Министерство науки и высшего образования РФ Федеральное государственное бюджетное образовательное учреждение высшего образования «Национальный исследовательский университет «МЭИ»

Направление подготовки/специальность: 13.03.01 Теплоэнергетика и теплотехника

Наименование образовательной программы: Автоматизация технологических процессов в

теплоэнергетике

Уровень образования: высшее образование - бакалавриат

Форма обучения: Очно-заочная

Оценочные материалы по дисциплине Физика

> Москва 2023

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ РАЗРАБОТАЛ:

 Подписано электронной подписью ФГБОУ ВО «НИУ «МЭИ»

 Сведения о владельце ЦЭП МЭИ

 Владелец
 Бочаров Г.С.

 Идентификатор
 Rb965209b-BocharovGS-8e7fe096

Г.С. Бочаров

СОГЛАСОВАНО:

Руководитель образовательной программы

Разработчик

NO NO NEW YORK OF THE PARTY OF	Подписано электронн	ой подписью ФГБОУ ВО «НИУ «МЭИ»	
	Сведения о владельце ЦЭП МЭИ		
	Владелец	Мезин С.В.	
	Идентификатор	R420ae592-MezinSV-dc40cfee	

С.В. Мезин

Заведующий выпускающей кафедрой

New Mem	Подписано электронной подписью ФГБОУ ВО «НИУ «МЭИ»				
	Сведения о владельце ЦЭП МЭИ				
	Владелец	Черняев А.Н.			
	Идентификатор	R7a97f450-ChernyaevAN-b37575e			

А.Н. Черняев

ОБЩАЯ ЧАСТЬ

Оценочные материалы по дисциплине предназначены для оценки: достижения обучающимися запланированных результатов обучения по дисциплине, этапа формирования запланированных компетенций и уровня освоения дисциплины.

Оценочные материалы по дисциплине включают оценочные средства для проведения мероприятий текущего контроля успеваемости и промежуточной аттестации.

Формируемые у обучающегося компетенции:

- 1. ОПК-3 Способен применять соответствующий физико-математический аппарат, методы анализа и моделирования, теоретического и экспериментального исследования при решении профессиональных задач
 - ИД-5 Демонстрирует понимание физических явлений и умеет применять физические законы механики, молекулярной физики, термодинамики, электричества и магнетизма для решения типовых задач
 - ИД-6 Демонстрирует знание элементарных основ оптики, квантовой механики и атомной физики

и включает:

для текущего контроля успеваемости:

Форма реализации: Устная форма

- 1. Защита лабораторных работ «Волновая оптика-1» (Лабораторная работа)
- 2. Защита лабораторных работ «Волновая оптика-2» (Лабораторная работа)
- 3. Защита лабораторных работ «Квантовые свойства света-1» (Лабораторная работа)
- 4. Защита лабораторных работ «Квантовые свойства света-2» (Лабораторная работа)
- 5. Защита лабораторных работ «Магнетизм-1» (Лабораторная работа)
- 6. Защита лабораторных работ «Механика-1» (Лабораторная работа)
- 7. Защита лабораторных работ «Механика-2» (Лабораторная работа)
- 8. Защита лабораторных работ «Механика-3» (Лабораторная работа)
- 9. Защита лабораторных работ «Термодинамика-1» (Лабораторная работа)
- 10. Защита лабораторных работ «Электромагнитные колебания» (Лабораторная работа)
- 11. Защита лабораторных работ «Электростатика-1» (Лабораторная работа)
- 12. Защита лабораторных работ «Электростатика-2» (Лабораторная работа)

БРС дисциплины

2 семестр

	В	Веса контрольных мероприятий, %				
Раздел дисциплины	Индекс	KM-1	KM-2	KM-3	KM-4	
т аздел дисциплины	KM:					
	Срок КМ:	4	8	12	16	
Механика						
Поступательное движение		+	+			
Вращательное движение				+		
Молекулярная физика и термодина						

Молекулярная физика и термодинамика				+
Bec KM:	25	25	25	25

3 семестр

		Веса контро	льных мероі	приятий, %	
Раздел дисциплины	Индекс	KM-5	КМ-6	KM-7	KM-8
т аздел дисциплины	KM:				
	Срок КМ:	4	8	12	16
Электричество					
Электричество		+	+		
Магнетизм, колебания и волны					
Магнетизм			+		
Колебания и волны	Колебания и волны				+
	Вес КМ:	25	25	25	25

4 семестр

		Веса контрольных мероприятий, %					
Раздел дисциплины	Индекс	KM-9	КМ-10	KM-11	KM-12		
т аздел дисциплины	KM:						
	Срок КМ:	4	8	12	16		
Оптика							
Оптика		+	+				
Элементы квантовой оптики							
Элементы квантовой оптики				+	+		
	Bec KM:	25	25	25	25		

^{\$}Общая часть/Для промежуточной аттестации\$

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ТЕКУЩЕГО КОНТРОЛЯ

I. Оценочные средства для оценки запланированных результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций

Индекс	Индикатор	Запланированные	Контрольная точка
компетенции		результаты обучения по	
		дисциплине	
' '	ИД-50пк-3 Демонстрирует понимание физических явлений и умеет применять физические законы механики, молекулярной физики, термодинамики, электричества и магнетизма для решения типовых задач	результаты обучения по дисциплине Знать: основные законы классической механики основные законы теории колебаний и волн методы обработки результатов измерения физических величин основные законы физики магнитных явлений основные законы теории электричества основные законы молекулярной физики и термодинамики Уметь: представлять результаты экспериментальных	Защита лабораторных работ «Механика-1» (Лабораторная работа) Защита лабораторных работ «Механика-2» (Лабораторная работа) Защита лабораторных работ «Механика-3» (Лабораторная работа) Защита лабораторных работ «Термодинамика-1» (Лабораторная работа) Защита лабораторных работ «Электростатика-1» (Лабораторная работа) Защита лабораторных работ «Электростатика-2» (Лабораторная работа) Защита лабораторных работ «Магнетизм-1» (Лабораторная работа) Защита лабораторных работ «Электромагнитные колебания» (Лабораторная работа)
		исследований в виде отчетов, графиков, таблиц применять физические законы молекулярной физики и термодинамики для решения типовых задач	

		1	
		применять физические	
		законы теории магнетизма	
		для решения типовых	
		задач	
		применять физические	
		законы теории	
		электричества для решения	
		типовых задач	
		строить математические	
		модели физических	
		явлений	
		применять методы	
		теоретического и	
		экспериментального	
		исследования физических	
		явлений	
		применять физические	
		законы механики для	
		решения типовых задач	
ОПК-3	ИД-60ПК-3 Демонстрирует	Знать:	Защита лабораторных работ «Волновая оптика-1» (Лабораторная
	знание элементарных	основные законы волновой	работа)
	основ оптики, квантовой	и квантовой оптики	Защита лабораторных работ «Волновая оптика-2» (Лабораторная
	механики и атомной	элементарные основы	работа)
	физики	квантовой механики и	Защита лабораторных работ «Квантовые свойства света-1»
		основные законы атомной	(Лабораторная работа)
		физики	Защита лабораторных работ «Квантовые свойства света-2»
		Уметь:	(Лабораторная работа)
		применять физические	
		законы волновой и	
		квантовой оптики для	
		решения типовых задач	
		применять элементарные	
		основы квантовой	

	механики и физические законы атомной физики	
	для решения типовых задач	

II. Содержание оценочных средств. Шкала и критерии оценивания

2 семестр

КМ-1. Защита лабораторных работ «Механика-1»

Формы реализации: Устная форма

Тип контрольного мероприятия: Лабораторная работа

Вес контрольного мероприятия в БРС: 25

Процедура проведения контрольного мероприятия: Устный опрос по билетам

Краткое содержание задания:

Проверка знания методов обработки результатов измерения физических величин и умения их использовать

Контрольные вопросы/задания:

контрольные вопросы, задани	71 •
Знать: методы обработн	и 1.Сформулируйте порядок статистической обработки
результатов измерени	я результатов физического эксперимента.
физических величин	2. Какие разновидности числового выражения
	погрешностей Вам известны?
Уметь: представлять результат	ы 1.Определите погрешности данных установки и
экспериментальных	табличных данных.
исследований в виде отчето	в, 2.Проведите статистическую обработку
графиков, таблиц	результатов прямых измерений.
Уметь: строить математически	е 1.Вычислите погрешность косвенного измерения.
модели физических явлений	

Описание шкалы оценивания:

Оиенка: 5

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-2. Защита лабораторных работ «Механика-2»

Формы реализации: Устная форма

Тип контрольного мероприятия: Лабораторная работа

Вес контрольного мероприятия в БРС: 25

Процедура проведения контрольного мероприятия: Устный опрос по билетам

Краткое содержание задания:

Проверка знания основных законов механики поступательного движения и умения их использовать для решения задач

Контрольные вопросы/задания:

кинтрольные вопросы/задания.	
Уметь: применять методы	1.К потолку лифта, поднимающегося с ускорением а
теоретического и	=0,1g, подвешен конический маятник. Длина нити L
экспериментального	$=0,5$ м, масса груза $m=3$ кг, $\alpha=\pi/6$. Найдите
исследования физических	натяжение нити и угловую скорость вращения
явлений	маятника.
	2.Математический маятник представляет собой
	маленький брусок массой $m1 = 3$ кг, подвешенный на
	нити длиной $l=2,5$ м. В брусок попадает пуля массой
	m2 = 10 г, летящая горизонтально, и застревает в нем,
	после чего маятник отклоняется на угол $\alpha = 25^{\circ}$.
	Найдите первоначальную скорость пули $v0$.
Уметь: строить математические	1.На наклонной плоскости с углом наклона α
модели физических явлений	находится тело массой m, на которое параллельно
	основанию наклонной плоскости действует сила.
	Найдите силу, при которой тело будет двигаться
	равномерно вверх по плоскости? Коэффициент
	трения тела о плоскость μ.

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-3. Защита лабораторных работ «Механика-3»

Формы реализации: Устная форма

Тип контрольного мероприятия: Лабораторная работа

Вес контрольного мероприятия в БРС: 25

Процедура проведения контрольного мероприятия: Устный опрос по билетам

Краткое содержание задания:

Проверка знания основных законов механики вращательного движения и умения их использовать для решения задач

Контрольные вопросы/задания:

Знать: основные законы	1. Каким образом в работе определяется работа сил
классической механики	трения в подшипниках вала?
	2.В установке изменили массу груза на нити. Как это
	повлияет на результаты эксперимента?
Уметь: применять физические	1.На массивный блок, насаженный на неподвижную
законы механики для решения	ось, намотана нерастяжимая нить, к концу которой
типовых задач	прикреплен груз массой т. Ускорение груза при
	движении оказалось равным $a = 2$ м/c2. Найдите
	массу блока, считая его сплошным однородным
	цилиндром.
	2.Маховик, имеющий вид однородного диска
	радиусом R и массой M , делает n оборотов в секунду.
	Через время t после начала торможения он
	остановился. Определите момент тормозящих, сил,
	считая движение маховика при торможении
	равнозамедленным. На рисунке укажите направления
	векторов M тр, ω , ε .

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-4. Защита лабораторных работ «Термодинамика-1»

Формы реализации: Устная форма

Тип контрольного мероприятия: Лабораторная работа

Вес контрольного мероприятия в БРС: 25

Процедура проведения контрольного мероприятия: Устный опрос по билетам

Краткое содержание задания:

Проверка знания основных законов молекулярной физики и термодинамики и умения их использовать для решения задач

Знать: основные законы	1. Объясните, почему молярная теплоемкость
молекулярной физики и	идеального газа в изобарном процессе всегда больше
термодинамики	молярной теплоемкости в изохорном процессе?
	2.Напишите уравнение первого начала
	термодинамики в конечных и бесконечно малых
	величинах. Дайте определения входящим в
	уравнение величинам
Уметь: применять физические	1.Азот, занимающий при давлении р1 = 0,2 Мпа
законы молекулярной физики и	объем $V1 = 0.02$ м3, наревается изобарически так, что
термодинамики для решения	его объем увеличивается до $V2 = 0.03$ м3, затем
типовых задач	адиабатически сжимается до первоначального
	объема. Найдите работу газа, изменение внутренней
	энергии и количество теплоты в каждом процессе.
	2.Идеальный одноатомный газ расширяется сначала
	адиабатно, а затем – при постоянной температуре.
	Начальное давление газа равно $p1 = 2$ кПа, а объем
	V1 = 1 м3. Во время адиабатного расширения
	давление газа падает в 2 раза, а во время
	изотермического расширения – в 3 раза. Найдите
	количество теплоты, подведенное к газу в этих
	процесс

Оценка: 5

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 50 Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

3 семестр

КМ-5. Защита лабораторных работ «Электростатика-1»

Формы реализации: Устная форма

Тип контрольного мероприятия: Лабораторная работа

Вес контрольного мероприятия в БРС: 25

Процедура проведения контрольного мероприятия: Устный опрос по билетам

Краткое содержание задания:

Проверка знания методов измерения электрических величин и обработки результатов измерений и умения их использовать

Контрольные вопросы/задания:

Знать: основные законы теории		аконы теории	1.Как определить приборную погрешность
электр	ричества		цифрового измерительного прибора?
Уметн	ь: применяти	физические	1.Запишите результат измерения в стандартном виде.
законы теории электричества для		тричества для	
решения типовых задач		адач	

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

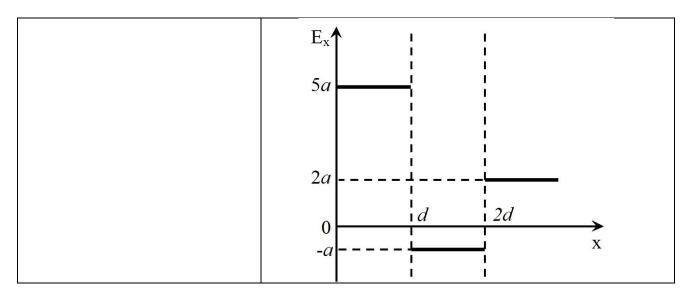
Оценка: 2

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-6. Защита лабораторных работ «Электростатика-2»

Формы реализации: Устная форма

Тип контрольного мероприятия: Лабораторная работа


Вес контрольного мероприятия в БРС: 25

Процедура проведения контрольного мероприятия: Устный опрос по билетам

Краткое содержание задания:

Проверка знания основных законов электростатики и умения их использовать для решения задач

Знать: основные законы теории	1.Запишите выражение дифференциальной связи
электричества	между вектором напряженности электростатического
	поля и потенциалом? В чем заключается ее
	физический смысл?
Уметь: применять физические	1.По графику зависимости проекции вектора
законы теории электричества для	напряженности от координаты постройте
решения типовых задач	качественно график зависимости потенциала от
	координаты. Поясните построения.

Оценка: 5

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-7. Защита лабораторных работ «Магнетизм-1»

Формы реализации: Устная форма

Тип контрольного мероприятия: Лабораторная работа

Вес контрольного мероприятия в БРС: 25

Процедура проведения контрольного мероприятия: Устный опрос по билетам

Краткое содержание задания:

Проверка знания основных законов магнетизма и умения их использовать для решения задач

	контрольные вопросы, задания.	
Знать: основные законы физики		1. Назовите особенности распределения магнитной
	магнитных явлений	индукции вдоль оси соленоида?
		2.Сформулируйте закон Ампера.
	Уметь: применять физические	1.Определите магнитную индукцию поля в центре
	законы теории магнетизма для	прямоугольной рамки со сторонами a и b , обтекаемой
	решения типовых задач	током І. Поле подводящих проводов не учитывать.

2.В одной плоскости с бесконечно длинным проводом, по которому течет ток <i>I</i> 1, расположена прямоугольная рамка со сторонами <i>a</i> и <i>b</i> , обтекаемая током <i>I</i> 2. Найдите силы, с которыми магнитное поле прямого тока действует на каждую сторону рамки. Расстояние от провода до ближайшей стороны рамки
c.

Оценка: 5

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-8. Защита лабораторных работ «Электромагнитные колебания»

Формы реализации: Устная форма

Тип контрольного мероприятия: Лабораторная работа

Вес контрольного мероприятия в БРС: 25

Процедура проведения контрольного мероприятия: Устный опрос по билетам

Краткое содержание задания:

Проверка знания основных законов по теме "Электромагнитные колебания" и умения их использовать для решения задач.

Контрольные вопросы/задания:

Знать: основные законы теории	1. Дайте определение понятию "резонанс". В чем
колебаний и волн	заключается физический смысл явления резонанса?
	2.Как зависит вид резонансной кривой для силы тока
	в контуре от его сопротивления?

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

4 семестр

КМ-9. Защита лабораторных работ «Волновая оптика-1»

Формы реализации: Устная форма

Тип контрольного мероприятия: Лабораторная работа

Вес контрольного мероприятия в БРС: 25

Процедура проведения контрольного мероприятия: Устный опрос по билетам

Краткое содержание задания:

Проверка знания основных законов волновой оптики и умения их использовать для решения задач

Контрольные вопросы/задания:

Знать: основные законы	1. Какое явление называется дифракцией света?
волновой и квантовой оптики	
Уметь: применять физические	1.Определите угловую ширину центрального
законы волновой и квантовой	максимума при нормальном падении
оптики для решения типовых	монохроматического света с длиной волны $\lambda = 0.5$
задач	мкм на щель ши

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-10. Защита лабораторных работ «Волновая оптика-2»

Формы реализации: Устная форма

Тип контрольного мероприятия: Лабораторная работа

Вес контрольного мероприятия в БРС: 25

Процедура проведения контрольного мероприятия: Устный опрос по билетам

Краткое содержание задания:

Проверка знания основных законов волновой оптики и умения их использовать для решения задач

Контрольные вопросы/задания:

Знать:	основны	іе законы	1. Чем отличается вид спектров, полученных с
волно	вой и квантов	ой оптики	помощью призмы и дифракционной решетки?
Уметь	: применять	физические	1.Найдите связь между фазовой скоростью υ и
законн	ы волновой	и квантовой	групповой скоростью и, если закон дисперсии имеет
оптикі	и для реше	ния типовых	вид: $\upsilon = bk (b - \text{постоянная}, k - \text{волновое число})$
задач			

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-11. Защита лабораторных работ «Квантовые свойства света-1»

Формы реализации: Устная форма

Тип контрольного мероприятия: Лабораторная работа

Вес контрольного мероприятия в БРС: 25

Процедура проведения контрольного мероприятия: Устный опрос по билетам

Краткое содержание задания:

Проверка знания основных законов квантовых свойств света и умения их использовать для решения задач

Знать: элементарные основы	1. Дайте определение основным характеристикам
квантовой механики и основные	теплового излучения: световому потоку,
законы атомной физики	энергетической светимости, спектральной плотности

	энергетической светимости 2. Как, зная зависимость максимальной кинетической энергии фотоэлектронов от частоты падающего на фотокатод света, определить работу выхода материала фотокатода и значение постоянной Планка?
Уметь: применять элементарные основы квантовой механики и	1.Во сколько раз возрастет энергетическая
физические законы атомной	светимость абсолютно черного тела при увеличении его абсолютной температуры в 2 раза?
физики для решения типовых	2. Температура Т абсолютно черного тела равна 5000
задач	К. На какую длину волны приходится максимум
	спектральной плотности энергетической светимости?

Оценка: 5

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-12. Защита лабораторных работ «Квантовые свойства света-2»

Формы реализации: Устная форма

Тип контрольного мероприятия: Лабораторная работа

Вес контрольного мероприятия в БРС: 25

Процедура проведения контрольного мероприятия: Устный опрос по билетам

Краткое содержание задания:

Проверка знания основных законов квантовой механики и умения их использовать для решения задач

Знать: элементарные основы	1.В чем состоит гипотеза де Бройля?
квантовой механики и основные	2.Почему для наблюдения дифракционных колец в
законы атомной физики	установке лабораторной работы № 57 использована
	поликристаллическая плёнка, а не монокристалл?
Уметь: применять элементарные	1. Найдите минимально-возможную длину волны
основы квантовой механики и	излучения атома водорода
физические законы атомной	2. Какая длина волны излучения соответствует
физики для решения типовых	переходам между уровнями с $n = 5$ и $n = 2$?
задач	

Оценка: 5

Нижний порог выполнения задания в процентах: 70 Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 60 Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 50 Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

2 семестр

Форма промежуточной аттестации: Экзамен

Пример билета

- 1. В сосуде находятся 0,1 моль углекислого газа и 6,4 г кислорода при температуре 400 К и давлении 0,1 МПа. Определите: объем сосуда; парциальное давление кислорода; внутреннюю энергию смеси газов; эффективную молярную массу смеси газов.
- 2. Ускорение материальной точки; нормальное и тангенциальное ускорения. Кинематический закон движения материальной точки в случае постоянного ускорения. Движение тел в поле силы тяжести. Границы применимости классического способа описания лвижения точки.
- 3. Сформулируйте основные положения молекулярно-кинетической теории. Дайте определение понятию «идеальный газ». Запишите основное уравнение молекулярно-кинетической теории для давления идеального газа.

Процедура проведения

1. Студент получает билет. 2. Готовиться к ответу в течение 1 часа, делая необходимые записи в листе ответа. 3. Отвечает на вопросы экзаменатору.

I. Перечень компетенций/индикаторов и контрольных вопросов проверки результатов освоения дисциплины

1. Компетенция/Индикатор: ИД-5_{ОПК-3} Демонстрирует понимание физических явлений и умеет применять физические законы механики, молекулярной физики, термодинамики, электричества и магнетизма для решения типовых задач

Вопросы, задания

- 1.1. Азот изобарически расширяется от объема 3 л до объема 5 л при давлении 0,3 МПа, а затем изохорно охлаждается до давления 0,1 МПа. *Определите*: изменение внутренней энергии газа за весь процесс; работу газа; количество подведенной теплоты в этом процессе.
- 2. Внутренние и внешние силы системы материальных точек. Импульс материальной точки и импульс системы материальных точек. Импульс силы. Закон сохранения импульса для материальной точки и для системы материальных точек.
- 3. Запишите барометрическую формулу и поясните ее физический смысл.

Материалы для проверки остаточных знаний

1. Механическая энергия системы сохраняется.....

Ответы:

- 1) в декартовой системе координат
- 2) если сумма работ непотенциальных сил равна нулю
- 3) если сумма работ потенциальных сил равна нулю
- 4) в незамкнутой системе
 - Верный ответ: 2) если сумма работ непотенциальных сил равна нулю
- 2. Момент импульса системы материальных точек сохраняется.....

Ответы:

- 1) если сумма работ непотенциальных сил равна нулю
- 2) если сумма работ потенциальных сил равна нулю
- 3) если сумма моментов внешних сил равна нулю
- 4) в незамкнутой системе

Верный ответ: 3) если сумма моментов внешних сил равна нулю

3. Количество теплоты, подведённое к газу в замкнутом цикле в два раза больше работы, совершенной газом за цикл. Определите коэффициент полезного действия цикла.

Ответы:

2%

20%

50%

100%

Верный ответ: 50%

4.Опишите взаимное расположение графиков адиабаты и изотермы в *PV*-диаграмме.

Ответы:

Адиабата параллельна изотерме

Адиабата идёт круче изотермы

Графики не пересекаются

Изотерма круче адиабаты

Верный ответ: Адиабата идёт круче изотермы

II. Описание шкалы оценивания

Оценка: 5

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Работа выполнена в рамках "продвинутого" уровня. Ответы даны верно, четко сформулированные особенности практических решений

Оценка: 4

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Работа выполнена в рамках "базового" уровня. Большинство ответов даны верно. В части материала есть незначительные недостатки

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Работа выполнена в рамках "порогового" уровня. Основная часть задания выполнена верно.

Оиенка: 2

Описание характеристики выполнения знания: Работа не выполнена или выполнена преимущественно неправильно

III. Правила выставления итоговой оценки по курсу

Оценка определяется в соответствии с Положением о балльно-рейтинговой системе для студентов НИУ «МЭИ» на основании семестровой и аттестационной составляющих.

3 семестр

Форма промежуточной аттестации: Экзамен

Пример билета

- 1. По двум шинам, расположенным в одной плоскости с длинным прямолинейным проводом с силой тока *I* параллельно проводу скользит проводник длиной *I* со скоростью *u*. Концы шин замкнуты на сопротивление *R*. Расстояние от ближайшей шины до провода *x*о. Пренебрегая сопротивлением шин и проводника, определите силу индукционного тока и его направление.
 - 2. Электрический заряд и его основные свойства. Напряженность. Принцип суперпозиции и примеры его применения. Сила, действующая в электрическом поле на точечный и распределенный заряд.
 - 3. Вынужденные электромагнитные колебания. Явление резонанса (для последовательного колебательного контура).

Процедура проведения

1. Студент получает билет. 2. Готовиться к ответу в течение 1 часа, делая необходимые записи в листе ответа. 3. Отвечает на вопросы экзаменатору.

I. Перечень компетенций/индикаторов и контрольных вопросов проверки результатов освоения дисциплины

1. Компетенция/Индикатор: ИД-5_{ОПК-3} Демонстрирует понимание физических явлений и умеет применять физические законы механики, молекулярной физики, термодинамики, электричества и магнетизма для решения типовых задач

Вопросы, задания

- 1.1. Закон Био Савара Лапласа. Принцип суперпозиции для магнитного поля. Магнитное поле, созданное прямолинейным отрезком с током конечной длины.
- 2. Затухающие колебания. Характеристики затухающих колебаний.
- 3. Стержень длиной l, заряжен зарядом Q. Найти напряжённость электрического поля в точке, находящейся на расстоянии x от его конца на линии, которая является его продолжением.

Материалы для проверки остаточных знаний

1.Полый металлический бесконечно длинный цилиндр заряжен по поверхности. Модуль напряженности E электрического поля внутри цилиндра в зависимости от расстояния от его центра...

Ответы:

Возрастает

Убывает

Убывает обратно пропорционально расстоянию

Равен нулю во всех точках

Верный ответ: Равен нулю во всех точках

2. Диэлектрическая проницаемость среды показывает...

Ответы:

Во сколько раз наряженность электростатического поля в вакууме больше напряженности в веществе

Во сколько раз модуль электрического смещения электростатического поля в веществе больше напряженности в вакууме

Во сколько раз модуль электрического смещения электростатического поля в веществе больше модуля электрического смещения в вакууме

Верный ответ: Во сколько раз наряженность электростатического поля в вакууме больше напряженности в веществе

3. Магнитная проницаемость среды показывает....

Ответы:

Во сколько раз напряженность магнитного поля в вакууме больше напряженности в веществе

Во сколько раз индукция поля в веществе больше индукции в вакууме

Во сколько раз модуль наряженность поля в веществе больше индукции в вакууме Верный ответ: Во сколько раз индукция поля в веществе больше индукции в вакууме

4.По полому металлическому бесконечно длинному цилиндру течёт ток силой I. Модуль индукции магнитного поля внутри цилиндра в зависимости от расстояния от его центра...

Ответы:

Возрастает

Убывает

Убывает обратно пропорционально расстоянию

Равен нулю во всех точках

Верный ответ: Равен нулю во всех точках

II. Описание шкалы оценивания

Оценка: 5

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Работа выполнена в рамках "продвинутого" уровня. Ответы даны верно, четко сформулированные особенности практических решений

Оценка: 4

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Работа выполнена в рамках "базового" уровня. Большинство ответов даны верно. В части материала есть незначительные недостатки

Оценка: 3

Нижний порог выполнения задания в процентах: 50 Описание характеристики выполнения знания: Работа выполнена в рамках "порогового" уровня. Основная часть задания выполнена верно.

Оценка: 2

Описание характеристики выполнения знания: Работа не выполнена или выполнена преимущественно неправильно

III. Правила выставления итоговой оценки по курсу

Оценка определяется в соответствии с Положением о балльно-рейтинговой системе для студентов НИУ «МЭИ» на основании семестровой и аттестационной составляющих.

4 семестр

Форма промежуточной аттестации: Зачет с оценкой

Пример билета

1. Какие источники излучения называют когерентными? Дайте определение понятиям когерентность, временная когерентность, пространственная когерентность.

2. Два когерентных источника, расположенных на одинаковом расстоянии L=4 м от экрана испускают монохроматический свет с длиной волны $\lambda=400$ нм. Расстояние между источниками d=1 мм. Найдите расстояние между соседними максимумами освещенности.

Процедура проведения

- студент получает билет для подготовки ответа; - студент готовит ответ по вопросам билета в течение не менее 30 минут, делая необходимые записи на листе подготовки ответа; - преподаватель устно опрашивает студента по вопросам билета, задавая при необходимости дополнительные вопросы

I. Перечень компетенций/индикаторов и контрольных вопросов проверки результатов освоения дисииплины

1. Компетенция/Индикатор: ИД-6_{ОПК-3} Демонстрирует знание элементарных основ оптики, квантовой механики и атомной физики

Вопросы, задания

- 1.1. Приведите известные Вам способы получения когерентных волн от некогерентного источника. Деление амплитуды, деление фронта.
- 2. Найдите радиус 4-го темного кольца Ньютона, если радиус линзы R=25 мм, а длина волны света $\lambda=400$ нм.
- 2.1. Выведите условия максимумов и минимумов при интерференции многих волн от дискретных источников.
- 2. Два когерентных источника, расположенных на одинаковом расстоянии L=4 м от экрана испускают монохроматический свет с длиной волны $\lambda=400$ нм. Расстояние между источниками d=1 мм. Найдите расстояние между соседними максимумами освещенности.

Материалы для проверки остаточных знаний

1. Когерентные источники

Ответы:

Имеют большую мощность,

Излучают в инфракрасном диапазоне,

Излучают волны с постоянной во времени разностью фаз,

Имеют сплошной спектр излучения

Верный ответ: Излучают волны с постоянной во времени разностью фаз

2.При дифракции

Ответы:

Выполняются законы геометрической оптики,

Не выполняются законы геометрической оптики,

Наблюдается испускание электронов из металла,

Происходят фазовые превращения облучаемого вещества

Верный ответ: Не выполняются законы геометрической оптики

3. При наличии дисперсии

Ответы

Показатель преломления среды зависит от длины волны света,

Длина дифракции достигает своего максимума,

Происходит плавление прозрачной среды,

Среда является оптически-анизотропной

Верный ответ: Показатель преломления среды зависит от длины волны света

4.Внешний фотоэффект не наблюдается, если

Ответы:

Происходит нагрев вещества, Происходит охлаждение вещества, Энергия фотона меньше работы выхода, Мощность излучения меньше 50 Вт Верный ответ: Энергия фотона меньше работы выхода

II. Описание шкалы оценивания

Оценка: зачтено

Описание характеристики выполнения знания: Выполнены все работы согласно текущему контролю успеваемости в соответствии с Положением о балльно-рейтинговой системе для студентов НИУ «МЭИ».

Оценка: не зачтено

Описание характеристики выполнения знания: Не выполнена одна и более работы согласно текущему контролю успеваемости в соответствии с Положением о балльно-рейтинговой системе для студентов НИУ «МЭИ».

ІІІ. Правила выставления итоговой оценки по курсу

Оценка определяется по совокупности результатов текущего контроля успеваемости в соответствии с Положением о балльно-рейтинговой системе для студентов НИУ «МЭИ».