Министерство науки и высшего образования РФ Федеральное государственное бюджетное образовательное учреждение высшего образования «Национальный исследовательский университет «МЭИ»

Направление подготовки/специальность: 12.04.04 Биотехнические системы и технологии

Наименование образовательной программы: Радиоэлектроника в биотехнических и медицинских

аппаратах и системах

Уровень образования: высшее образование - магистратура

Форма обучения: Очная

Оценочные материалы по дисциплине Математическое моделирование биологических процессов и систем

Москва 2024

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ РАЗРАБОТАЛ:

| Подписано электронной подписью ФГБОУ ВО «НИУ «МЭИ»

| Сведения о владельце ЦЭП МЭИ

| Владелец | Истомина Т.В.

| Идентификатор | Rae715166-IstominaTV-b697334f

согласовано:

Разработчик

Руководитель образовательной программы

NOSO NE	Подписано электронной подписью ФГБОУ ВО «НИУ «МЭИ»		
	Сведения о владельце ЦЭП МЭИ		
	Владелец	Жихарева Г.В.	
NOM &	Идентификатор	Rdb27a5d8-ZhikharevaGV-9fcbf8c	

Г.В. Жихарева

Т.В. Истомина

Заведующий выпускающей кафедрой

	-		
NCM NCM	Подписано электронн	ой подписью ФГБОУ ВО «НИУ «МЭИ»	
	Сведения о владельце ЦЭП МЭИ		
	Владелец	Шалимова Е.В.	
	Идентификатор	Rf4bb1f0c-ShalimovaYV-f267ebd6	

Е.В. Шалимова

ОБЩАЯ ЧАСТЬ

Оценочные материалы по дисциплине предназначены для оценки: достижения обучающимися запланированных результатов обучения по дисциплине, этапа формирования запланированных компетенций и уровня освоения дисциплины.

Оценочные материалы по дисциплине включают оценочные средства для проведения мероприятий текущего контроля успеваемости и промежуточной аттестации.

Формируемые у обучающегося компетенции:

- 1. ПК-1 Способность проводить исследования в области создания биотехнических систем
 - ИД-1 Анализирует состояние научнотехнических задач на основе изучения технической литературы в области биотехнических систем
 - ИД-2 Выполняет математическое моделирование процессов и объектов биотехнических систем
 - ИД-3 Разрабатывает алгоритмы и проводит исследования для создания биотехнических систем
- 2. РПК-1 Способен решать задачи цифровизации в своей профессиональной области
 - ИД-1 Знает средства программного моделирования и аппаратного макетирования области своей профессиональной деятельности
 - ИД-2 Владеет навыками программного моделирования, аппаратного макетирования и экспериментальных работ в области своей профессиональной деятельности

и включает:

для текущего контроля успеваемости:

Форма реализации: Выполнение задания

- 1. Защита практических заданий по алгоритмическим моделям биологических процессов и систем (Отчет)
- 2. Индивидуальное задание по имитационному моделированию (Домашнее задание)

Форма реализации: Защита задания

- 1. Защита практических заданий по аналитическим моделям биологических процессов и систем (Отчет)
- 2. Защита практических заданий по созданию АР-модели ЭЭГ-сигналов (Отчет)

Форма реализации: Письменная работа

1. Индивидуальное задание по классификации моделей (Домашнее задание)

БРС дисциплины

2 семестр

	Веса контрольных мероприятий, %					
Раздан низиминими	Индекс	KM-1	KM-2	KM-3	KM-4	KM-5
Раздел дисциплины	KM:					
	Срок КМ:	4	8	10	12	16
Классификация моделей						
Классификация моделей		+				

Аналитические модели					
Аналитические модели		+			
Алгоритмические модели					
Алгоритмические модели			+		
Имитационное моделирование					
Имитационное моделирование				+	
Моделирование случайных событий и процессов					
Моделирование случайных событий и					+
процессов					
Bec KM:	20	20	20	20	20

^{\$}Общая часть/Для промежуточной аттестации\$

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ТЕКУЩЕГО КОНТРОЛЯ

I. Оценочные средства для оценки запланированных результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций

Индекс	Индикатор	Запланированные	Контрольная точка
компетенции		результаты обучения по	
		дисциплине	
ПК-1	ИД-1 _{ПК-1} Анализирует	Знать:	Индивидуальное задание по классификации моделей (Домашнее
	состояние	аналитические модели	задание)
	научнотехнических задач	биологических процессов	Защита практических заданий по аналитическим моделям
	на основе изучения	и систем	биологических процессов и систем (Отчет)
	технической литературы в	Уметь:	
	области биотехнических	анализировать состояние	
	систем	научно-технических задач	
		в области моделирования	
		биологических процессов	
		и биотехнических систем	
ПК-1	$ИД-2_{\Pi K-1}$ Выполняет	Знать:	Индивидуальное задание по классификации моделей (Домашнее
	математическое	основные виды и свойства	задание)
	моделирование процессов	моделей биологических	Индивидуальное задание по имитационному моделированию
	и объектов	процессов и систем	(Домашнее задание)
	биотехнических систем	Уметь:	
		проводить моделирование	
		случайных событий	
		(величин) и случайных	
		процессов	
ПК-1	ИД-3 _{ПК-1} Разрабатывает	Знать:	Защита практических заданий по алгоритмическим моделям
	алгоритмы и проводит	алгоритмические модели	биологических процессов и систем (Отчет)
	исследования для создания	процессов и систем,	Защита практических заданий по созданию АР-модели ЭЭГ-сигналов
	биотехнических систем	порождающих	(Отчет)
		биомедицинские сигналы	
		Уметь:	

		проводить исследования	
		биологических процессов	
		и систем путем построения	
		и анализа моделей	
РПК-1	ИД-1РПК-1 Знает средства	Знать:	Защита практических заданий по созданию АР-модели ЭЭГ-сигналов
	программного	основные средства	(Отчет)
	моделирования и	программного	
	аппаратного	моделирования	
	макетирования области		
	своей профессиональной		
	деятельности		
РПК-1	ИД-2РПК-1 Владеет	Уметь:	Защита практических заданий по созданию АР-модели ЭЭГ-сигналов
	навыками программного	иметь навыки	(Отчет)
	моделирования,	программного	
	аппаратного	моделирования	
	макетирования и	биологических процессов	
	экспериментальных работ	и систем	
	в области своей		
	профессиональной		
	деятельности		

II. Содержание оценочных средств. Шкала и критерии оценивания

КМ-1. Индивидуальное задание по классификации моделей

Формы реализации: Письменная работа

Тип контрольного мероприятия: Домашнее задание

Вес контрольного мероприятия в БРС: 20

Процедура проведения контрольного мероприятия: Выполнение и защита

индивидуального домашнего задания

Краткое содержание задания:

Выберите модель, используемую Вами в научно-исследовательской работе, и проведите ее классификацию по различным фасетам.

Контрольные вопросы/задания:

Контрольные вопросы/задания:	
Знать: основные виды и свойства	1.К какому типу относится Ваша модель по способу
моделей биологических	построения? Обоснуйте ответ.
процессов и систем	2.К какому типу относится Ваша модель по
	принципам построения? Обоснуйте ответ.
	3.К какому типу относится Ваша модель по способу
	представления объекта? Обоснуйте ответ.
	4. Является ли Ваша модель структурной или
	функциональной? Поясните ответ.
	5. Является ли Ваша модель непрерывной или
	дискретной? Поясните ответ.
	6.Является ли Ваша модель линейной или
	нелинейной? Поясните ответ.
	7. Является ли Ваша модель сосредоточенной или
	распределенной? Поясните ответ.
	8. Является ли Ваша модель статической или
	динамической? Поясните ответ.
	9. Является ли Ваша модель детерминированной или
	стохастической? Поясните ответ.
Уметь: анализировать состояние	1.Проведите классификацию Вашей модели по
научно-технических задач в	признаку представления во времени.
области моделирования	2.Проведите классификацию Вашей модели по
биологических процессов и	признаку представления в пространстве.
биотехнических систем	3.Проведите классификацию Вашей модели по
	отношению к реальному миру.
	4.Сформулируйте область применения Вашей
	модели.
	5.Сформулируйте цели и задачи построения Вашей
	модели.

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Оценка "отлично" выставляется, если задание выполнено в полном объеме или выполнено преимущественно верно, даны правильные ответы на вопросы

Оценка: 4

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "хорошо" выставляется, если большинство вопросов раскрыто, выбрано верное направление для выполнения задания, даны преимущественно правильные ответы на вопросы

Оценка: 3

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется, если задание преимущественно выполнено, даны преимущественно правильные ответы на вопросы

Оценка: 2

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется, если задание выполнено неверно или преимущественно не выполнено или даны преимущественно неправильные ответы на вопросы

КМ-2. Защита практических заданий по аналитическим моделям биологических процессов и систем

Формы реализации: Защита задания Тип контрольного мероприятия: Отчет Вес контрольного мероприятия в БРС: 20

Процедура проведения контрольного мероприятия: Устный опрос по отчетам заданий,

выполненных в рамках практических занятий

Краткое содержание задания:

Ответить на вопросы преподавателя

Контрольные вопросы/задания:

контрольные вопросы/задания:	
Знать: аналитические модели	1.Перечислите математические модели роста
биологических процессов и	популяции, назовите их особенности.
систем	2.Для каких биологических процессов и систем
	актуально моделирование с помощью дискретных
	дифференциальных уравнений?
	3.Перечислите типы моделей взаимодействия двух
	популяций. Как в зависимости от параметров
	меняется вид взаимодействия. Приведите примеры
	различных видов взаимодействий из живой природы
	4. Что такое стационарное состояние?
	5. Каким образом можно определить устойчивость
	стационарного состояния?
	6.Перечислите свойства недетерминированных
	систем. Приведите примеры таких систем.
	7. Как можно моделировать автоволновые процессы в
	активной распределенной системе?
	8. Изобразите фазовый портрет точечной системы для
	бистабильной среды
	9.Изобразите фазовый портрет точечной системы для
	колебательной среды
	10.Изобразите фазовый портрет точечной системы
	для возбудимой среды

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Оценка "отлично" выставляется, если задание выполнено в полном объеме или выполнено преимущественно верно, даны правильные ответы на вопросы

Оценка: 4

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "хорошо" выставляется, если большинство вопросов раскрыто, выбрано верное направление для выполнения задания, даны преимущественно правильные ответы на вопросы

Оценка: 3

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется, если задание преимущественно выполнено, даны преимущественно правильные ответы на вопросы

Оценка: 2

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется, если задание выполнено неверно или преимущественно не выполнено или даны преимущественно неправильные ответы на вопросы

КМ-3. Защита практических заданий по алгоритмическим моделям биологических процессов и систем

Формы реализации: Выполнение задания Тип контрольного мероприятия: Отчет Вес контрольного мероприятия в БРС: 20

Процедура проведения контрольного мероприятия: Устный опрос по отчетам заданий,

выполненных в рамках практических занятий

Краткое содержание задания:

Выберите биофизический сигнал из предложенного списка и выполните пункты задания.

Контрольные вопросы/задания:

 Знать: алгоритмические модели процессов и систем, порождающих биомедицинские сигналы 1.Подберите экспериментальную запись биофизического сигнала. 2.Загрузите его в программу для оцифровки сигналов и сформируйте изображение сигнала на мониторе компьютера. 3.Выберите тип помехи, характерной для банного биосигнала. 4.Сформируйте случайный сигнал, соответствующий характеристикам помехи и наложите его на биосигнал 5.Проанализируйте алгоритмы цифровой фильтрации и выберите наиболее эффективный для данного типа 	топтропыные вопросы, задания	
2.Загрузите его в программу для оцифровки сигналов и сформируйте изображение сигнала на мониторе компьютера. 3.Выберите тип помехи, характерной для банного биосигнала. 4.Сформируйте случайный сигнал, соответствующий характеристикам помехи и наложите его на биосигнал 5.Проанализируйте алгоритмы цифровой фильтрации и выберите наиболее эффективный для данного типа	Знать: алгоритмические модели	1.Подберите экспериментальную запись
и сформируйте изображение сигнала на мониторе компьютера. 3.Выберите тип помехи, характерной для банного биосигнала. 4.Сформируйте случайный сигнал, соответствующий характеристикам помехи и наложите его на биосигнал 5.Проанализируйте алгоритмы цифровой фильтрации и выберите наиболее эффективный для данного типа	процессов и систем,	биофизического сигнала.
компьютера. 3.Выберите тип помехи, характерной для банного биосигнала. 4.Сформируйте случайный сигнал, соответствующий характеристикам помехи и наложите его на биосигнал 5.Проанализируйте алгоритмы цифровой фильтрации и выберите наиболее эффективный для данного типа	порождающих биомедицинские	2.Загрузите его в программу для оцифровки сигналов
3.Выберите тип помехи, характерной для банного биосигнала. 4.Сформируйте случайный сигнал, соответствующий характеристикам помехи и наложите его на биосигнал 5.Проанализируйте алгоритмы цифровой фильтрации и выберите наиболее эффективный для данного типа	сигналы	и сформируйте изображение сигнала на мониторе
биосигнала. 4.Сформируйте случайный сигнал, соответствующий характеристикам помехи и наложите его на биосигнал 5.Проанализируйте алгоритмы цифровой фильтрации и выберите наиболее эффективный для данного типа		компьютера.
4.Сформируйте случайный сигнал, соответствующий характеристикам помехи и наложите его на биосигнал 5.Проанализируйте алгоритмы цифровой фильтрации и выберите наиболее эффективный для данного типа		3.Выберите тип помехи, характерной для банного
характеристикам помехи и наложите его на биосигнал 5.Проанализируйте алгоритмы цифровой фильтрации и выберите наиболее эффективный для данного типа		биосигнала.
биосигнал 5.Проанализируйте алгоритмы цифровой фильтрации и выберите наиболее эффективный для данного типа		4.Сформируйте случайный сигнал, соответствующий
5.Проанализируйте алгоритмы цифровой фильтрации и выберите наиболее эффективный для данного типа		характеристикам помехи и наложите его на
и выберите наиболее эффективный для данного типа		биосигнал
1 11		5.Проанализируйте алгоритмы цифровой фильтрации
сигнала и помеуи. Обоснуйте полученные результаты		и выберите наиболее эффективный для данного типа
en nana n nomenn. Ooden yn te nong tennible pesynbratibi		сигнала и помехи. Обоснуйте полученные результаты
теоретически и экспериментально.		теоретически и экспериментально.

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Оценка "отлично" выставляется, если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "хорошо" выставляется, если большинство вопросов раскрыто, выбрано верное направление для решения заданий

Оценка: 3

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется, если задание преимущественно выполнено

Оценка: 2

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется, если задание выполнено неверно или преимущественно не выполнено

КМ-4. Защита практических заданий по созданию АР-модели ЭЭГ-сигналов

Формы реализации: Защита задания Тип контрольного мероприятия: Отчет Вес контрольного мероприятия в БРС: 20

Процедура проведения контрольного мероприятия: Устный опрос по отчетам заданий,

выполненных в рамках практических занятий

Краткое содержание задания:

Ответить на вопросы преподавателя

Контрольные вопросы/задания:

контрольные вопросы/задания.	
Знать: основные средства	1. Какими параметрами характеризуется
программного моделирования	авторегрессионная модель?
	2. Каким образом можно определить оптимальный
	порядок АР-модели?
	3. Сравните автокорреляционный и ковариационный
	методы определения параметров авторегрессионной
	модели.
Уметь: проводить исследования	1. Какие параметры модели генерации сигналов
биологических процессов и	электромиограммы нужно варьировать, чтобы
систем путем построения и	получить ЭМГ при нейропатии?
анализа моделей	2. Какие параметры модели генерации сигналов
	электромиограммы нужно варьировать, чтобы
	получить ЭМГ при миопатии?
Уметь: иметь навыки	1.Сформулируйте алгоритм определения параметров
программного моделирования	авторегрессионной модели ЭЭГ-сигнала
биологических процессов и	2.Сформулируйте алгоритм моделирования типовых
систем	ритмов ЭЭГ-сигнала
	3. Сформулируйте алгоритм моделирования
	генерации сигналов электромиограммы, опишите ее
	параметры в норме.
	4.Сформулируйте алгоритм моделирования
	"жизнеподобных" сред с помощью клеточных
	автоматов.
	5.Сформулируйте алгоритм моделирования

автоволновых процессов с помощью клеточных
автоматов.

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "отлично" выставляется, если задание выполнено в полном объеме или выполнено преимущественно верно, даны правильные ответы на вопросы

Оценка: 4

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "хорошо" выставляется, если большинство вопросов раскрыто, выбрано верное направление для выполнения задания, даны преимущественно правильные ответы на вопросы

Оценка: 3

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется, если задание преимущественно выполнено, даны преимущественно правильные ответы на вопросы

Оценка: 2

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется, если задание выполнено неверно или преимущественно не выполнено или даны преимущественно неправильные ответы на вопросы

КМ-5. Индивидуальное задание по имитационному моделированию

Формы реализации: Выполнение задания

Тип контрольного мероприятия: Домашнее задание

Вес контрольного мероприятия в БРС: 20

Процедура проведения контрольного мероприятия: Поиск и изучение материалов по

заданной теме и подготовка сообщения

Краткое содержание задания:

Выполнить индивидуальное задание по имитационному моделированию выбранного биосигнала в Программной среде Biopack Student Lab.

Контрольные вопросы/задания:

Уметь:	проводить	1.Изучить процесс моделирования выбранного
моделирование	случайных	биосигнала и анализа его параметров в программной
событий (величин)	и случайных	среде Biopack Student Lab.
процессов		Осуществить поиск и изучение материалов по
		заданной имитационной модели/симулятору/проекту.
		Список возможных тем: симулятор NEST, симулятор
		NEURON, система MUSIC, проект Blue Brain, модель
		мозга Ижикевича, проект GENESIS, проект BRIAN,
		проект MOOSE, суперкомпьютер Blue Gene,
		Когнитом
		2.Подготовить презентацию (10 - 12 слайдов)
		Ориентировочная структура доклада:
		· Описать процесс моделирования и анализа

индивидуально выбранного биосигнала в программной среде Biopack Student Lab

- · История создания модели/симулятора/проекта (кто, где, когда)
- · Цель создания (зачем)
- · Принципы работы (каким образом)
- · Современное состояние/использование (успехи применения)
- Перспективы развития
- · Список использованных источников
- 3. Сделать сообщение по заданной теме на 5-7 минут. Ответить на вопросы аудитории

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Оценка "отлично" выставляется, если задание выполнено в полном объеме или выполнено преимущественно верно, даны правильные ответы на вопросы

Оценка: 4

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "хорошо" выставляется, если большинство вопросов раскрыто, выбрано верное направление для выполнения задания, даны преимущественно правильные ответы на вопросы

Оценка: 3

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется, если задание преимущественно выполнено, даны преимущественно правильные ответы на вопросы

Оценка: 2

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется, если задание выполнено неверно или преимущественно не выполнено или даны преимущественно неправильные ответы на вопросы

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

2 семестр

Форма промежуточной аттестации: Экзамен

Пример билета

- 1. Модель Винера-Розенблюта: состояния клеточных автоматов в модели, допущения модели, свойства автоволн, длина волны возбуждения, аннигиляция автоволн в активной среде.
- 2. Алгоритм формирования случайных процессов с заданной функцией корреляции методом линейной фильтрации белого шума с использованием дискретного преобразования Фурье (ДПФ).
- 3. Случайная величина имеет плотность вероятности имеет следующего вида:

$$w(z) = [\sin(z)] \cdot [1(z) - 1(z - b)],$$

где 1(z) - функция включения, $b = \pi/2$.

Записать алгоритм формирования последовательности случайных чисел $\{zn\}$ методом обратных функций, с использованием последовательности чисел с равномерным законом распределения.

Процедура проведения

Экзамен проводится в устной форме по билетам в виде устного ответа на задание билета с использованием подготовленного конспекта ответа. Время на подготовку конспекта ответа — 60 минут.

I. Перечень компетенций/индикаторов и контрольных вопросов проверки результатов освоения дисциплины

1. Компетенция/Индикатор: ИД-1_{ПК-1} Анализирует состояние научнотехнических задач на основе изучения технической литературы в области биотехнических систем

Вопросы, задания

- 1. Модели биологических систем, описываемые обыкновенными дифференциальными уравнениями первого порядка: общий вид уравнения, стационарные решения, исследование устойчивости стационарных решений.
- 2. Моделирование с помощью дифференциальных уравнений в частных производных: активные кинетические среды в живых системах и их свойства, автоволновые процессы и их описание системой уравнений типа реакция-диффузия
- 3. Авторегрессионное моделирование: разностное уравнение, полюсная передаточная функция, ошибка предсказания

Материалы для проверки остаточных знаний

- 1. Биомедицинский сигнал в общем случае является:
 - Ответы:
- а) детерминированным сигналом
- б) стационарным в узком смысле случайным процессом
- в) стационарным в широком смысле случайным процессом
- г) квазистационарным случайным процессом

д) нестационарным случайным процессом

Верный ответ: нестационарным случайным процессом

2.Выберите модель, описывающую процесс распространения импульсов возбуждения в возбудимых тканях организма:

Ответы:

a)
$$\frac{dx(t)}{dt} = rx(t) - bx^{2}(t)$$
b)
$$\frac{dx(t)}{dt} = \frac{rx^{2}(t)}{b + cx(t)} - dx(t) - px^{2}(t)$$

$$\begin{cases} \frac{dx(t)}{dt} = \varepsilon_{x}x(t) - \gamma_{xy}x(t)y(t) \\ \frac{dy(t)}{dt} = -\varepsilon_{y}y(t) + \gamma_{yx}x(t)y(t) \end{cases}$$

$$\begin{cases} \frac{dx(t)}{dt} = \varepsilon_{x}x(t) - \gamma_{xy}x(t)y(t) - \delta_{x}x^{2}(t) \\ \frac{dy(t)}{dt} = -\varepsilon_{y}y(t) + \gamma_{yx}x(t)y(t) - \delta_{y}y^{2}(t) \end{cases}$$

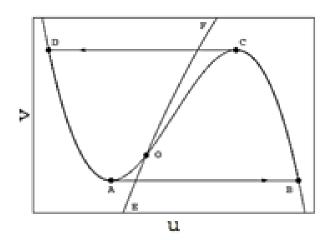
$$\begin{cases} \frac{\partial u}{\partial t} = D\Delta u - u(u - \alpha)(u - 1) - v \\ \frac{\partial v}{\partial t} = \beta u - \gamma v \end{cases}$$

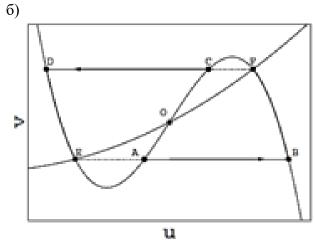
Верный ответ: д)

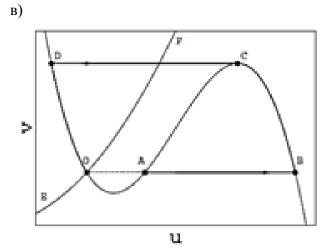
2. Компетенция/Индикатор: ИД- $2_{\Pi K-1}$ Выполняет математическое моделирование процессов и объектов биотехнических систем

Вопросы, задания

1.Получение случайных величин посредством генераторов случайных чисел. Псевдослучайная последовательность независимых чисел с равномерным законом распределения. Основные свойства псевдослучайной последовательности. 2.На вход линейной цепи поступает белый шум со спектральной плотностью *F*0. Определить функцию корреляции шума на выходе цепи, импульсная характеристика которой имеет следующий вид:


$$h(t) = 2 \cdot t \cdot [1(t) - 1(t-1)].$$


3.Определение и свойства модели. Классификация моделей. Области применения математических моделей


Материалы для проверки остаточных знаний

1. Укажите фазовый портрет бистабильной среды

a)

Ответы:

- a)
- б)
- в)

Верный ответ: б)

2.Обобщенная модель линейной системы описывается разностным уравнением

$$y(n) = -\sum_{k=1}^{P} a_k y(n-k) + G \sum_{l=0}^{Q} b_l x(n-l)$$

При каких значениях параметров разностное уравнение описывает авторегрессионную модель:

Ответы:

a)

$$a_{k} = 0, b_{l} \neq 0, G \neq 0$$
 $a_{k} = 0, b_{l} \neq 0, G = 0$
 $a_{k} = 0, b_{l} \neq 0, G \neq 0$
 $a_{k} \neq 0, b_{l} = 0, G \neq 0$
 $a_{k} \neq 0, b_{l} \neq 0, G = 0$
 $a_{k} \neq 0, b_{l} \neq 0, G \neq 0$

Верный ответ: а)

3. Компетенция/Индикатор: ИД-3_{ПК-1} Разрабатывает алгоритмы и проводит исследования для создания биотехнических систем

Вопросы, задания

- 1. Метод Монте-Карло, основные направления его использования. Алгоритм вычисления определенного интеграла методом Монте-Карло.
- 2. Модель ФитцХью-Нагумо: анализ точечной системы, вертикальная и горизонтальная изоклины, исследование устойчивости стационарных решений
- 3. Случайная величина z имеет плотность вероятности следующего вида:

$$w(z) = e^z, z \le 0.$$

Записать алгоритм формирования методом обратных функций последовательность случайных чисел $\{zn\}$, используя последовательность чисел с равномерным законом распределения.

Материалы для проверки остаточных знаний

1.Выберите метод определения параметров АР-модели, применимый к детерминированным сигналам:

Ответы:

- а) метод наименьших квадратов
- б) автокорреляционный метод
- в) ковариационный метод

Верный ответ: а) метод наименьших квадратов

- 2. Какой случайный процесс является стационарным процессом в узком смысле? Ответы:
- а) многомерная плотность вероятности инвариантна во времени
- б) числовые характеристики процесса первого и второго порядка инвариантны во времени

Верный ответ: а) многомерная плотность вероятности инвариантна во времени

4. Компетенция/Индикатор: ИД-1_{РПК-1} Знает средства программного моделирования и аппаратного макетирования области своей профессиональной деятельности

Вопросы, задания

- 1. Алгоритм формирования случайной величины со ступенчатыми плотностями вероятности
- 2.Имитационное моделирование функций мозга: обзор симуляторов и проектов моделирования
- 3. Специфика имитационного моделирования биологических процессов и систем

Материалы для проверки остаточных знаний

1. Является ли используемая при моделировании случайного процесса базовая последовательность детерминированным процессом?

Ответы:

- а) да
- б) нет

Верный ответ: б) нет

2. Что является основанием при моделировании случайных процессов с заданной функцией корреляции методом линейной фильтрации белого шума?

Ответы:

- а) АКФ импульсной характеристики фильтра совпадает с корреляционной функцией случайного процесса с точностью до постоянного множителя
- б) равенство спектральной плотности мощности случайного процесса и модуля коэффициента передачи фильтра.

Верный ответ: а) АКФ импульсной характеристики фильтра совпадает с корреляционной функцией случайного процесса с точностью до постоянного множителя

5. Компетенция/Индикатор: ИД-2_{РПК-1} Владеет навыками программного моделирования, аппаратного макетирования и экспериментальных работ в области своей профессиональной деятельности

Вопросы, задания

- 1. Моделирование точечных процессов: модель генерации электромиограммы, параметры модели, импульсные характеристики двигательных единиц, моделирование электромиограммы при миопатии и нейропатии
- 2.Специализированные программные пакеты для имитационного моделирования биологических процессов и систем
- 3. Примеры построения и исследования имитационных моделей в медико-биологической практике

Материалы для проверки остаточных знаний

1. Что ограничивает применение метода обратной функции при моделировании случайных последовательностей с заданным законом распределения?

Ответы:

- а) ограничений нет
- б) нет аналитического выражения для обратной функции

Верный ответ: б) нет аналитического выражения для обратной функции

2. Есть ли связь между математическим ожиданием и дисперсией у случайного процесса с пуассоновским законом распределения?

Ответы:

- а) математическое ожидание и дисперсия равны
- б) нет связи

Верный ответ: а) математическое ожидание и дисперсия равны

II. Описание шкалы оценивания

Оценка: 5

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Все задания билета выполнены преимущественно правильно, при ответе на вопросы экзаменационного билета и на дополнительные вопросы, продемонстрированы знания материала изученной дисциплины и свободное применение этих знаний для объяснения различных явлений и решения задач.

Оценка: 4

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Правильно выполнено практическое задание и даны, в основном, правильные ответы на вопросы экзаменационного билета и на дополнительные вопросы, но допущены при этом непринципиальные ошибки.

Оценка: 3

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: В ответах на вопросы экзаменационного билета допущены существенные и даже грубые ошибки, но затем самостоятельно исправлены, а также не выполнено практическое задание из экзаменационного билета, но либо намечен правильный путь его выполнения, либо по указанию экзаменатора решена другая задача из того же раздела дисциплины.

Оценка: 2

Описание характеристики выполнения знания: - отсутствует ответ на вопросы экзаменационного билета и не решена задача из билета, либо не намечен правильный путь решения задачи из билета; - не решена задача, либо не намечен правильный путь решения задачи и другой задачи на тот же раздел дисциплины, выданной взамен нее; - при ответе на дополнительные вопросы обнаружено незнание большого раздела экзаменационной программы.

III. Правила выставления итоговой оценки по курсу

Оценка за 2 семестр определяется в соответствии с Положением о балльно-рейтинговой системе для студентов НИУ «МЭИ» на основании семестровой и экзаменационной составляющих. В приложение к диплому выносится оценка за 2 семестр.