Министерство науки и высшего образования РФ Федеральное государственное бюджетное образовательное учреждение высшего образования

«Национальный исследовательский университет «МЭИ»

Направление подготовки/специальность: 11.04.04 Электроника и наноэлектроника

Наименование образовательной программы: Лазерная и оптическая измерительная электроника

Уровень образования: высшее образование - магистратура

Форма обучения: Очная

Рабочая программа дисциплины АКТУАЛЬНЫЕ ПРОБЛЕМЫ СОВРЕМЕННОЙ ЭЛЕКТРОНИКИ И НАНОЭЛЕКТРОНИКИ

Блок:	Блок 1 «Дисциплины (модули)»
Часть образовательной программы:	Часть, формируемая участниками образовательных отношений
№ дисциплины по учебному плану:	Б1.Ч.07
Трудоемкость в зачетных единицах:	3 семестр - 3;
Часов (всего) по учебному плану:	108 часов
Лекции	3 семестр - 32 часа;
Практические занятия	3 семестр - 16 часов;
Лабораторные работы	не предусмотрено учебным планом
Консультации	проводится в рамках часов аудиторных занятий
Самостоятельная работа	3 семестр - 59,7 часа;
в том числе на КП/КР	не предусмотрено учебным планом
Иная контактная работа	проводится в рамках часов аудиторных занятий
включая: Тестирование	
Промежуточная аттестация:	
Зачет с оценкой	3 семестр - 0,3 часа;

Москва 2024

ПРОГРАММУ СОСТАВИЛ:

Преподаватель

В.А. Паршин

СОГЛАСОВАНО:

Руководитель образовательной программы

H.М. Скорнякова

Заведующий выпускающей кафедрой

NISO NISO	Подписано электронн	ой подписью ФГБОУ ВО «НИУ «МЭИ»
San International State	Сведен	ия о владельце ЦЭП МЭИ
-	Владелец	Скорнякова Н.М.
» MOM «	Идентификатор R	984920bc-SkorniakovaNM-67f74b

H.М. Скорнякова

1. ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Цель освоения дисциплины: Изучение актуальных вопросов квантовой электроники, современных понятий, законов, теорий, экспериментальных методов и результатов измерений в области физики взаимодействия излучения оптического диапазона с веществом.

Задачи дисциплины

- Освоение физических принципов квантовых вычислений и квантовой информации;
- Приобретение навыков применения современных, классических, квантовых теорий и экспериментальных схем к задачам физики взаимодействия излучения с веществом;
- Приобретение навыков определения границы применимости различных экспериментальных методов, качественных теоретических оценок и количественных расчетов.

Формируемые у обучающегося компетенции и запланированные результаты обучения по дисциплине, соотнесенные с индикаторами достижения компетенций:

Код и наименование компетенции	Код и наименование индикатора достижения компетенции	Запланированные результаты обучения
ПК-1 Способен проводить, сопровождать работы, организовывать обучение персонала по проектированию и конструированию лазерных и оптических измерительных приборов и комплексов	ИД-1 _{ПК-1} Знает методику теоретических и экспериментальных исследований для разработки и создания новых квантовооптических систем и комплексов	знать: - Методы анализа научно-технической информации в области квантовой электроники и наноэлектроники.; - Основные источники научно-технической информации (журналы, сайты Интернет) по актуальным проблемам электроники и наноэлектроники; - Способы описания и оценочных расчетов реальных экспериментов по исследованию свойств вещества при помощи резонансного лазерного излучения; - Физические принципы работы приборов и устройств квантовой электроники и наноэлектроники, квантовых вычислений и квантовой информации

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ ВО

Дисциплина относится к основной профессиональной образовательной программе Лазерная и оптическая измерительная электроника (далее — ОПОП), направления подготовки 11.04.04 Электроника и наноэлектроника, уровень образования: высшее образование - магистратура.

Базируется на уровне высшего образования (бакалавриат, специалитет).

Результаты обучения, полученные при освоении дисциплины, необходимы при выполнении выпускной квалификационной работы.

3. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

3.1 Структура дисциплины Общая трудоемкость дисциплины составляет 3 зачетных единицы, 108 часов.

	D/	В		Распределение трудоемкости раздела (в часах) по видам учебной работы										
No	Разделы/темы дисциплины/формы	асод	стр				Конта	ктная раб	ота				CP	Содержание самостоятельной работы/
п/п	промежуточной	сего часо: на раздел	Семестр				Консу	льтация	ИК	P		Работа в	Подготовка к	методические указания
	аттестации	Всего часов на раздел	C	Лек	Лаб	Пр	КПР	ГК	ИККП	ТК	ПА	семестре	аттестации /контроль	
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	Базовые модели современной наноэлектроники	48	3	18	-	8	-	-	-	-	-	22	-	<u>Самостоятельное изучение</u> <u>теоретического материала:</u> Изучение лекционного и дополнительного материала
1.1	Основные направления современной наноэлектроники. Тенденции развития.	6		2	-	-	-	-	-	-	-	4	-	по разделу "Базовые модели современной наноэлектроники" <u>Подготовка к текущему контролю:</u> Повторение материала по разделу "Базовые модели современной наноэлектроники"
1.2	Уравнения Максвелла. Варианты воздействия излучения на вещество. Частота Раби.	10		4	-	2	-	-	-	-	1	4	-	<u>Изучение материалов литературных</u> <u>источников:</u> [2], 10-18 [3], 17-95 [4], 4-43
1.3	Полуклассическое приближение. Квантовая оптика. Поляризация, Оптические нутации. Фотонное эхо	12		4	-	4	-	-	-	-	1	4	-	
1.4	Матрица плотности. Матрицы Паули. Уравнение Блоха. Продольная и поперечная релаксации	10		4	-	2	-	-	-	-	-	4	-	
1.5	Восприимчивость двухуровневой	10		4	-	-	-	-	-	-	-	6	-	

			1			1	1	ı	1	1			1	T
	системы. Однородное													
	уширение.													
	Неоднородное													
	уширение.													
	Насыщенная													
	спектроскопия.													
2	Прикладные вопросы	42		14	-	8	-	-	-	_	-	20	-	Самостоятельное изучение
	современной													<u>теоретического материала:</u> Изучение
	оптоэлектроники и													лекционного и дополнительного материала
	наноэлектроники													по разделу "Прикладные вопросы
2.1	Нелинейная оптика.	10	-	4		2	_		_	_	_	4		современной оптоэлектроники и
2.1	Нелинейные	10		4	_	2	_	_	-	_	_	4	_	наноэлектроники"
	процессы. Нелинейная													Подготовка к текущему контролю:
	связь между													Повторение материала по разделу
	поляризацией и													"Прикладные вопросы современной
	полем.													оптоэлектроники и наноэлектроники"
	Классификация													Изучение материалов литературных
	нелинейных													источников:
	оптических эффектов													[1], 19-26, 66-82,116-132,186-199
2.2	Электрооптические и	10		4	-	2	-	-	-	-	-	4	-	[5], 80-103, 235-258
	магнитооптические													
	эффекты. Сложение и													
	разность частот.													
	Параметрическое													
	усиление и генерация													
	Виды вынужденного													
	рассеяния света													
2.3	Зеемановский	6	-	2	_	_	_	_	_	_	_	4	_	
2.3	замедлитель.	U			_	_	_	_	_	_		7	_	
	замедлитель. Магнитооптическая													
	ловушка Установка													
	МОЛ с атомами лития													
	7 Бозе-													
	Эйнштейновская													
	конденсация и													
	вырожденные ферми													
	системы		<u> </u>											
2.4	Ридберговские атомы.	8		2	-	2	-	-	-	-	-	4	-	
	Экспериментальные													

	методы. Ридберговские атомы в магнитном поле. Эксперименты по созданию антиводорода. Эксперименты по созданию квантовых гравиметров в												
2.5	условиях невесомости		2								4		
2.5	Квантовые компьютеры	8	2	-	2	-	-	-	-	-	4	-	
	Зачет с оценкой	18.0	-	-	-	-	-	=	-	0.3	-	17.7	
	Всего за семестр	108.0	32	-	16	-	-	-	-	0.3	42	17.7	
	Итого за семестр	108.0	32	-	16		-	-	1	0.3		59.7	

Примечание: Лек – лекции; Лаб – лабораторные работы; Пр – практические занятия; КПР – аудиторные консультации по курсовым проектам/работам; ИККП – индивидуальные консультации по курсовым проектам/работам; ГК- групповые консультации по разделам дисциплины; СР – самостоятельная работа студента; ИКР – иная контактная работа; ТК – текущий контроль; ПА – промежуточная аттестация

3.2 Краткое содержание разделов

1. Базовые модели современной наноэлектроники

1.1. Основные направления современной наноэлектроники. Тенденции развития.

Два основных направления современной наноэлектроники: кремниевая наноэлектроника и наноэлектроника на наноструктурах. Фундаментальные физические пределы современных приборов и устройств микроэлектроники. Тенденции развития..

- 1.2. Уравнения Максвелла. Варианты воздействия излучения на вещество. Частота Раби. Физическая интерпретация. Знание законов связи электрического и магнитного поля. Характерные времена. Три вида временного воздействия. Понятие частоты Раби.
- 1.3. Полуклассическое приближение. Квантовая оптика. Поляризация, Оптические нутации. Фотонное эхо

Определение оптических нутаций. Понятие насыщения. Понятие поляризации. Понятие формы импульса. Эффект воздействия $\pi/2$, π импульсов. Условия возникновения самоиндуцированной прозрачности. Метод реализации фотонного эха. Возможности применения фотонного эха в оптических компьютерах.

1.4. Матрица плотности. Матрицы Паули. Уравнение Блоха. Продольная и поперечная релаксации

Незамкнутые системы. Формула для матрицы плотности. Физический смысл элементов матрицы плотности. Уравнения движения для матрицы плотности. Элементы матрицы Паули. Физический смысл уравнений Блоха. Связь продольной и поперечной релаксации с релаксационной матрицей. Аналогия релаксаций с ЯМР..

1.5. Восприимчивость двухуровневой системы. Однородное уширение. Неоднородное уширение. Насыщенная спектроскопия.

Дипольный момент единицы объема вещества. Мнимая и действительная часть восприимчивости системы. Связь с диэлектрической проницаемостью. Форма линии однородного уширения. Физическая причина возникновения уширения. Соотношение Крамерса –Кронига. Форма линии неоднородного уширения. Физическая причина возникновения уширения. Различие однородного и неоднородного уширения при насыщении. Понятие насыщенной спектрометрии. Форма линии насыщенной спектрометрии на примере D2 линии атома лития 7. Принципы стабилизации частоты лазеров..

2. Прикладные вопросы современной оптоэлектроники и наноэлектроники

2.1. Нелинейная оптика. Нелинейные процессы. Нелинейная связь между поляризацией и полем. Классификация нелинейных оптических эффектов

Нарушение принципа суперпозиции. Типы нелинейности. Средний дипольный момент единицы объема вещества. Связь момента с диэлектрической восприимчивостью через частоту и время- восприимчивости 1,2 и 3 порядка. Правило Клейнмана..

2.2. Электрооптические и магнитооптические эффекты. Сложение и разность частот. Параметрическое усиление и генерация Виды вынужденного рассеяния света

Определение эффектов Поккельса, Керра, Фарадея, Коттона — Муттона. Применение эффектов в экспериментах. Условие фазового синхронизма. Генерация гармоник. Отличие от генерации разностных частот. Схема двухрезонаторного параметрического генератора.

Определение комбинационного рассеяния, рассеяния Мандельштама- Бриллюэна, Рэлея.Практическое использование.

2.3. Зеемановский замедлитель. Магнитооптическая ловушка Установка МОЛ с атомами лития 7 Бозе-Эйнштейновская конденсация и вырожденные ферми системы

вырожденные ферми системы Принципы работы зеемановского замедлителя. Метод чирпа. Принципы МОЛ. Доплеровский предел. Затухающие осцилляции атомов в центре ловушки. Принципиальная схема установки. Вакуумная и лазерная часть. Параметры ловушки Понятие бозона и фермиона. Методы получения БЭК..

2.4. Ридберговские атомы. Экспериментальные методы. Ридберговские атомы в магнитном поле. Эксперименты по созданию антиводорода. Эксперименты по созданию квантовых гравиметров в условиях невесомости

Понятие ридберговских атомов. Методы получения и исследования. Формула Томпсона для рекомбинации. Влияние магнитного поля на рекомбинацию. Понятие антивещества. Принципиальная схема эксперимента. Методы диагностики. Различные схемы экспериментов. Практическое использование.

2.5. Квантовые компьютеры

Квантовая информация и квантовые вычисления. Квантовая суперпозиция. Кубиты. Запутанные состояния. Квантовый параллелизм. Квантовые логические вентили. Телепортация..

3.3. Темы практических занятий

- 1. Оптические нутации. Фотонное эхо;
- 2. Уравнения Максвелла. Варианты воздействия излучения на вещество. Частота Раби;
- 3. Полуклассическое приближение. Квантовая оптика.;
- 4. Ридберговские атомы;
- 5. Электрооптические и магнитооптические эффекты;
- 6. Нелинейная оптика;
- 7. Матрица плотности;
- 8. Квантовые компьютеры.

3.4. Темы лабораторных работ

не предусмотрено

3.5 Консультации

3.6 Тематика курсовых проектов/курсовых работ

Курсовой проект/ работа не предусмотрены

3.7. Соответствие разделов дисциплины и формируемых в них компетенций

Запланированные результаты обучения по дисциплине (в соответствии с разделом 1)	Коды индикаторов	дис	мер раздела циплины (в тветствии с п.3.1)	Оценочное средство (тип и наименование)
Знать:		1	2	
Физические принципы работы приборов и устройств квантовой электроники и наноэлектроники, квантовых вычислений и квантовой информации.	ИД-1 _{ПК-1}		+	Тестирование/Тест №4
Способы описания и оценочных расчетов реальных экспериментов по исследованию свойств вещества при помощи резонансного лазерного излучения	ИД-1 _{ПК-1}	+		Тестирование/Тест №2
Основные источники научно-технической информации (журналы, сайты Интернет) по актуальным проблемам электроники и наноэлектроники	ИД-1 _{ПК-1}		+	Тестирование/Тест №3
Методы анализа научно-технической информации в области квантовой электроники и наноэлектроники.	ИД-1 _{ПК-1}	+		Тестирование/Тест №1

4. КОМПЕТЕНТНОСТНО-ОРИЕНТИРОВАННЫЕ ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ КОНТРОЛЯ ОСВОЕНИЯ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ (ТЕКУЩИЙ КОНТРОЛЬ УСПЕВАЕМОСТИ, ПРОМЕЖУТОЧНАЯ АТТЕСТАЦИЯ ПО ДИСЦИПЛИНЕ)

4.1. Текущий контроль успеваемости

3 семестр

Форма реализации: Письменная работа

- 1. Тест №1 (Тестирование)
- 2. Тест №2 (Тестирование)
- 3. Тест №3 (Тестирование)
- 4. Тест №4 (Тестирование)

Балльно-рейтинговая структура дисциплины является приложением А.

4.2 Промежуточная аттестация по дисциплине

Зачет с оценкой (Семестр №3)

Оценка определяется в соответствии с Положением о балльно-рейтинговой системе для студентов НИУ «МЭИ» на основании семестровой и зачетной составляющих

В диплом выставляется оценка за 3 семестр.

Примечание: Оценочные материалы по дисциплине приведены в фонде оценочных материалов ОПОП.

5. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

5.1 Печатные и электронные издания:

- 1. Шен, И. Р. Принципы нелинейной оптики : пер. с англ. / И. Р. Шен ; ред. С. А. Ахманов . Москва : Наука, 1989 . 560 с. ISBN 5-02-014043-0 .;
- 2. Скалли, М. О. Квантовая оптика : пер. с англ. / М. О. Скалли, М. С. Зубайри ; ред. В. В. Самарцев . Москва : Физматлит, 2003 . 512 с. ISBN 5-9221-0398-9 .;
- 3. Драгунов, В. П. Основы наноэлектроники : учебное пособие для вузов по направлению "Электроника и микроэлектроника", специальностям "Микроэлектроника и твердотельная электроника" и "Микросистемная техника" / В. П. Драгунов, И. Г. Неизвестный, В. А.

Гридчин. – М. : Логос, 2006. - 496 с. – (Новая унив. 6-ка). - ISBN 5-9870405-4-Х.;

- 4. Агеев, И. М. Физические основы электроники и наноэлектроники : учебное пособие / И. М. Агеев . Санкт-Петербург : Лань, 2020 . 324 с. (Учебники для вузов. Специальная литература) . ISBN 978-5-8114-4081-8 .;
- 5. Будкер Д., Кимбелл Д., ДеМилль Д.- "Атомная физика", Издательство: "ФИЗМАТЛИТ", Москва, 2010 (396 с.)

http://e.lanbook.com/books/element.php?pl1_id=48253.

5.2 Лицензионное и свободно распространяемое программное обеспечение:

- 1. СДО "Прометей";
- 2. Office / Российский пакет офисных программ;
- 3. Видеоконференции (Майнд, Сберджаз, ВК и др);
- 4. SmathStudio.

- 5.3 Интернет-ресурсы, включая профессиональные базы данных и информационносправочные системы:
- 1. ЭБС Лань https://e.lanbook.com/
- 2. ЭБС "Университетская библиотека онлайн" -

http://biblioclub.ru/index.php?page=main_ub_red

- 3. Научная электронная библиотека https://elibrary.ru/
- 4. База данных ВИНИТИ online http://www.viniti.ru/
- 5. База данных журналов издательства Elsevier https://www.sciencedirect.com/
- 6. Электронные ресурсы издательства Springer https://link.springer.com/
- 7. База данных Web of Science http://webofscience.com/
- 8. База данных Scopus http://www.scopus.com
- 9. Национальная электронная библиотека https://rusneb.ru/
- 10. ЭБС "Консультант студента" http://www.studentlibrary.ru/
- 11. Журналы American Chemical Society https://www.acs.org/content/acs/en.html
- 12. Журналы American Institute of Physics https://www.scitation.org/
- 13. Журналы American Physical Society https://journals.aps.org/about
- 14. База данных издательства Annual Reviews Science Collection -

https://www.annualreviews.org/

- 15. База данный Association for Computing Machinery Digital Library https://dl.acm.org/about/content
- 16. Журналы издательства Cambridge University Press https://www.cambridge.org/core
- 17. База данных IEL издательства IEEE (Institute of Electrical and Electronics Engineers, Inc.) https://ieeexplore.ieee.org/Xplore/home.jsp?reload=true
- 18. База данных Computers & Applied Sciences Complete (CASC) -

http://search.ebscohost.com

- 19. База данных INSPEC на платформе компании EBSCO Publishing http://search.ebscohost.com
- 20. Журналы Institute of Physics (IOP), Великобритания https://iopscience.iop.org/
- 21. Журналы научного общества Optical Society of America (OSA) -

https://www.osapublishing.org/about.cfm

- 22. Патентная база Orbit Intelligence компании Questel https://www.orbit.com/
- 23. Журналы издательства Oxford University Press https://academic.oup.com/journals/
- 24. **База данных диссертаций ProQuest Dissertations and Theses Global** https://search.proquest.com/pqdtglobal/index
- 25. Журналы Журналы Royal Society of Chemistry https://pubs.rsc.org/
- 26. Журналы издательства SAGE Publication (Sage) https://journals.sagepub.com/
- 27. Журнал Science https://www.sciencemag.org/
- 28. Журналы научного общества Society of Photo-Optical Instrumentation Engineers (SPIE) Digital Library https://www.spiedigitallibrary.org/
- 29. **Коллекция журналов Taylor & Francis Group** https://www.tandfonline.com/
- 30. Журналы по химии Thieme Chemistry Package компании Georg Thieme Verlag KG https://www.thieme-connect.com/products/all/home.html
- 31. Журналы издательства Wiley https://onlinelibrary.wiley.com/
- 32. Электронная библиотека МЭИ (ЭБ МЭИ) http://elib.mpei.ru/login.php
- 33. Портал открытых данных Российской Федерации https://data.gov.ru
- 34. База открытых данных Министерства труда и социальной защиты РФ https://rosmintrud.ru/opendata
- 35. База открытых данных профессиональных стандартов Министерства труда и социальной защиты РФ http://profstandart.rosmintrud.ru/obshchiy-informatsionnyy-blok/natsionalnyy-reestr-professionalnykh-standartov/

- 37. База открытых данных Росфинмониторинга http://www.fedsfm.ru/opendata
- 38. Электронная открытая база данных "Polpred.com Обзор СМИ" https://www.polpred.com
- 39. **Информационно-справочная система «Кодекс/Техэксперт»** Http://proinfosoft.ru; http://docs.cntd.ru/
- 40. Национальный портал онлайн обучения «Открытое образование» https://openedu.ru
- 41. Официальный сайт Федерального агентства по техническому регулированию и метрологии http://protect.gost.ru/
- 42. Открытая университетская информационная система «РОССИЯ» https://uisrussia.msu.ru
- 43. Официальный сайт Министерства науки и высшего образования Российской Федерации https://minobrnauki.gov.ru
- 44. Официальный сайт Федеральной службы по надзору в сфере образования и науки https://obrnadzor
- 45. **Федеральный портал "Российское образование"** http://www.edu.ru

6. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Тип помещения	Номер аудитории,	Оснащение
	наименование	
Учебные аудитории для	Ж-120, Машинный	сервер, кондиционер
проведения лекционных	зал ИВЦ	
занятий и текущего	А-202, Учебная	парта, стол преподавателя, стул, шкаф
контроля	мультимедийная	для хранения инвентаря, доска
	аудитория каф.	интерактивная, мультимедийный
	Физики	проектор, доска маркерная, колонки,
		ноутбук
Учебные аудитории для	А-202, Учебная	парта, стол преподавателя, стул, шкаф
проведения	мультимедийная	для хранения инвентаря, доска
практических занятий,	аудитория каф.	интерактивная, мультимедийный
КР и КП	Физики	проектор, доска маркерная, колонки,
		ноутбук
Учебные аудитории для	А-202, Учебная	парта, стол преподавателя, стул, шкаф
проведения	мультимедийная	для хранения инвентаря, доска
промежуточной	аудитория каф.	интерактивная, мультимедийный
аттестации	Физики	проектор, доска маркерная, колонки,
		ноутбук
Помещения для	НТБ-201,	стол компьютерный, стул, стол
самостоятельной работы	Компьютерный	письменный, вешалка для одежды,
	читальный зал	компьютерная сеть с выходом в
		Интернет, компьютер персональный,
		принтер, кондиционер
	A-111/1,	стол компьютерный, стул, шкаф для
	Компьютерный класс	документов, шкаф для одежды,
	каф. Физики	мультимедийный проектор, доска
		маркерная, колонки, компьютер
		персональный
	A-111/2,	стол компьютерный, стул, шкаф для
	Компьютерный класс	документов, шкаф для одежды, шкаф для
	каф. Физики	хранения инвентаря, компьютер
		персональный, принтер
Помещения для	А-201/1, Кабинет	стол, стул, шкаф для документов, шкаф
консультирования	сотрудников каф.	для одежды, компьютерная сеть с

	Физики	выходом в Интернет, колонки,
		компьютер персональный, принтер
Помещения для	Б-101/1, Склад каф.	стеллаж для хранения инвентаря,
хранения оборудования	Физики им. В.А.	инвентарь специализированный,
и учебного инвентаря	Фабриканта	инвентарь учебный, книги, учебники,
	_	пособия

БАЛЛЬНО-РЕЙТИНГОВАЯ СТРУКТУРА ДИСЦИПЛИНЫ

Актуальные проблемы современной электроники и наноэлектроники

(название дисциплины)

3 семестр

Перечень контрольных мероприятий текущего контроля успеваемости по дисциплине:

- КМ-1 Тест №1 (Тестирование)
- КМ-2 Тест №2 (Тестирование)
- КМ-3 Тест №3 (Тестирование)
- КМ-4 Тест №4 (Тестирование)

Вид промежуточной аттестации – Зачет с оценкой.

Номер раздела	Раздел дисциплины	Индекс КМ: Неделя КМ:	KM- 1 4	KM- 2 8	KM- 3 12	KM- 4 15
1	Базовые модели современной наноэлектроники	и				
1.1	Основные направления современной наноэлек Тенденции развития.	гроники.	+			
1.2	Уравнения Максвелла. Варианты воздействия на вещество. Частота Раби.	излучения	+			
1.3	Полуклассическое приближение. Квантовая оп Поляризация, Оптические нутации. Фотонное		+			
1.4	Матрица плотности. Матрицы Паули. Уравнен Продольная и поперечная релаксации			+		
1.5	Восприимчивость двухуровневой системы. Од уширение. Неоднородное уширение. Насыщен спектроскопия.			+		
2	Прикладные вопросы современной оптоэлектр наноэлектроники	оники и				
2.1	Нелинейная оптика. Нелинейные процессы. Не связь между поляризацией и полем. Классифинелинейных оптических эффектов				+	
2.2	Электрооптические и магнитооптические эффе Сложение и разность частот. Параметрическое и генерация Виды вынужденного рассеяния св	усиление			+	
2.3	Зеемановский замедлитель. Магнитооптическа Установка МОЛ с атомами лития 7 Бозе-Эйнш конденсация и вырожденные ферми системы	я ловушка				+
2.4	Ридберговские атомы. Экспериментальные мет Ридберговские атомы в магнитном поле. Экспе по созданию антиводорода. Эксперименты по квантовых гравиметров в условиях невесомост	ерименты созданию				+
2.5	Квантовые компьютеры					+

Bec KM. %:	25	25	25	25
Bee 1011, 701	25			