Министерство науки и высшего образования РФ Федеральное государственное бюджетное образовательное учреждение высшего образования «Национальный исследовательский университет «МЭИ»

Направление подготовки/специальность: 13.03.01 Теплоэнергетика и теплотехника

Наименование образовательной программы: Технология воды и топлива на ТЭС и АЭС

Уровень образования: высшее образование - бакалавриат

Форма обучения: Очная

Оценочные материалы по дисциплине Физико-химические процессы в энергетике

Москва 2021

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ РАЗРАБОТАЛ:

Подписано электронной подписью ФГБОУ ВО «НИУ «МЭИ» New New Морыганова Ю.А. Re5b2163a-MoryganovaYA-ce24f6a Идентификатор

Преподаватель (должность)

(подпись)

Ю.А. Морыганова

(расшифровка подписи)

СОГЛАСОВАНО:

Руководитель образовательной программы

(должность, ученая степень, ученое звание)

Заведующий выпускающей кафедры (должность, ученая степень, ученое

звание)

	NCW W	Подписано электронной подписью ФГБОУ ВО «НИУ «МЭИ»			
		Сведения о владельце ЦЭП МЭИ			
		Владелец	Шацких Ю.В.		
		Идентификатор	R6ca75b8e-ShatskikhYV-f045f12f		
	(подпись)				

NGO NGO	Подписано электронн	ой подписью ФГБОУ ВО «НИУ «МЭИ»			
	Сведен	Сведения о владельце ЦЭП МЭИ			
-	Владелец	Орлов К.А.			
» <u>МЭИ</u> «	Идентификатор	R24178de8-OrlovKA-0ab64072			

(подпись)

Ю.В. Шацких

> (расшифровка подписи)

К.А. Орлов (расшифровка

подписи)

ОБЩАЯ ЧАСТЬ

Оценочные материалы по дисциплине предназначены для оценки: достижения обучающимися запланированных результатов обучения по дисциплине, этапа формирования запланированных компетенций и уровня освоения дисциплины.

Оценочные материалы по дисциплине включают оценочные средства для проведения мероприятий текущего контроля успеваемости и промежуточной аттестации.

Формируемые у обучающегося компетенции:

1. ПК-3 Способен участвовать в организации химического контроля качества воды и поддержании требуемого химического режима на объектах энергетики

ИД-2 Владеет современными методами проведения химического анализа, методиками расчета расходов материалов и реагентов

и включает:

для текущего контроля успеваемости:

Форма реализации: Билеты (письменный опрос)

- 1. Органические соединения в теплоэнергетике. Теоретические основы предочистки. (Контрольная работа)
- 2. Теоретические основы физико-химических методов очистки воды (Контрольная работа)
- 3. Физико-химические процессы основных титриметрических методик количественного анализа показателей качества теплоносителя (Контрольная работа)

Форма реализации: Смешанная форма

- 1. Расчеты в аналитических реакциях (Контрольная работа)
- 2. Расчеты при определении макрокомпонентов (Контрольная работа)
- 3. Теоретические основы методов химического анализа (Контрольная работа)
- 4. Физико-химические методы анализа (Контрольная работа)

Форма реализации: Устная форма

1. Защита лабораторных работ (Коллоквиум)

БРС дисциплины

7 семестр

	Beca	контролы	ных меро	приятий, '	%
Decrea average	Индекс	KM-1	KM-2	KM-3	KM-4
Раздел дисциплины	KM:				
	Срок КМ:	4	8	12	14
Теоретические основы методов химического анализа					
Теоретические основы методов химического анализа					
Аналитические реакции					
Аналитические реакции			+		

Методы количественного определения					
макрокомпонентов					
Методы количественного определения					
макрокомпонентов				+	
Физико-химические методы анализа					
Физико-химические методы анализа					+
	Bec KM:	25	25	25	25

8 семестр

	Веса кон	Веса контрольных мероприятий, %			
Рослед диоминации	Индекс	КМ-	КМ-	КМ-	КМ-
Раздел дисциплины	KM:	5	6	7	8
	Срок КМ:	4	8	12	14
Показатели качества воды и методы их определен	кин				
Показатели качества воды и методы их определен	кия	+			
Органические соединения в теплоэнергетике					
Органические соединения в теплоэнергетике			+		
Теоретические основы предварительной очистки воды методами коагуляции и осаждения					
Теоретические основы предварительной очистки воды методами коагуляции и осаждения			+		+
Теоретические основы физико-химических методов очистки воды					
Теоретические основы физико-химических методов очистки воды				+	
	Bec KM:	25	25	25	25

\$Общая часть/Для промежуточной аттестации\$

БРС курсовой работы/проекта

8 семестр

	Веса контр	Веса контрольных мероприятий, %			й, %
Раздел дисциплины	Индекс	КМ-	КМ-	КМ-	КМ-
Газдел дисциплины	KM:	1	2	3	4
	Срок КМ:	4	6	12	14
Проверка анализа исходной воды. Выбор схемы обра	аботки воды				
в зависимости от типа паровых котлов, параметра па	ра и				
качества исходной воды. Выбор схемы предочистки	В	+			
зависимости от качества исходной воды.					
Расчет производительности водоподготовительных у	становок.				
Качество воды после предварительной очистки. Расчет			+		
осветлительных фильтров.					
Технологический расчет ионитных фильтров и филь-	гров			1	
смешанного действия.				+	
Расчет осветлителей и декарбонизатора. Выбор оборудования.					
Разработка принципиальной схемы технологической схемы					+
подготовки добавочной воды.					
	Bec KM:	5	20	40	35

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ТЕКУЩЕГО КОНТРОЛЯ

I. Оценочные средства для оценки запланированных результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций

Индекс	Индикатор	Запланированные	Контрольная точка
компетенции	_	результаты обучения по	
		дисциплине	
ПК-3	ИД-2пк-3 Владеет	Знать:	Теоретические основы методов химического анализа (Контрольная
	современными методами	методики	работа)
	проведения химического	технологического расчета	Расчеты в аналитических реакциях (Контрольная работа)
	анализа, методиками	в процессах	Расчеты при определении макрокомпонентов (Контрольная работа)
	расчета расходов	водоподготовки	Физико-химические методы анализа (Контрольная работа)
	материалов и реагентов	химические и физико-	Физико-химические процессы основных титриметрических методик
		химические процессы при	количественного анализа показателей качества теплоносителя
		подготовке добавочной	(Контрольная работа)
		воды на ТЭС	Органические соединения в теплоэнергетике. Теоретические основы
		основные показатели	предочистки. (Контрольная работа)
		качества теплоносителя и	Теоретические основы физико-химических методов очистки воды
		способы их определения	(Контрольная работа)
		инструментальные методы	Защита лабораторных работ (Коллоквиум)
		химического анализа	
		взаимосвязь между	
		составом и свойствами	
		водных растворов	
		Уметь:	
		принимать	
		технологические решения	
		при проектировании и	
		эксплуатации установок	
		подготовки добавочной	
		воды на ТЭС	
		проводить химический	

анализ по указанной	
методике	
проводить технические	
расчеты параметров	
теплоносителя;	
оценивать показатели	
качества воды и	
результаты химических	
процессов	

II. Содержание оценочных средств. Шкала и критерии оценивания

7 семестр

КМ-1. Теоретические основы методов химического анализа

Формы реализации: Смешанная форма

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 25

Процедура проведения контрольного мероприятия: Студент получает билеты с вопросами и задачами. Студент пишет ответы на вопросы и решает задачи в течение одного часа. Далее сдает письменную работу на проверку преподавателю. В оценку за контрольное мероприятие входит защита лабораторной работы 1

Краткое содержание задания:

- 1. Смешали 50мл 0,1М раствора NaOH и 100мл 0,5М раствора NaOH . Какова молярная, нормальная и процентная концентрации нового раствора, если плотность полученного раствора \square 1,02 г/мл?
- 2. Напишите формулы следующих соединений Формиат меди гидроксид бария.
- 3. При выпаривании 400 мл 12 % раствора KNO3 (плотность раствора 1,076 г/мл) получили 2М раствор нитрата калия. Определить объём полученного раствора, его нормальную концентрацию.
- 4. Перечислите этапы химического анализа.
- 5. Для получения 500 мл 0,02 н раствора серной кислоты, лаборант отобрал цилиндром 0,6 мл 76 % раствора серной кислоты с плотностью 1, 68 г/см3, перенес в мерную колбу на 500 мл, довел до метки обессоленной водой. Получит ли лаборант раствор необходимой концентрации?

Контрольные вопросы/задания:

1.Смешали 50мл 0,1M раствора NaOH и 100мл 0,5M
раствора NaOH . Какова молярная, нормальная и
процентная концентрации нового раствора, если
плотность полученного раствора
2.Напишите формулы следующих соединений
Формиат меди
гидроксид бария.
3.При выпаривании 400 мл 12 % раствора
KNO3 (плотность раствора 1,076 г/мл) получили 2М
раствор нитрата калия. Определить объём
полученного раствора, его нормальную
концентрацию.

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 70 Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оиенка: 4

Нижний порог выполнения задания в процентах: 60 Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 50 Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

КМ-2. Расчеты в аналитических реакциях

Формы реализации: Смешанная форма

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 25

Процедура проведения контрольного мероприятия: Студент получает билеты с вопросами и задачами. Студент пишет ответы на вопросы и решает задачи в течение одного часа. Далее сдает письменную работу на проверку преподавателю. В оценку за контрольное мероприятие учитывается защита лабораторных работ 2 и3.

Краткое содержание задания:

- 1. Рассчитайте рН 0,01 M KNO2 (Ка = 5,1 \Box 10-4) раствора.
- 2.Оцените концентрацию водного раствора аммиака, если pH раствора 10,0. ($Kb=1.79 \square 10-5$).
- 3. Рассчитать молярную концентрацию HCl, если на титровании 0,4468 г Na2B4O7□10H2O (буры) затрачено 18,38 мл этого раствора.
- 4. Рассчитайте pH раствора 250 мл которого содержат 2 г CH3COOH и 2 г KCl . (Ka=1,74 \square 10-5).
- 5.В мерной колбе вместимостью 100 мл приготовили раствор из навески 0,2353 г Na2CO3. Для титрования аликвотных порций этого раствора, отбираемых пипеткой вместимостью 20 мл, использовании раствор HCl и индикатор метиловый оранжевый. При этом получили следующие значения объемов раствора (HCl) мл: 4,340; 4,335; 4,345; 4,365; 4,330. Вычислить значение молярной концентрации раствора HCl. Ka1=4,45 □ 10-7, Ka2=4,69 □ 10-11.
- 6.129,57 г фосфорной кислоты растворили в 20,43 мл воды. Плотность получившегося раствора равна 1,7 г/мл. Определите pH раствора.Ка1=7,52 \square 10-3, Ka2=6,31 \square 10-8, Ka3=1,26 \square 10-12.

Контрольные вопросы/задания:

топтрольные вопросы задания.	
Уметь: оценивать показатели	1. Рассчитать молярную концентрацию HCl, если на
качества воды и результаты	титровании 0,4468 г Na2B4O7□10H2O (буры)
химических процессов	затрачено 18,38 мл этого раствора.
	2.В мерной колбе вместимостью 100 мл приготовили
	раствор из навески 0,2353 г Na2CO3. Для титрования
	аликвотных порций этого раствора, отбираемых
	пипеткой вместимостью 20 мл, использовании
	раствор НС1 и индикатор метиловый оранжевый. При
	этом получили следующие значения объемов
	раствора (HCl) мл: 4,340; 4,335; 4,345; 4,365; 4,330.
	Вычислить значение молярной концентрации
	раствора НСІ. Ка1=4,45 □ 10-7, Ка2=4,69 □ 10-11.

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 60 Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 50 Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

КМ-3. Расчеты при определении макрокомпонентов

Формы реализации: Смешанная форма

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 25

Процедура проведения контрольного мероприятия: Студент получает билеты с вопросами и задачами. Студент пишет ответы на вопросы и решает задачи в течение одного часа. Далее сдает письменную работу на проверку преподавателю. Защита лабораторных работ .

Краткое содержание задания:

- 1. Рассчитайте массу ацетата натрия, которую нужно растворить в 1 дм3 уксусной кислоты концентрации 0.01 моль/дм3, чтобы получить буферный раствор с рH = 5?
- 2.Какая система должна быть применена для получения буферного раствора с рH=9, если в распоряжении имеются H3PO4 и Na2HPO4; NH3 . H2O и NH4Cl; H3PO4 и NaOH в эквивалентных содержаниях?
- 3. Произведение растворимости иодида свинца при 20° С равно $8 \cdot 10$ -9. Вычислить растворимость соли в г/л при указанной температуре.
- 4. Растворимость карбоната серебра в воде при 25 0C равна 1,16·10-4 моль/л. Вычислить произведение растворимости его при этой температуре.
- 5.Имеется 400 г насыщенного при 60 ОС раствора нитрата калия. Какая масса (г) KNO3 выкристаллизуется из раствора при охлаждении до 35 ОС, если коэффициент растворимости нитрата калия при 60 ОС равен 110 г/100 г воды, а при 35 ОС 57 г/100 г воды?
- 6. Что такое «солевой эффект»?
- 7.Увеличивается или уменьшается растворимость малорастворимого сильного электролита в присутствии избытка одного из одноименных ионов. Как повлияет на массу осадка введение избытка одноименных ионов?

Контрольные вопросы/задания:

Уметь: проводить химический	1. Увеличивается или уменьшается растворимость
анализ по указанной методике	малорастворимого сильного электролита в
	присутствии избытка одного из одноименных ионов.
	Как повлияет на массу осадка введение избытка
	одноименных ионов?
	2. Какая система должна быть применена для
	получения буферного раствора с рН = 9, если в
	распоряжении имеются НЗРО4 и Na2HPO4;
	NH3 . H2O и NH4Cl; H3PO4 и NaOH в

эквивалентных содержаниях?

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 50 Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

КМ-4. Физико-химические методы анализа

Формы реализации: Смешанная форма

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 25

Процедура проведения контрольного мероприятия: Студент получает билеты с вопросами и задачами. Студент пишет ответы на вопросы и решает задачи в течении часа. Далее преподаватель проверяет выполненные работы. Защита лабораторных работ.

Краткое содержание задания:

- 1.Перечислите физико-химические методы анализа.
- 2. Какие показатели качества природной воды определяют с помощью физико-химических методов анализа?
- 3.Опишите строение электрода относительно которого определяют стандартные потенциалы. Почему используют этот электрод?
- 4.Почему на диаграмме Пурбе практически всегда представлены 2 линии? Что это за линии?
- 5. Строение стеклянного электрода.
- 6. Как производят выбор кюветы и длины волны в фотометрическом методе?

Контрольные вопросы/задания:

Знать:	инструментальные	1.Перечислите физико-химические методы анализа
методы хи	имического анализа	2.Опишите строение электрода относительно
		которого определяют стандартные потенциалы.
		Почему используют этот электрод?
		3Строение стеклянного электрода.

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 50 Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

8 семестр

КМ-5. Физико-химические процессы основных титриметрических методик количественного анализа показателей качества теплоносителя

Формы реализации: Билеты (письменный опрос)

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 25

Процедура проведения контрольного мероприятия: Студент получает билеты с вопросами и задачами. Студент пишет ответы на вопросы и решает задачи в течение одного часа. Далее сдает письменную работу на проверку преподавателю.

Краткое содержание задания:

- 1. Классификация примесей воды по степени дисперсности. В чем различие этих примесей?
- 2. Какое значение рН и почему необходимо поддерживать при определении жесткости воды?
- 3. Какие индикаторы применяют при определении кислотности и почему?
- 4. При определении окисляемости как часто устанавливают концентрацию титранта и почему?
- 5. Почему иногда получаются разные значения перманганатной и бихроматной окисляемостей?
- 6. При определении общей жесткости воды лаборант в мерную колбу цилиндром отобрала 100 см3 анализируемой воды, добавила 5 см3 аммиачного буферного раствора и 5 см3 раствора сульфида натрия. Далее в пробу прибавила 5 капель раствора индикатора мурексида перемешала и медленно титровала раствором трилона Б до перехода окраски из красно-фиолетовой в голубую. Правильно ли выполнила анализ лаборант? Ответ обоснуйте.

Контрольные вопросы/задания:

Знать: основные показате	ЛИ	1.Классификация примесей воды по степени	
качества теплоносителя	И	дисперсности. В чем различие этих примесей?	
способы их определения		2. Какое значение рН и почему необходимо	
		поддерживать при определении жесткости воды?	

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

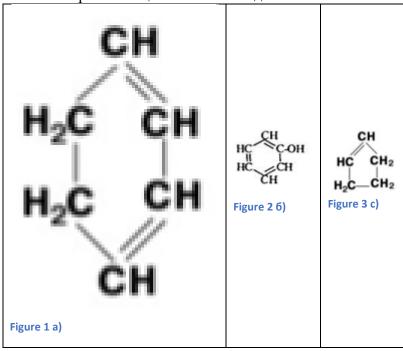
Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

КМ-6. Органические соединения в теплоэнергетике. Теоретические основы предочистки.

Формы реализации: Билеты (письменный опрос) Тип контрольного мероприятия: Контрольная работа


Вес контрольного мероприятия в БРС: 25

Процедура проведения контрольного мероприятия: Студент получает билеты с вопросами и задачами. Студент пишет ответы на вопросы и решает задачи в течение одного часа. Далее сдает письменную работу на проверку преподавателю.

Краткое содержание задания:

- 1. Почему в качестве коагулянтов используют соединения в состав которых входит метал с зарядом +3?
- 2. На какую величину будет снижаться щелочность коагулируемой воды при обработке ее коагулянтом с дозой 55,5 мг/л. Коагулянт кристаллогидрата сульфата алюминия, в состав которого входит 18 моль воды.
- 3. Напишите правильное ли следующее заключение: Вместо сульфата алюминия в качестве коагулянта возможно применять полиакриламид. Ответ обоснуйте.
- 4. Повышение рН процесса коагуляции способствует увеличению относительного содержания гуминовых кислот и органических соединений, которые можно убрать коагуляцией. Правильно ли это утверждение. Ответ обоснуйте.
- 5. Для чего в ряде случаев обработки воды коагуляцией с известкованием добавляют в воду гидроксид магния?

б. Выберите алициклические соединения

- 7. При каких условиях необходимо поддерживать гидратный режим известкования.
- 8. Что способствует растворению органических соединений (в частности, кислот и аминов в природной воде)?

Контрольные вопросы/задания:

Знать: химические и физико-	1.Почему в качестве коагулянтов используют
химические процессы при	соединения в состав которых входит метал с зарядом
подготовке добавочной воды на	+3?
ТЭС	2. Выберите алициклические соединения
	3. Что способствует растворению органических
	соединений (в частности, кислот и аминов в
	природной воде)?

Описание шкалы оценивания:

Оценка: 5

Описание характеристики выполнения знания:

Оценка: 4

Описание характеристики выполнения знания:

Оценка: 3

Описание характеристики выполнения знания:

КМ-7. Теоретические основы физико-химических методов очистки воды

Формы реализации: Билеты (письменный опрос)

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 25

Процедура проведения контрольного мероприятия: Студент получает билеты с вопросами и задачами. Студент пишет ответы на вопросы и решает задачи в течение одного часа. Далее сдает письменную работу на проверку преподавателю.

Краткое содержание задания:

- 1.В чем принципиальное отличие H-катионитного фильтра от Na-катионитного фильтра? Можно ли использовать один и тот же катионит в т ом и другом фильтре? Ответ обоснуйте.
- 2. Химический анализ осветленной воды, поступающей на Н-катионитный фильтр, дал следующие результаты: концентрация ионов кальция 40 мг/дм3, магния 12 мг/дм3, натрия 4,6 мг/дм3. При этом наблюдалось два случая:
- 1 Шo = 2.5 мг-экв/дм3, CCl- + CSO42- = 0.7 мг-экв/дм3;
- 2 Шo = 0.7 мг-экв/дм3, CCl- + CSO42- = 2.5 мг-экв/дм3.

Какой катион будет проскакивать в фильтрат Н-фильтра первой ступени? В каком из двух случаев концентрация его будет больше?

- 3. Возможно и глубокая сорбция кремниевой кислоты сильноосновным анионитом в фильтрате AII, если в схеме убрать декарбонизатор? Ответ обоснуйте.
- 4.После прямоточной регенерации НІ фильтры пустили в работу. Получат ли фильтрат с необходимыми показателями в соответствии с режимными картами? Ответ обоснуйте.
- 5.Ручной и автоматический химический контроль показал, что кислотность в фильтрате снизилась на 0,25 мг-экв/дм3, а рН и удельная электропроводность в фильтрате AI увеличилась соответственно до 9,0 единиц каждый. Что это означает? И что нужно сделать?

- 6. Какой анионит в процессе обессоливания следует загрузить в ОН-анионитный фильтр первой ступени и почему?
- 7. От чего зависит селективность анионитов по отношению к анионам? В чем отличие слабоосновных анионитов от сильноосновных?
- 8. Как изменяется размер зерна свежеотрегенерированного анионита в процессе работы? Объясните почему он так изменится.
- 9. Для чего при умягчении воды в схемах устанавливают два Na-катионитных фильтра? 10. Можно ли глубоко отрегенерировать сработанный катионит в H-фильтре стехиометрическим расходом кислоты, если фильтр загружен катионитом КБ-4? Ответ обоснуйте.

Контрольные вопросы/задания:

контрольные вопросы/задания.			
Знать:	методики	1.В чем принципиальное отличие Н-катионитного	
технологического	расчета в	фильтра от Na-катионитного фильтра? Можно ли	
процессах водоподготовки		использ	
		2.Возможно и глубокая сорбция кремниевой кислоты	
		сильноосновным анионитом в фильтрате AII, если в	
		схеме убрать декарбонизатор? Ответ обоснуйте.	
		3После прямоточной регенерации НІ фильтры	
		пустили в работу. Получат ли фильтрат с	
		необходимыми показателями в соответствии с	
		режимными картами? Ответ обоснуйте.	
Уметь:	принимать	1. Какой анионит в процессе обессоливания следует	
технологические решения при		загрузить в ОН-анионитный фильтр первой ступени и	
проектировании и эксплуатации		почему?	
установок	подготовки	2.Для чего при умягчении воды в схемах	
добавочной воды на ТЭС		устанавливают два Na-катионитных фильтра?	
		3. Химический анализ осветленной воды,	
		поступающей на Н-катионитный фильтр, дал	
		следующие результаты: концентрация ионов кальция	
		40 мг/дм3, магния 12 мг/дм3, натрия 4,6 мг/дм3. При	
		этом наблюдалось два случая:	
		1 - Щo = 2,5 мг-экв/дм3, CCl- + CSO42- = 0,7 мг-	
		экв/дм3;	
		2- Що= 0.7 мг-экв/дм 3 , CCl- $+$ CSO 42 - $= 2.5 мг-$	
		экв/дм3 .	
		Какой катион будет проскакивать в фильтрат Н-	
		фильтра первой ступени? В каком из двух случаев	
		концентрация его будет больше?	
•			

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 70 Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 60 Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

КМ-8. Защита лабораторных работ

Формы реализации: Устная форма

Тип контрольного мероприятия: Коллоквиум **Вес контрольного мероприятия в БРС:** 25

Процедура проведения контрольного мероприятия: Студент отвечает на вопросы

преподавателя по результатам проделанных лабораторных работ

Краткое содержание задания:

- 1. 1.Какое значение рН необходимо поддерживать при ведение процесса коагуляции с оксихлоридом алюминия?
- 2. 2.Какую методики применяют для определения хлорид-ионов?
- 3. По какому показателю качества воды оценивают эффективность процесса коагуляции?
- 4. 4. Каким образом проводили процесс коагуляции?
- 5. 5. Как определяли дозу коагулянта?

Контрольные вопросы/задания:

Уметь: проводить	технические	1. Как определяли дозу коагулянта?
расчеты	параметров	2. Каким образом проводили процесс коагуляции?
теплоносителя;		

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Для курсового проекта/работы

8 семестр

І. Описание КП/КР

Необходимо произвести расчет оборудования технологической схемы водоподготовки с параллельным включением фильтров . В соответствии с исходными показателями качества источника водоснабжения рассчитать предочистку. Необходимо подобрать соответствующее основное и вспомогательное оборудование.

II. Примеры задания и темы работы

Пример задания

Рассчитать схему водоподготовки с параллельным включением фильтров для станции мощностью 1200 МВт с турбинами K-300. Источник водоснабжения - река Клязьма у г. Владимира.

Тематика КП/КР:

КМ-1. Оценка выполнения разделов 1 Описание шкалы оценивания

Оиенка: 5

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка 5 («отлично»), если задание получено с опозданием не более чем на 2 недели

Оценка: 4

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка 4 («хорошо»), если задание получено с опозданием не более чем на 3 недели

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка 3 («удовлетворительно»), если задание получено с опозданием более чем на 3 недели

КМ-2. Щценка выполнения раздела 2 Описание шкалы оценивания

Оценка: 5

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка 5 («отлично»), если задание получено с опозданием не более чем на 2 недели

Оиенка: 4

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка 4 («хорошо»), если задание получено с опозданием не более чем на 3 недели

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка 3 («удовлетворительно»), если задание получено с опозданием более чем на 3 недели

КМ-3. Оценка выполнения раздела 3 Описание шкалы оценивания

Оиенка: 5

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка 5 («отлично»), если задание получено с опозданием не более чем на 2 недели

Оценка: 4

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка 4 («хорошо»), если задание получено с опозданием не более чем на 3 недели

Оценка: 3

Нижний порог выполнения задания в процентах: 50 Описание характеристики выполнения знания: Оценка 3 («удовлетворительно»), если задание получено с опозданием более чем на 3 недели

KM-4. Оценка выполнения раздела 4 Описание шкалы оценивания

Оценка: 5

Описание характеристики выполнения знания:

Оценка: 4

Описание характеристики выполнения знания:

Оценка: 3

Описание характеристики выполнения знания:

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

7 семестр

Форма промежуточной аттестации: Экзамен

Пример билета

ФГБОУ ВО "Национальный исследовательский университет "МЭИ"	УТВЕРЖДАЮ
Кафедра Теоретических основ теплотехники им. М.П. Вукаловича	
Направление: 13.04.01. Теплоэнергетика и теплотехника	
Дисциплина: Физико-химические процессы в энергетике	
	Зав. каф. ТОТ
ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ №1	25 декабря 2020

- **1. Вопрос.** Растворы и способы выражения концентраций растворов. Расчет молярной массы эквивалентов для кислот, оснований и солей. Закон эквивалентов.
- **2. Вопрос.** Явления на границе металл-раствор. Электрохимические элементы, их обратимость. Измерение потенциала на границе металл раствор.
- **3.** Задача. Рассчитать объемы 0.1 М ацетата натрия и 0.6 % уксусной кислоты, необходимые для приготовления 3 л буферного раствора с pH=5.24. Ка= $1.74 \cdot 10-5$.

Процедура проведения

Студент выбирает билет, в течение одного часа подготавливается к ответу на вопросы в билете (письменно отвечает на вопросы в билете и решает задачу), далее устно отвечает преподавателю. После преподаватель задает вопросы по материалам семестра. Оценка определяется в соответствии с Положением о балльно-рейтинговой системе для студентов НИУ «МЭИ» на основании семестровой и экзаменационной составляющих.

I. Перечень компетенций/индикаторов и контрольных вопросов проверки результатов освоения дисииплины

II. Описание шкалы оценивания

Оценка: 5

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Работа выполнена в рамках "продвинутого" уровня. Ответы даны верно, четко сформулированные особенности практических решений

Оценка: 4

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Работа выполнена в рамках "базового" уровня. Большинство ответов даны верно. В части материала есть незначительные недостатки

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Работа выполнена в рамках "порогового" уровня. Основная часть задания выполнена верно. на вопросы углубленного уровня

III. Правила выставления итоговой оценки по курсу

Оценка определяется в соответствии с Положением о балльно-рейтинговой системе для студентов НИУ «МЭИ» на основании семестровой и экзаменационной составляющих. В приложение к диплому выносится оценка за 8 семестр и за курсовую работу

8 семестр

Форма промежуточной аттестации: Экзамен

Пример билета

ФГБОУ ВО "Национальный исследовательский университет "МЭИ"	УТВЕРЖДАЮ
Кафедра Теоретических основ теплотехники им. М.П. Вукаловича	
Направление: 13.04.01. Теплоэнергетика и теплотехника	
Дисциплина: Физико-химические процессы в энергетике (часть 2) ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ №1	Зав. каф. ТОТ 15 мая 2021 г.

- **1. Вопрос.** Поступление органических примесей в пароводяной тракт энергоблока ТЭС. Распределение органических примесей по тракту.
- 2. Вопрос. Химические основы методики определения окисляемости воды.
- **3. Задача.** На предочистку поступает вода с показателем окисляемости равным 9,8 мг О/дм3. Рассчитайте рН раствора коагулянта, если Kb=1,38×10-9. Рассчитайте дозы необходимых реагентов, если концентрация бикарбонат иона равна 88,45 мг/дм3.

Процедура проведения

Студент выбирает билет, в течение одного часа подготавливается к ответу на вопросы в билете (письменно отвечает на вопросы в билете и решает задачу), далее устно отвечает преподавателю. После преподаватель задает вопросы по материалам семестра. Оценка определяется в соответствии с Положением о балльно-рейтинговой системе для студентов НИУ «МЭИ» на основании семестровой и экзаменационной составляющих.

I. Перечень компетенций/индикаторов и контрольных вопросов проверки результатов освоения дисциплины

II. Описание шкалы оценивания

Оценка: 5

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Работа выполнена в рамках "продвинутого" уровня. Ответы даны верно, четко сформулированные особенности практических решений

Оценка: 4

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Работа выполнена в рамках "базового" уровня. Большинство ответов даны верно. В части материала есть незначительные недостатки

Оценка: 3

Нижний порог выполнения задания в процентах: 50 Описание характеристики выполнения знания: Работа выполнена в рамках "порогового" уровня. Основная часть задания выполнена верно. на вопросы углубленного уровня

III. Правила выставления итоговой оценки по курсу

Оценка определяется в соответствии с Положением о балльно-рейтинговой системе для студентов НИУ «МЭИ» на основании семестровой и экзаменационной составляющих. В приложение к диплому выносится оценка за 8 семестр и за курсовую работу

Для курсового проекта/работы:

8 семестр

Форма проведения: Защита КП/КР

І. Процедура защиты КП/КР

Студент предоставляет оформленную и допущенную к защите курсовую работу комисси в составе двух преподавателей. Процедура защиты курсового проекта включает в себя: — выступление студента по теме и результатам работы (не более 10 мин) с использованием презентации; — ответы на вопросы членов комиссии.

II. Описание шкалы оценивания

Оценка: 5

Нижний порог выполнения задания в процентах: 70 Описание характеристики выполнения знания: Работа выполнена в рамках "продвинутого" уровня. Ответы даны верно, четко сформулированные особенности практических решений

Оценка: 4

Нижний порог выполнения задания в процентах: 60 Описание характеристики выполнения знания: Работа выполнена в рамках "базового" уровня. Большинство ответов даны верно. В части материала есть незначительные недостатки

Оценка: 3

Нижний порог выполнения задания в процентах: 50 Описание характеристики выполнения знания: Работа выполнена в рамках "порогового" уровня. Основная часть задания выполнена верно. на вопросы углубленного уровня

III. Правила выставления итоговой оценки по курсу

Оценка определяется в соответствии с Положением о балльно-рейтинговой системе для студентов НИУ «МЭИ» на основании семестровой и экзаменационной составляющих. В приложение к диплому выносится оценка за 8 семестр и за курсовую работу