Министерство науки и высшего образования РФ Федеральное государственное бюджетное образовательное учреждение высшего образования «Национальный исследовательский университет «МЭИ»

Направление подготовки/специальность: 11.04.04 Электроника и наноэлектроника

Наименование образовательной программы: Твердотельная микро- и наноэлектроника, лазерная и оптическая измерительная электроника

Уровень образования: высшее образование - магистратура

Форма обучения: Очная

Оценочные материалы по дисциплине Полупроводниковые источники излучения

Москва 2024

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ РАЗРАБОТАЛ:

Подписано электронной подписью ФГБОУ ВО «НИУ «МЭИ»

Сведения о владельце ЦЭП МЭИ

Владелец Мирошников Б.Н.

Идентификатор Rd4c7098c-MiroshnikovBN-eb38ec

Б.Н. Мирошников

Разработчик

СОГЛАСОВАНО:

Руководитель образовательной программы

O HOSO	Подписано электронной подписью ФГБОУ ВО «НИУ «МЭИ»				
MOM	Сведения о владельце ЦЭП МЭИ				
	Владелец	Баринов А.Д.			
	Идентификатор	Ra98e1318-BarinovAD-f138ec4f			

А.Д. Баринов

Заведующий выпускающей кафедрой

	-	× 4550V DO -1114V -84014			
1930 NCM	подписано электронн	ой подписью ФГБОУ ВО «НИУ «МЭИ»			
	Сведения о владельце ЦЭП МЭИ				
	Владелец	Зезин Д.А.			
	Идентификатор	Re7522a00-ZezinDA-ba8dbd73			

Д.А. Зезин

ОБЩАЯ ЧАСТЬ

Оценочные материалы по дисциплине предназначены для оценки достижения обучающимися запланированных результатов обучения по дисциплине, этапа формирования запланированных компетенций и уровня освоения дисциплины.

Оценочные материалы по дисциплине включают оценочные средства для проведения мероприятий текущего контроля успеваемости и промежуточной аттестации.

Формируемые у обучающегося компетенции:

- 1. ПК-3 Способен участвовать в проектировании полупроводниковых приборов и / или интегральных схем
 - ИД-1 Демонстрирует знание принципов работы, физических и математических моделей основных полупроводниковых приборов в соответствующих областях электроники

и включает:

для текущего контроля успеваемости:

Форма реализации: Письменная работа

- 1. Входной контроль знаний по теме источники излучения (Контрольная работа)
- 2. Итоговая контрольная работа (Контрольная работа)

Форма реализации: Устная форма

- 1. Защита лабораторной работы "Изучение работы диодного оптрона в импульсном режиме" (Лабораторная работа)
- 2. Защита лабораторной работы "Изучение характеристик инжекционного светодиода" (Лабораторная работа)
- 3. Защита лабораторной работы "Исследование акустооптического дефлектора" (Лабораторная работа)
- 4. Защита лабораторной работы "Исследование характеристик электролюминесцентного конденсатора и резистивного оптрона на его основе" (Лабораторная работа)

БРС дисциплины

2 семестр

Перечень контрольных мероприятий <u>текущего контроля</u> успеваемости по дисциплине:

- КМ-1 Входной контроль знаний по теме источники излучения (Контрольная работа)
- КМ-2 Защита лабораторной работы "Исследование характеристик электролюминесцентного конденсатора и резистивного оптрона на его основе" (Лабораторная работа)
- КМ-3 Защита лабораторной работы "Изучение характеристик инжекционного светодиода" (Лабораторная работа)
- КМ-4 Защита лабораторной работы "Изучение работы диодного оптрона в импульсном режиме" (Лабораторная работа)
- КМ-5 Защита лабораторной работы "Исследование акустооптического дефлектора" (Лабораторная работа)
- КМ-6 Итоговая контрольная работа (Контрольная работа)

Вид промежуточной аттестации – Экзамен.

	Be	еса конт	са контрольных мероприятий, %				
Раздел дисциплины	Индекс	КМ-	КМ-	КМ-	КМ-	КМ-	КМ-
Раздел дисциплины	KM:	1	2	3	4	5	6
	Срок КМ:	4	8	12	14	15	16
Физические явления, лежащие в осноптоэлектронных устройств	юве						
Физические основы электромагните излучения.	НОГО	+	+	+	+	+	+
Когерентное излучение.		+	+	+	+	+	+
Люминесценция полупроводников.							
Физические основы люминесценци	и.	+	+	+	+	+	+
Электролюминесценция		+	+	+	+	+	+
Электролюминесцентные конденсат	горы (ЭЛК).	+	+	+	+	+	+
Светодиоды и оптроны							
Светодиоды		+	+	+	+	+	+
Оптроны и оптоэлектронные схемы.		+	+	+	+	+	+
Полупроводниковые лазеры							
Вынужденное излучение в полупроводниковых лазерах.		+	+	+	+	+	+
Лазеры на основе монопереходах.		+	+	+	+	+	+
Лазеры на гетеропереходах. Полоск лазеры.	овые	+	+	+	+	+	+
Лазеры с квантово-размерными сло Квантовый каскадный лазер.	ями.	+	+	+	+	+	+
Оптические модуляторы и дефлекторы							
Управление параметрами излучения.		+	+	+	+	+	+
Оптические модуляторы и дефлекторы.		+	+	+	+	+	+
Устройства и элементы современной интегральной оптики							
Устройства оптической памяти.		+	+	+	+	+	+
Устройства и элементы интегрально	———— ой оптики.	+	+	+	+	+	+
	Bec KM:	5	15	15	15	10	40

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ТЕКУЩЕГО КОНТРОЛЯ

I. Оценочные средства для оценки запланированных результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций

Индекс	Индикатор	Запланированные	Контрольная точка
компетенции		результаты обучения по	
		дисциплине	
ПК-3	ИД-1пк-3 Демонстрирует	Знать:	КМ-1 Входной контроль знаний по теме источники излучения
	знание принципов работы,	основные приборы,	(Контрольная работа)
	физических и	используемые как	КМ-2 Защита лабораторной работы "Исследование характеристик
	математических моделей	источники излучения	электролюминесцентного конденсатора и резистивного оптрона на его
	основных	разных длин волн, и	основе" (Лабораторная работа)
	полупроводниковых	принципы их работы	КМ-3 Защита лабораторной работы "Изучение характеристик
	приборов в		инжекционного светодиода" (Лабораторная работа)
	соответствующих		КМ-4 Защита лабораторной работы "Изучение работы диодного
	областях электроники		оптрона в импульсном режиме" (Лабораторная работа)
			КМ-5 Защита лабораторной работы "Исследование акустооптического
			дефлектора" (Лабораторная работа)
			КМ-6 Итоговая контрольная работа (Контрольная работа)

II. Содержание оценочных средств. Шкала и критерии оценивания

КМ-1. Входной контроль знаний по теме источники излучения

Формы реализации: Письменная работа

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 5

Процедура проведения контрольного мероприятия: Каждому студенту выдается индивидуальный вариант контрольной работы, содержащий 4-5 вопроса для письменного ответа. Время на ответ 45 минут.

Краткое содержание задания:

Проверка знаний студентов основных параметров и определений связанных с разделом Оптоэлектроники - источники излучения.

Контрольные вопросы/задания:	
Запланированные результаты	Вопросы/задания для проверки
обучения по дисциплине	
Знать: основные приборы,	1.Перечислите основные особенности передачи
используемые как источники	информации по оптическим связям.
излучения разных длин волн, и	2.Чем отличается кривая спектральной
принципы их работы	зависимости фотометрического эквивалента
	излучения дневного и ночного зрения? Где они
	используются?
	3.Проиллюстрируйте прохождение волны по
	световоду. Благодаря каким законам оно
	осуществляется?
	4.В чем особенность поглощения фотонов
	сильнолегированного полупроводника?
	5.Почему в оптоэлектронике используются
	величины фотометрии и радиометрии?
	6. Какие основные виды люминесценции
	актуальны для п/п источников излучения?
	7. Что такое поляризация света? Какие типы
	поляризации бывают?
	8.Проиллюстрируйте сложение двух волн с
	разными частотами и амплитудами.
	9.Почему для фотонов справедливы законы эл/м волны?
	волны: 10.Почему при работе описания источников
	излучения актуальны телесные углы?
	11.Как происходит сложение 3 волн с различной
	амплитудой?
	12.Как описывается коэффициент поглощения
	для фотона с заданной энергией для прямых
	переходов?
	13.Опишите взаимосвязь мощности потока
	радиометрической и светового потока.
	14.Опишите второй закон Кирхгофа для
	излучения.

Запланированные	результаты	Вопросы/задания для проверки
обучения по дисциплине		
		15.В чем особенность наличия многослойного
		оптически прозрачного покрытия у материала?
		16.От чего зависит коэффициент поглощения для
		фотона с заданной энергией для непрямых
		переходов?

Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-2. Защита лабораторной работы "Исследование характеристик электролюминесцентного конденсатора и резистивного оптрона на его основе"

Формы реализации: Устная форма

Тип контрольного мероприятия: Лабораторная работа

Вес контрольного мероприятия в БРС: 15

Процедура проведения контрольного мероприятия: 1. Студент показывает оформленный отчет по выполненной лабораторной работе; 2. Если отчет выполнен неверно - исправляет свои ошибки, если выполнен верно - получает 1-2 вопроса для защиты; 3. После 10 минутной подготовки студент начинает отвечать на вопрос, во время подготовки разрешено пользоваться отчетом по работе и собственным рукописным конспектом лекций.

Краткое содержание задания:

Защита лабораторной работы "Исследование характеристик электролюминесцентного конденсатора и резистивного оптрона на его основе".

Контрольные вопросы/задания:

Запланированные	результаты	обучения	ПО	Вопросы/задания для проверки
дисциплине				
Знать: основные	приборы, ис	пользуемые	как	1.Принцип работы ЭЛК.
источники излуче	ения разных	длин волн	, и	2.Какие типы ЭЛК вы знаете? В
принципы их работ	Ы			чем их отличия.
				3.Чем определяется выбор типа
				напряжения используемого в
				работе.

Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 85

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-3. Защита лабораторной работы "Изучение характеристик инжекционного светодиода"

Формы реализации: Устная форма

Тип контрольного мероприятия: Лабораторная работа

Вес контрольного мероприятия в БРС: 15

Процедура проведения контрольного мероприятия: 1. Студент показывает оформленный отчет по выполненной лабораторной работе; 2. Если отчет выполнен неверно - исправляет свои ошибки, если выполнен верно - получает 1-2 вопроса для защиты; 3. После 10 минутной подготовки студент начинает отвечать на вопрос, во время подготовки разрешено пользоваться отчетом по работе и собственным рукописным конспектом лекций.

Краткое содержание задания:

Защита лабораторной работы "Изучение характеристик инжекционного светодиода"

Контрольные вопросы/задания:

Запланированные результаты обучения по дисциплине	Вопросы/задания для проверки
Знать: основные приборы, используемые как источники	1. Чем определяется спектр
излучения разных длин волн, и принципы их работы	излучения светодиода?
	2.Первое лазерное условие.
	3.Принцип действия
	светодиодов

Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оиенка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 65

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-4. Защита лабораторной работы "Изучение работы диодного оптрона в импульсном режиме"

Формы реализации: Устная форма

Тип контрольного мероприятия: Лабораторная работа

Вес контрольного мероприятия в БРС: 15

Процедура проведения контрольного мероприятия: 1. Студент показывает оформленный отчет по выполненной лабораторной работе; 2. Если отчет выполнен неверно - исправляет свои ошибки, если выполнен верно - получает 1-2 вопроса для защиты; 3. После 10 минутной подготовки студент начинает отвечать на вопрос, во время подготовки разрешено пользоваться отчетом по работе и собственным рукописным конспектом лекций.

Краткое содержание задания:

Защита лабораторной работы "Изучение работы диодного оптрона в импульсном режиме"

Контрольные вопросы/задания:

Запланированные результаты обучения по дисциплине	Вопросы/задания для проверки
Знать: основные приборы, используемые как	1.Чем определяется выбор
источники излучения разных длин волн, и принципы	элементов оптрона?
их работы	2.От чего зависит
	быстродействие оптрона?
	3. Чем определяются рабочие
	параметры устройства?

Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 65

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-5. Защита лабораторной работы "Исследование акустооптического дефлектора"

Формы реализации: Устная форма

Тип контрольного мероприятия: Лабораторная работа

Вес контрольного мероприятия в БРС: 10

Процедура проведения контрольного мероприятия: 1. Студент показывает оформленный отчет по выполненной лабораторной работе; 2. Если отчет выполнен неверно - исправляет свои ошибки, если выполнен верно - получает 1-2 вопроса для защиты; 3. После 10 минутной подготовки студент начинает отвечать на вопрос, во время подготовки разрешено пользоваться отчетом по работе и собственным рукописным конспектом лекций.

Краткое содержание задания:

Защита лабораторной работы "Исследование акустооптического дефлектора"

Контрольные вопросы/задания:

	·			
Запланированные	результаты	обучения	ПО	Вопросы/задания для проверки
дисциплине				
Знать: основные	приборы,	используемые	как	1.Принцип действия
источники излучени	ия разных дли	н волн, и прині	ципы	акустооптического дефлектора
их работы				2.Как определяется угол Брэгга?
				3.Какие виды дифракции вы
				знаете?

Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 65

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-6. Итоговая контрольная работа

Формы реализации: Письменная работа

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 40

Процедура проведения контрольного мероприятия: Каждому студенту выдается индивидуальный вариант контрольной работы, содержащий 5 вопросов для письменного ответа. Время на ответ 2 академических часа.

Краткое содержание задания:

Контрольная работа по всем разделам, изучаемых во втором семестре курса Оптоэлектроника.

Контрольные вопросы/задания:

Запланирования вопросы/задания:	Ропром / долония ная пророжу
Запланированные результаты обучения по дисциплине	Вопросы/задания для проверки
•	1 Помому в оптерментвому из посто моном омет
1 1 ,	1.Почему в оптоэлектронике часто используют
используемые как источники	понятие телесного угла?
излучения разных длин волн, и	2. Что такое квантовый выход светодиода?
принципы их работы	3. Что такое пороговая плотность тока в лазере?
	Почему оно важно?
	4.Применения лазера: чем принципиально
	отличается технологии CD, DVD и Blu-Ray Disk
	(BD)?
	5. Какое излучение может считаться
	поляризованным?
	6. Какие типы люминесценции вы знаете?
	Опишите особенность одной из них.
	7.Спектральная характеристика светодиода. Как
	она отличается от спектральной характеристики
	фоторезистора на основе того же материала?
	8. Нарисуйте зонную диаграмму для двойного
	гетероперехода. Чем такая система выгодней
	одиночного гетероперехода?
	9. Что такое фотометрическая яркость? В чем
	измеряется?
	10. Что такое катодолюминесценция? Чем она
	отличается от других типов?
	11.С чем связано необходимость прикладывать к
	ЭЛК большое напряжение? Нарисуйте ВАХ
	ЭЛК.
	12. Принцип работы порошкового ЭЛК.
	13. Принцип работы пленочного ЭЛК.
	14. Чем определяется диаграмма направленности
	светодиода?
	15. Какие способы накачки вы знаете? Какие из
	них проще всего реализовать?
	16. Напишите требования первого лазерного
	условия.
	17. Напишите требования второго лазерного
	условия.
	18.Для каких устройств необходима реализация
	всех лазерных условий? Почему?
	19.От чего зависит спектр излучения ЭЛК?
	Нарисуйте пару спектральных характеристик для
	разных ЭЛК.
	20.КПД светодиода, как определяется, от чего
	зависит?
	21. Что такое оптический модулятор? Сфера
	применения.
	22. Что такое оптический дефлектор? Сфера
	применения.

Запланированные	результаты	Вопросы/задания для проверки
обучения по дисциплине		
		23. Нарисуйте энергетическую диаграмму
		светодиода на квантовых ямах.
		24.Спонтанные и вынужденные переходы в п/п.
		В чем различия?
		25.Изобразите эквивалентную схему светодиода.
		26.Изобразите эквивалентную схему пленочного
		ЭЛК.
		27.Изобразите эквивалентную схему
		порошкового ЭЛК.
		28.Почему лавинный пробой р-п перехода может
		создать люминесценцию? Проиллюстрируйте.
		29. Частотно-фазовая модуляция. Реализация и
		применение.

Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 75

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

2 семестр

Форма промежуточной аттестации: Экзамен

Пример билета

- 1. Уравнения Максвелла. Показатель преломления. Коэффициентом экстинкции (ослабления). Уравнение электромагнитной волны. Поляризация света.
- 2. Инжекционные полупроводниковые лазеры. Коэффициент поглощения (усиления). Первое и второе лазерные условия.

Процедура проведения

- 1. Студент, допущенный к экзамену, тянет билет, называет номер билета преподавателю.
- 2. Преподаватель фиксирует ФИО студента, номер билета и время начала экзамена.
- 3. Студент имеет право на подготовку своего ответа не менее 1 часа, при желании данное время может быть сокращено при договоренности с экзаменаторами.
- 4. Студент отвечает на вопросы билета в течение не больше 30 минут. После ответа на теоретические вопросы, студент получает вопрос практического характера, на который должен быстро в присутствии экзаменатора ответить. При необходимости задаются дополнительные вопросы.

I. Перечень компетенций/индикаторов и контрольных вопросов проверки результатов освоения дисциплины

1. Компетенция/Индикатор: ИД- $1_{\Pi K-3}$ Демонстрирует знание принципов работы, физических и математических моделей основных полупроводниковых приборов в соответствующих областях электроники

Вопросы, задания

- 1.Спектр люминесценции при рекомбинации зона-зона, переходы с участием примесных уровней.
- 2. Механизмы возбуждения электролюминесценции.
- 3. Предпробойная электролюминесценция. Туннельный эффект. Ударная ионизация.
- 4. Законы сохранения энергии-импульса при ионизации атома решетки.
- 5. Электролюминесцентные конденсаторы. Принцип работы, ВАХ и ВЯХ ЭЛК.
- 6.Интенсивность I электромагнитной волны. Вектор Умова-Поинтинга. Энергия электромагнитного поля. Закон Бугера-Ламберта. Коэффициент поглощения.
- 7. Суперинжекция. Диаграмма направленности излучения. КПД. Материалы, применяемые в светодиодах. Конструкции светодиодов.
- 8.Инжекционные полупроводниковые лазеры. Коэффициент поглощения (усиления).
- 9. Первое и второе лазерные условия. Резонатор Фабри-Перо. Пороговая плотность тока.
- 10. Лазеры на *pn*-гомопереходе. Гетеролазер на односторонней гетероструктуре. Гетеролазер на двусторонней гетероструктуре.
- 11. Условие инверсной населенности в полупроводниках. Первое лазерное условие.
- 12.Светодиоды. Энергетические диаграммы и распределение носителей заряда по энергиям. Спектр излучения. Внутренний и внешний квантовые выходы светодиода.
- 13. Коэффициенты Эйнштейна. Коэффициент поглощения и усиления.
- 14. Принцип действия и устройство оптических модуляторов.
- 15. Время жизни носителей и квантовый выход люминесценции.
- 16. Теория Ван Русбрека-Шокли.

- 17. Рекомбинационное излучение при фундаментальных переходах.
- 18. Люминесценция полупроводников. Виды люминесценции.
- 19. Монохроматичность электромагнитных волн и преобразование Фурье. Когерентное излучение. Пространственная и временная когерентность.
- 20.Отражение, преломление и пропускание электромагнитных волн. Коэффициенты отражения и пропускания. Просветляющие покрытия и их применение. Прохождение электромагнитных волн в диэлектрике.
- 21. Принцип действия и устройство оптических дефлекторов.
- 22. Уравнения Максвелла. Показатель преломления. Коэффициентом экстинкции (ослабления). Относительная диэлектрическая проницаемость. Уравнение электромагнитной волны. Поляризация света.
- 23. Спонтанные и вынужденные переходы. Инверсная населенность. Накачка.

Материалы для проверки остаточных знаний

1. Изобразите спектральную характеристику светодиода.

Ответы:

Студент должен изобразить спектр излучения светодиода, указать характерные длины волн.

2.Изобразите спектральную характеристику лазера, при отсутствии выхода на режим полной мощности накачки.

Ответы:

Студент рисует спектральную характеристику максимально близкую с спектру спонтанного излучения.

3.Изобразите спектральную характеристику лазера, при условии выхода на режим полной мощности накачки.

Ответы:

Студент рисует спектральную характеристику максимально близкую с спектру вынужденного излучения.

4. Первое лазерное условие.

Ответы:

Студент пишет формулу первого лазерного условия:

$$E_c^c - E_v^v \ge E_a$$

5. Сформулируйте второе лазерное условие.

Ответы

Студент формулирует второе лазерное условие

6.Для каких приборов необходимо выполнение первого лазерного условия? Ответы:

- - только светодиодов;
- - только лазеров;
- - только светодиодов и лазеров;
- - инжектирующих приборов.

Верный ответ: - инжектирующих приборов.

7.Для каких приборов необходимо выполнение второго лазерного условия? Ответы:

- - только светодиодов;
- - только лазеров;
- - только светодиодов и лазеров;
- - инжектирующих приборов.

Верный ответ: лазеров и приборов на их основе.

8.Изобразите спектр поглощения и излучения для одного и того же материала? Ответы:

Студент должен изобразить спектр поглощения и излучения, указать насколько они отличаются

9. Укажите основную особенность инжекционной люминесценции

Ответы:

Это излучение, возникающее при рекомбинации электронов и дырок, которые появляются в результате прямого смещения на p-n переходе.

10.Укажите основную особенность пробойной люминесценции Ответы:

Это излучение, возникающее протекании электрического тока через обратно смещённый р-п переход.

11. Приведите пример прибора работающего на пробойной люменисценции Ответы:

ЭЛК

Светодиод

Лазер

Оптрон

Верный ответ: ЭЛК или Оптрон, построенный на базе ЭЛК

II. Описание шкалы оценивания

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 85

Описание характеристики выполнения знания: Работа выполнена в рамках "продвинутого" уровня. Ответы даны верно, четко сформулированные особенности практических решений

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Работа выполнена в рамках "базового" уровня. Большинство ответов даны верно. В части материала есть незначительные недостатки

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Работа выполнена в рамках "порогового" уровня. Основная часть задания выполнена верно. на вопросы углубленного уровня

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Работа не выполнена или выполнена преимущественно неправильно

III. Правила выставления итоговой оценки по курсу

Оценка определяется в соответствии с Положением о балльно-рейтинговой системе для студентов НИУ «МЭИ» на основании семестровой и аттестационной составляющих.