для	Ж-120, Машинный	сервер, кондиционер
проведения	зал ИВЦ	
промежуточной	А-400, Учебная	парта, стул, доска меловая, экран
аттестации	аудитория "А"	интерактивный, колонки звуковые,
		мультимедийный проектор, доска
		маркерная, компьютер персональный
Помещения для	E-420/4,	стол преподавателя, стол, стул, шкаф,
самостоятельной	Компьютерно-	вешалка для одежды, доска маркерная,
работы	вычислительная	компьютер персональный
	лаборатория	
Помещения для	Е-703/8, Кабинет	кресло рабочее, стол, стул, шкаф для
консультирования	сотрудников каф.	документов, стол письменный, вешалка для
	"ФОРС"	одежды, компьютерная сеть с выходом в
		Интернет, компьютер персональный,
		принтер, книги, учебники, пособия
Помещения для	E-704/14,	оборудование для эксперементов, запасные
хранения оборудования	Помещение каф.	комплектующие для оборудования
и учебного инвентаря	"ФОРС"	

БАЛЛЬНО-РЕЙТИНГОВАЯ СТРУКТУРА ДИСЦИПЛИНЫ

Автономная навигация беспилотных систем

(название дисциплины)

2 семестр

Перечень контрольных мероприятий текущего контроля успеваемости по дисциплине:

- КМ-1 Основы автономной навигации и методы планирования пути (Проверочная работа)
- КМ-2 Методы представления сцены и глобального планирования (Проверочная работа)
- КМ-3 Методы дорожной карты и сэмплирования для планирования пути (Проверочная работа)

Вид промежуточной аттестации – Зачет с оценкой.

Номер раздела	Раздел дисциплины KN Не,	Індекс	КМ- 1	КМ- 2	КМ- 3
		ии. Іеделя ІМ:	4	12	16
1	Основы автономной навигации и методы планирования пути				
1.1	Основы кинематики колесных роботов. Интеграция сенсоров, исполнительных устройств и коммуникационных модулей в единую систему		+		
1.2	Детерминированные локальные алгоритмы автономной навигации				+
2	Алгоритмы управления и планирования движения				
2.1					+
2.2				+	
3					
3.1	Итерационное планирование и уклонение от препятствий			+	
3.2	Децентрализованная автономная навигация роботизированных ансамблей		+		
3.3	3.3 Применение нейронных сетей		+		
Bec KM, %:			30	40	30

3 семестр

Перечень контрольных мероприятий текущего контроля успеваемости по дисциплине:

Вид промежуточной аттестации - .

Номер	Раздел дисциплины	Индекс КМ:
раздела		Неделя

		KM:
	Bo	ec KM. %:

БАЛЛЬНО-РЕЙТИНГОВАЯ СТРУКТУРА КУРСОВОГО ПРОЕКТА/РАБОТЫ ПО ДИСЦИПЛИНЕ

Автономная навигация беспилотных систем

(название дисциплины)

3 семестр

Перечень контрольных мероприятий <u>текущего контроля</u> успеваемости по курсовому проекту:

- КМ-1 Проверка отчетного материала и кода студента
- КМ-2 Защита проекта с демонстрацией работы системы

Вид промежуточной аттестации – защита КП.

Номер	Раздел курсового проекта/курсовой работы	Индекс КМ:	KM- 1	КМ- 2
раздела		Неделя КМ:	8	16
1	1 Написание отчета с описанием реализации проекта и пояснением кода		+	
2	2 Защита проекта с демонстрацией работы системы			+
		Bec KM, %:	60	40