Министерство науки и высшего образования РФ Федеральное государственное бюджетное образовательное учреждение высшего образования «Национальный исследовательский университет «МЭИ»

Направление подготовки/специальность: 11.04.04 Электроника и наноэлектроника

Наименование образовательной программы: Лазерная и оптическая измерительная электроника

Уровень образования: высшее образование - магистратура

Форма обучения: Очная

Оценочные материалы по дисциплине Интерферометрические и рефрактометрические оптико-электронные комплексы

Москва 2022

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ РАЗРАБОТАЛ:

The state of the s Преподаватель (должность)

NOSO SE	Подписано электронн	ой подписью ФГБОУ ВО «НИУ «МЭИ»			
म गिराक्षणसम्बद्धाः	Сведения о владельце ЦЭП МЭИ				
	Владелец	Лапицкий К.М.			
<u>M3N</u> ₹	Идентификатор	R34188c97-LapitskyKM-ff585e2b			
(подпись)					

K.M. Лапицкий (расшифровка

подписи)

СОГЛАСОВАНО:

Руководитель образовательной программы

(должность, ученая степень, ученое звание)

Заведующий выпускающей кафедры (должность, ученая степень,

ученое звание)

NESO NESO	Подписано электронн	ной подписью ФГБОУ ВО «НИУ «МЭИ»				
S REAL PROPERTY AND S	Сведен	ния о владельце ЦЭП МЭИ				
	Владелец	Скорнякова Н.М.				
» <u>МЭИ</u> «	Идентификатор F	₹984920bc-SkorniakovaNM-67f74b				

(подпись)

1930 May 19	Подписано электро	онной подписью ФГБОУ ВО «НИУ «МЭИ»	
	Све	ия о владельце ЦЭП МЭИ	
	Владелец	Скорнякова Н.М.	
» <u>МЭИ</u> «	Идентификатор	R984920bc-SkorniakovaNM-67f74b	

(подпись)

H.M.

Скорнякова

(расшифровка подписи)

H.M.

Скорнякова

(расшифровка подписи)

ОБЩАЯ ЧАСТЬ

Оценочные материалы по дисциплине предназначены для оценки: достижения обучающимися запланированных результатов обучения по дисциплине, этапа формирования запланированных компетенций и уровня освоения дисциплины.

Оценочные материалы по дисциплине включают оценочные средства для проведения мероприятий текущего контроля успеваемости и промежуточной аттестации.

Формируемые у обучающегося компетенции:

- 1. ПК-1 Способен представлять современную научную картину мира, выявлять естественнонаучную сущность проблем, определять пути их решения и оценивать эффективность сделанного выбора
 - ИД-1 Знает тенденции и перспективы развития электроники и наноэлектроники, а также смежных областей науки и техники
 - ИД-2 Умеет использовать передовой отечественный и зарубежный опыт в профессиональной сфере деятельности

и включает:

для текущего контроля успеваемости:

Форма реализации: Письменная работа

1. Тест «Оптические свойства среды» (Тестирование)

Форма реализации: Смешанная форма

- 1. Распространение излучения в оптически неоднородной среде (Контрольная работа)
- 2. Расчет интерференционных сигналов и картин (Контрольная работа)

Форма реализации: Устная форма

- 1. Основные типы лазерных интерферометров и методы анализа их сигналов (Лабораторная работа)
- 2. Применение лазерных интерферометров. Принципы построения лазерных рефракционных систем (Лабораторная работа)

БРС дисциплины

2 семестр

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Beca 1	контрол	льных мероприятий, %			
КМ: 1 2 3 4 5 Срок КМ: 4 8 12 16 16 Интерференционные и рефракционные измерения в современной технике + + + + + + + + + -	Роздел нисциплици	Индекс	КМ-	КМ-	КМ-	КМ-	КМ-
Интерференционные и рефракционные измерения в современной технике Интерференционные и рефракционные измерения в современной технике Оптические характеристики однородных и неоднородных сред Оптические характеристики однородных и	газдел дисциплины	KM:	1	2	3	4	5
Современной технике Интерференционные и рефракционные измерения в современной технике Оптические характеристики однородных и неоднородных сред Оптические характеристики однородных и		Срок КМ:	4	8	12	16	16
Интерференционные и рефракционные измерения в современной технике Оптические характеристики однородных и неоднородных сред Оптические характеристики однородных и	Интерференционные и рефракционные изм	перения в					
современной технике Оптические характеристики однородных и неоднородных сред Оптические характеристики однородных и	современной технике						
Современной технике Оптические характеристики однородных и неоднородных сред Оптические характеристики однородных и	Интерференционные и рефракционные изм	перения в					
неоднородных сред Оптические характеристики однородных и	современной технике			H		+	
Оптические характеристики однородных и	Оптические характеристики однородных и						
Оптические характеристики однородных и	неоднородных сред						
	Оптические характеристики однородных и						
неоднородных сред	неоднородных сред		+				
Основные типы лазерных интерферометров и методы	Основные типы лазерных интерферометров и методы						
анализа их сигналов	анализа их сигналов						

Основные типы лазерных интерферометров и методы анализа их сигналов		+	+		
Применение лазерных интерферометров					
Применение лазерных интерферометров		+			+
Структурированное лазерное излучение					
Структурированное лазерное излучение	+			+	
Приближение геометрической оптики для описания рефракции в слоистых средах					
Приближение геометрической оптики для описания рефракции в слоистых средах				+	+
Принципы построения лазерных рефракционных систем					
Принципы построения лазерных рефракционных систем				+	+
Bec KM:	10	20	25	20	25

^{*}Общая часть/Для промежуточной аттестации

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ТЕКУЩЕГО КОНТРОЛЯ

I. Оценочные средства для оценки запланированных результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций

Индекс	Индикатор	Запланированные	Контрольная точка
компетенции		результаты обучения по	
		дисциплине	
ПК-1	ИД-1пк-1 Знает тенденции	Знать:	Тест «Оптические свойства среды» (Тестирование)
	и перспективы развития	физические процессы,	Расчет интерференционных сигналов и картин (Контрольная работа)
	электроники и	приводящие к оптической	Распространение излучения в оптически неоднородной среде
	наноэлектроники, а также	неоднородности среды, и	(Контрольная работа)
	смежных областей науки и	основанные на них	
	техники	интерференционные и	
		рефракционные методы	
		диагностики	
		неоднородных сред	
		Уметь:	
		разработать методику	
		расчета и обработки	
		интерференционных	
		сигналов и картин для	
		определения величин	
		перемещения объекта и	
		изменения показателя	
		преломления среды	
		разработать методику	
		расчета и обработки	
		рефрактограмм для	
		визуализации	
		неоднородной среды	
ПК-1	$ИД-2_{\Pi K-1}$ Умеет	Уметь:	Основные типы лазерных интерферометров и методы анализа их
	использовать передовой	проводить	сигналов (Лабораторная работа)

отечественный и	экспериментальные	Применение лазерных интерферометров. Принципы построения
зарубежный опыт в	исследования по	лазерных рефракционных систем (Лабораторная работа)
профессиональной сфере	определению величин	
деятельности	перемещения объекта и	
	изменения показателя	
	преломления среды на	
	основе известных	
	принципов построения	
	интерферометрических	
	систем с использованием	
	лазерных источников	
	проводить	
	экспериментальные	
	исследования по	
	определению параметров	
	оптически прозрачной	
	неоднородной среды на	
	основе известных	
	принципов построения	
	рефрактометрических	
	систем с использованием	
	некогерентных и	
	когерентных источников	

II. Содержание оценочных средств. Шкала и критерии оценивания

КМ-1. Тест «Оптические свойства среды»

Формы реализации: Письменная работа

Тип контрольного мероприятия: Тестирование **Вес контрольного мероприятия в БРС:** 10

Процедура проведения контрольного мероприятия: Тест на 45 минут

Краткое содержание задания:

Сравните дифракционные картины, полученные при помощи дифракционной решётки в воздухе при температуре 0°С и 500°С (параметры решётки считать неизменными):

- - картины не отличаются;
- - в картине при 500°C расстояние между максимумами больше, чем при 0°C;
- - в картине при 500°C расстояние между максимумами меньше, чем при 0°C (верный)

Контрольные вопросы/задания:

Знать: физические процессы, приводящие к оптической неоднородности среды, и основанные на них интерференционные и рефракционные методы диагностики неоднородных сред

- 1.Угол падения светового излучения длиной волны $\lambda_D = 589,3$ нм на границу раздела «водавоздух» (источник излучения находится в воде) составляет $48^{\circ}39'30''$. Определите, при каких температурах из списка будет наблюдаться полное внутреннее отражение:
- углы менее или равные 30°С (верный);
- углы более или равные 30°С;
- углы менее или равные 50°C;
- - углы более или равные 50°C

T, °C	n_D
0°C	1,33395
10°C	1,33369
20°C	1,33299
30°C	1,33194
40°C	1,33061
50°C	1,32904
60°C	1,32725

- 2. Сравните дифракционные картины, полученные при помощи дифракционной решётки в воздухе при температуре 0°С и 500°С (параметры решётки считать неизменными):
- картины не отличаются;
- - в картине при 500°С расстояние между максимумами больше, чем при 0°С;
- - в картине при 500°С расстояние между максимумами меньше, чем при 0°С (верный)
 - 3.На основе значений показателя преломления дистиллированной воды для длины волны $\lambda_D = 589,3$ нм сравните коэффициенты отражения излучения на

границе раздела «воздух-вода» при нормальном падении при температурах 20°С и 50°С. Дать развёрнутый ответ.

<i>T</i> , °C	n_D
0°C	1,33395
10°C	1,33369
20°C	1,33299
30°C	1,33194
40°C	1,33061
50°C	1,32904
60°C	1,32725

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: Оценка "отлично" выставляется, если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 70 Описание характеристики выполнения знания: Оценка "хорошо" выставляется, если большинство вопросов раскрыто, выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 50 Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется, если задание преимущественно выполнено

КМ-2. Расчет интерференционных сигналов и картин

Формы реализации: Смешанная форма

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 20

Процедура проведения контрольного мероприятия: Выполнение задания на компьютере

в течение 45 минут с последующей устной защитой

Краткое содержание задания:

Произвести расчёт выходной характеристики сигнала гомодинного лазерного интерферометра перемещений или лазерного интерференционного рефрактометра

Контрольные вопросы/задания:

Уметь:	разработать	методику				
расчета	И	обработки				
интерфе	ренционных	сигналов и				
картин д	ля определен	ния величин				
перемещения объекта и						
изменен	RΝ	показателя				
преломл	ения среды					

- 1. Лазерная интерферометрическая система предназначена для измерения перемещения уголкового отражателя на расстояние 5 м на базе лазера (длина волны 0,6328 мкм, мощность 10 мВт, размер перетяжки 0,3 мм) при нулевой начальной скорости движения и ускорении 0,1 м/с. Чувствительность фотоприемника 0,1 А/Вт.
- 1) Выбрать оптическую схему интерферометра.
- 2) Рассчитать параметры пучков в зависимости от перемещения отражателя.
- 3) Построить и проанализировать зависимость фототока от времени.

- 4) Построить зависимость фототока от размера диафрагмы.
- 5) Построить зависимость фототока от размера перетяжки (мощность лазера постоянная) 2. Лазерная интерферометрическая система предназначена для измерения изменения показателя преломления газа в стеклянной кювете длиной 1 м на базе лазера (длина волны 0,6328 мкм, мощность 10 мВт, размер перетяжки 0,4 мм) в течение 100 секунд. Показатель преломления газа меняется по закону $n(t) = 4 \cdot 10^{-8} \cdot t^2 + 1,001$. Чувствительность
- 1) Выбрать оптическую схему интерферометра.

фотоприемника 0,1 А/Вт.

- 2) Рассчитать параметры пучков в зависимости от изменения показателя преломления газа.
- 3) Построить и проанализировать зависимость фототока от времени.
- 4) Построить зависимость фототока от размера диафрагмы.
- 5) Построить зависимость фототока от размера перетяжки (мощность лазера постоянная)

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: Оценка "отлично" выставляется, если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "хорошо" выставляется, если большинство вопросов раскрыто, выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется, если задание преимущественно выполнено

КМ-3. Основные типы лазерных интерферометров и методы анализа их сигналов

Формы реализации: Устная форма

Тип контрольного мероприятия: Лабораторная работа

Вес контрольного мероприятия в БРС: 25

Процедура проведения контрольного мероприятия: Подготовка ответа на выданные вопросы с последующей устной защитой

Краткое содержание задания:

- 1. При каких условиях будет наблюдаться интерференция от двух гауссовых пучков, распространяющихся параллельно друг другу?
- 2. Аналоговая и цифровая модель сигнала ЛДВ: методика и погрешность оцифровки при помощи АЦП.

3. Построить интерференционные картины двух плоских волн в двухмерном пространстве при следующих параметрах: отношение интенсивностей двух пучков равно 1, 1.5, 2; угол пересечения равен N градусов; длина волны λ =0,63мкм; без шума.

Контрольные вопросы/задания:

Уметь: проводить						
экспериментальные						
исследования по определению						
величин перемещения объекта и						
изменения показателя						
преломления среды на основе						
известных принципов						
построения						
интерферометрических систем с						
использованием лазерных						
источников						

- 1. Чем отличается интерференционная картина при интерференции плоской и сферической волн от картины, соответствующей интерференции плоской волны и гауссова пучка?
- 2.При каких условиях будет наблюдаться интерференция от двух гауссовых пучков, распространяющихся параллельно друг другу? 3.Принцип работы лазерного доплеровского виброметра. Основные параметры сигнала ЛДВ. Изменение формы сигнала при варьировании
- 4. Аналоговая и цифровая модель сигнала ЛДВ: методика и погрешность оцифровки при помощи АЦП.
- 5. Методы обработки сигнала ЛДВ.

каждого из параметров.

- 6.Влияние мультипликативных и аддитивных шумов сигнала на погрешность определения амплитуды виброколебаний.
- 7.Построить интерференционные картины двух плоских волн в двухмерном пространстве при следующих параметрах: отношение интенсивностей двух пучков равно 1, 1.5, 2; угол пересечения равен N градусов; длина волны λ =0,63мкм; без шума.

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: Оценка "отлично" выставляется, если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если, большинство вопросов раскрыто, выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется, если задание преимущественно выполнено

КМ-4. Распространение излучения в оптически неоднородной среде

Формы реализации: Смешанная форма

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 20

Процедура проведения контрольного мероприятия: Выполнение задания на компьютере

в течение 45 минут с последующей устной защитой

Краткое содержание задания:

Построить профили пучка на экране (рефракционные картины) для выбранных параметров температурной неоднородности и геометрических параметров установки. Задания - в соответствии с вариантом.

Контрольные вопросы/задания:

Уметь: разработать методику расчета и обработки рефрактограмм для визуализации неоднородной среды

1.1. Задать распределение температуры и градиента температуры в сферически-слоистой среде в направлении радиальной координаты r вокруг нагретого шара радиусом R=(10+2N) мм в соответствии с номером варианта по формуле $T(r)=T_0+\Delta T\cdot exp\left(-\frac{(r-R-\Delta R)^2}{a^2}\right)$.

Таблица. Параметры модели температурных полей

№ вар. (<i>N</i>)	$T_{\mathrm{III}}^{\mathrm{III}}$, C	T_0^0 , C	Δ <i>T</i> , C	ΔR , mm	a, mm
1	90	20,0	94,6	-0,221	0,400
2	80	20,0	77,8	-0,653	1,281
3	70	20,0	63,3	-1,066	2,267
4	60	20,0	49,1	-1,669	3,680
5	50	20,0	38,2	-2,678	5,592

- 2. Построить зависимость показателя преломления и градиента показателя преломления вдоль радиальной координаты r в воде, используя формулу связи температуры воды с показателем преломления для длины волны 0.6328 мкм: $n(T) = 1.3328 0.000051T 0.0000011T^2$.
- 3. Расположить экран на расстоянии $z_1 = (40 + 10 \cdot N)$ мм в положительной области оси z.
- 4. Получить зависимости для расчета траектории семейства лучей, распространяющихся в оптической неоднородности, если луч входит в среду параллельно оси z, точка входа каждого луча в неоднородности расположена в бесконечности ($|z_0| >> R$), координата входа x_0 одинаковая для всех лучей. Количество лучей по оси y брать из условия, что не менее трех должны лежать в области, где градиент показателя преломления практически отсутствует (в соответствии с построенными зависимостями). Расчеты выполнить для трех различных значений $x_0 > R$ по выбору студента. 5. По результатам расчета п.4 построить профили пучка на экране (рефракционные картины) для выбранных начальных координат x_0 .

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 90 Описание характеристики выполнения знания: Оценка "отлично" выставляется, если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "хорошо" выставляется, если большинство вопросов раскрыто, выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется, если задание преимущественно выполнено

КМ-5. Применение лазерных интерферометров. Принципы построения лазерных рефракционных систем

Формы реализации: Устная форма

Тип контрольного мероприятия: Лабораторная работа

Вес контрольного мероприятия в БРС: 25

Процедура проведения контрольного мероприятия: Подготовка ответа на выданные

вопросы с последующей устной защитой

Краткое содержание задания:

1. Каким образом можно определить реальный размер пузырьков по интерференционной картине?

- 2. По какой траекторий будет распространяться луч в оптически неоднородной среде? Количественные характеристики кривизны траектории.
- 3. Каковы основные компоненты типовой установки для ТФМ?

Контрольные вопросы/задания:

Уметь: проводить
экспериментальные
исследования по определению
параметров оптически
прозрачной неоднородной среды
на основе известных принципов
построения
рефрактометрических систем с
использованием некогерентных
и когерентных источников

- 1.В чем состоит суть ТФМ, на каких физических эффектах основан данный метод? В чем состоит преимущество ТФМ по сравнению с другими методами?
- 2. Каковы основные компоненты типовой установки для TФM?
- 3.На чем основана обработка экспериментальных изображений ТФМ?
- 4. Каким образом получается интерференционная картина от сферической частицы?
- 5. Каким образом можно определить реальный размер пузырьков по интерференционной картине?
- 6.По какой траектории будет распространяться луч в оптически неоднородной среде? Количественные характеристики кривизны траектории.
- 7. Вывести уравнение распространения луча в плоскослоистом поле показателей преломления. Пояснить условия его применимости.

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: Оценка "отлично" выставляется, если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "хорошо" выставляется, если большинство вопросов раскрыто, выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 50 Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется, если задание преимущественно выполнено

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

2 семестр

Форма промежуточной аттестации: Экзамен

Пример билета

- 1. Измерение перемещений. Лазерные гравиметры
- 2. Сферически-слоистая среда. Траектории лучей в сферической неоднородности
- 3. В лазерном рефрактометре используется кювета с жидкостью длиной 1,0 м. Длина волны в лазере в вакууме составляет 0,5 мкм. Показатель преломления жидкости равен 1,35 при температуре 20 °C. Как изменятся показания рефрактометра, если температура жидкости возрастет до 60 °C? На какое число полос сместится интерференционная картина? Температурный коэффициент показателя преломления жидкости равен 2 · 10(C).

Процедура проведения

Устная форма

- I. Перечень компетенций/индикаторов и контрольных вопросов проверки результатов освоения дисциплины
- **1. Компетенция/Индикатор:** ИД- $1_{\Pi K-1}$ Знает тенденции и перспективы развития электроники и наноэлектроники, а также смежных областей науки и техники

Вопросы, задания

- 1.Измерение перемещений. Лазерные гравиметры
- 2. Сферически-слоистая среда. Траектории лучей в сферической неоднородности
- 3.Плоскослоистая среда. Траектории лучей в плоскослоистой неоднородности
- 4.Спекл-интерферометрия. Образование спекл-структуры и ее характеристики. Интерференционная картина при суперпозиции спекл-структур. Практические применения спекл-интерферометрии
- 5. Методы голографической интерферометрии: метод двойной экспозиции, метод реального времени. Методы расшифровки голографических интерферограмм 6. Методы цифровой обработки рефрактограмм
- 7. Анализ сигналов лазерных интерферометров. Аналоговые и компьютерные методы обработки интерференционных временных сигналов. Анализ погрешностей лазерных интерферометров
- 8. Принцип действия гетеродинного интерферометра. Внешние модуляторы для гетеродинных интерферометров
- 9. Принцип действия модуляционного интерферометра
- 10. Принцип действия гомодинного интерферометра. Выходная характеристика
- 11.Оптические свойства среды. Показатель преломления. Физические процессы, приводящие к оптической неоднородности среды. Температурное поле в жидкости. Акустическое поле в жидкостях и газах. Стратифицированные жидкости 12.Роль и значение интерференционных и рефракционных измерений в современной науке, технике и технологии, в становлении современного прецизионного

приборостроения. Принципы рефракционных методов диагностики неоднородных сред. Принципы интерференционных методов измерения перемещений и изменения показателя преломления

13.Метрологические характеристики лазеров. Требования к лазерам, используемым в интерферометрах различного типа

Материалы для проверки остаточных знаний

1. На пути излучения с длиной волны 1 мкм установили стеклянную пластинку толщиной 1 мм с показателем преломления 1,5. Какова величина внесённой оптической разности хода?

Ответы:

1) 0,5 mm; 2) 0,5 mkm; 3) 1 mm; 4) 1 mkm

Верный ответ: 1

2.Интенсивности двух интерферирующих пучков равны соответственно 1 Вт/м и 4Вт/м. Какова видность интерференционной картины?

Ответы:

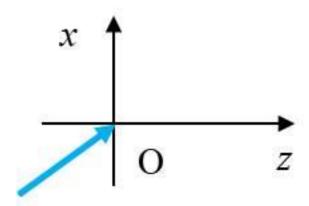
1) 0,25; 2) 0,6; 3) 0,8; 4) 1

Верный ответ: 3

3.В гомодинном интерферометре зеркало переместилось на 1,00 м. Длина волны лазерного излучения 0,5 мкм. На какое число полос сместилась интерференционная картина в процессе перемещения зеркала?

Ответы:

1) 4000; 2) 2000; 3) 40; 2) 20

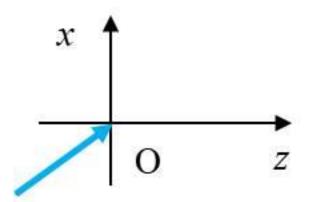

Верный ответ: 1

4.В гомодинном интерферометре перемещений лазер с излучением красного цвета заменили на лазер с излучением зеленого цвета. Будет ли различие в количестве полос, на которое сместится интерференционная картина, если отражатель в обоих случаях переместился на одно и то же расстояние?

Ответы:

1) в случае использования излучения зеленого цвета количество прошедших полос будет меньше; 2) в случае использования излучения зеленого цвета количество прошедших полос будет больше; 3) различий в количестве прошедших полос не будет; 4) данных для ответа недостаточно

Верный ответ: 2



л. Луч падает на границу раздела между однородной средой (z<0) и плоскослоистой неоднородной средой (z>0). При каких условиях луч сможет развернуться и распространяться в направлении противоположном оси ОХ?

Ответы

1) в случае, если (dn/dx)>0; 2) в случае, если (dn/dx)<0; 3) в случае, если (dn/dz)<0; 4) не сможет ни в каком случае

Верный ответ: 2

6.

Луч падает на границу раздела между однородной средой (x<0) и плоскослоистой неоднородной средой (x>0). При каких условиях луч сможет развернуться и распространяться в направлении противоположном оси OZ?

Ответы:

1) в случае, если (dn/dz)<0; 2) в случае, если (dn/dz)>0; 3) в случае, если (dn/dx)>0; 4) не сможет ни в каком случае

Верный ответ: 1

2. Компетенция/Индикатор: ИД- $2_{\Pi K-1}$ Умеет использовать передовой отечественный и зарубежный опыт в профессиональной сфере деятельности

Вопросы, задания

- 1. Моделирование рефракции структурированного лазерного излучения в оптической неоднородности. Рефрактограммы излучения в среде с градиентом температуры 2. Основные виды структурированного лазерного излучения. Гауссовы пучки. Формирование лазерной плоскости на основе оптических элементов. Формирование СЛИ на основе дифракционных оптических элементов
- 3. Лазерные рефрактографические системы. Структурные элементы системы. Требования к СЛИ. Требования к системам регистрации рефактограмм. Методы регистрации с применением фото- и видеоаппаратуры
- 4.В лазерном рефрактометре используется кювета с жидкостью длиной 1,0 м. Длина волны в лазере в вакууме составляет 0,5 мкм. Показатель преломления жидкости равен 1,35 при температуре 20 °C. Как изменятся показания рефрактометра, если температура жидкости возрастет до 60 °C? На какое число полос сместится интерференционная картина? Температурный коэффициент показателя преломления жидкости равен 2 · 10(C).
- 5.Два плоских пучка пересекаются под углом 60° . Построить график зависимости периода интерференционной картины от длины волны в диапазоне от 0,5 мкм до 5 мкм. Что произойдет с графиком, если угол сведения пучков уменьшить до 30° ?
- 6.В гомодинном интерферометре зеркало сначала перемещается на 1,00 м. Длина волны лазерного излучения 1 мкм. Как будут изменяться показания интерферометра? На какое число полос сместится интерференционная картина при движении зеркала?

Материалы для проверки остаточных знаний

1.В лазерном рефрактометре используется кювета с жидкостью длиной 1,0 м. Длина волны в лазере в вакууме составляет 0,5 мкм. Показатель преломления жидкости равен 1,35 при температуре 20 °C. На какое число полос сместится интерференционная картина, если температура жидкости возрастет до 60 °C? Температурный коэффициент показателя преломления жидкости равен – $2 \cdot 10(C)$.

Ответы:

1) 16000; 2) 160; 3) 0,16; 4) 16

Верный ответ: 1

2. Две плоские волны пересекаются под углом 60°. Длина волны излучения 0,5 мкм. Каков период интерференционной картины в микрометрах?

Ответы:

1) 0,25; 2) 0,5; 3) 1; 4) 2

Верный ответ: 2

3. Какие параметры оптически прозрачной газообразной среды влияют на её показатель преломления?

Ответы:

1) плотность; 2) температура; 3) влажность; 4) плотность и температура; 5) плотность, температура и влажность

Верный ответ: 5

- 4. Как ведёт себя показатель преломления газообразных и жидких сред при нагревании? Ответы:
- 1) увеличивается в обоих случаях; 2) уменьшается в обоих случаях; 3) в случае газообразной среды увеличивается, в случае жидкой среды уменьшается; 4) в случае газообразной среды уменьшается, в случае жидкой среды увеличивается

Верный ответ: 3

II. Описание шкалы оценивания

Оценка: 5

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: Выставляется студенту, правильно выполнившему практическое задание, который показал при ответе на вопросы экзаменационного билета и на дополнительные вопросы, что владеет материалом изученной дисциплины, свободно применяет свои знания для объяснения различных явлений и решения залач

Оценка: 4

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Выставляется студенту, правильно выполнившему практическое задание и в основном правильно ответившему на вопросы экзаменационного билета и на дополнительные вопросы, но допустившему при этом непринципиальные ошибки

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Выставляется студенту, который в ответах на вопросы экзаменационного билета допустил существенные и даже грубые ошибки, но затем исправил их сам, а также не выполнил практическое задание из экзаменационного билета, но либо наметил правильный путь его выполнения, либо по указанию экзаменатора решил другую задачу из того же раздела дисциплины

ІІІ. Правила выставления итоговой оценки по курсу

Оценка определяется в соответствии с Положением о балльно-рейтинговой системе для студентов НИУ «МЭИ» на основании семестровой и экзаменационной составляющих