Министерство науки и высшего образования РФ Федеральное государственное бюджетное образовательное учреждение высшего образования «Национальный исследовательский университет «МЭИ»

Направление подготовки/специальность: 13.04.01 Теплоэнергетика и теплотехника

Наименование образовательной программы: Автоматизированные системы управления объектами

тепловых и атомных электрических станций

Уровень образования: высшее образование - магистратура

Форма обучения: Очная

Оценочные материалы по дисциплине Моделирование объектов управления

Москва 2025

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ РАЗРАБОТАЛ:

 Подписано электронной подписью ФГБОУ ВО «НИУ «МЭИ»

 Сведения о владельце ЦЭП МЭИ

 Владелец
 Ягупова Ю.Ю.

 Идентификатор
 R82c64655-YagupovaYY-1a0e61d\$

СОГЛАСОВАНО:

Руководитель образовательной программы

Разработчик

MOM H	Подписано электронной подписью ФГБОУ ВО «НИУ «МЭИ»			
	Сведения о владельце ЦЭП МЭИ			
	Владелец	Мезин С.В.		
	Идентификатор	R420ae592-MezinSV-dc40cfee		

С.В. Мезин

Ю.Ю.

Ягупова

Заведующий выпускающей кафедрой

iso or	Подписано электронной подписью ФГБОУ ВО «НИУ «МЭИ»				
	Сведения о владельце ЦЭП МЭИ				
	Владелец	Мезин С.В.			
<u>∍N</u> 🦠	Идентификатор	R420ae592-MezinSV-dc40cfee			

С.В. Мезин

ОБЩАЯ ЧАСТЬ

Оценочные материалы по дисциплине предназначены для оценки достижения обучающимися запланированных результатов обучения по дисциплине, этапа формирования запланированных компетенций и уровня освоения дисциплины.

Оценочные материалы по дисциплине включают оценочные средства для проведения мероприятий текущего контроля успеваемости и промежуточной аттестации.

Формируемые у обучающегося компетенции:

1. ПК-2 Способен участвовать в организации разработки, внедрения и сопровождения АСУТП, разработке мероприятий по повышению качества АСУ ТП и её элементов ИД-4 Применяет методы получения, сравнительного анализа моделей различной степени приближения и выбора наилучшей модели в зависимости от ее назначения

и включает:

для текущего контроля успеваемости:

Форма реализации: Допуск к лабораторной работе

- 1. Введение. Основные понятия математического моделирования. Принципы построения моделей. (Лабораторная работа)
- 2. Модели гидродинамических процессов. Обобщенная математическая модель теплообменников . (Лабораторная работа)
- 3. Модели оборудования ТЭС и АЭС. (Лабораторная работа)
- 4. Модели одномерного потока. Модели передающей тепло стенки. (Лабораторная работа)

БРС дисциплины

2 семестр

Перечень контрольных мероприятий <u>текущего контроля</u> успеваемости по дисциплине:

- КМ-1 Введение. Основные понятия математического моделирования. Принципы построения моделей. (Лабораторная работа)
- КМ-2 Модели одномерного потока. Модели передающей тепло стенки. (Лабораторная работа)
- КМ-3 Модели гидродинамических процессов. Обобщенная математическая модель теплообменников. (Лабораторная работа)
- КМ-4 Модели оборудования ТЭС и АЭС. (Лабораторная работа)

Вид промежуточной аттестации – Экзамен.

	Веса контрольных мероприятий, %					
D	Индекс	KM-1	KM-2	KM-3	KM-4	
Раздел дисциплины	KM:					
	Срок КМ:	4	8	12	15	
Введение. Основные понятия математического						
моделирования						
Введение. Основные понятия математического						
моделирования			+	+		

Принципы построения математических моделей				
Принципы построения математических моделей	+	+	+	
Модели одномерного однофазного потока				
Модели одномерного однофазного потока	+	+	+	+
Модели теплопередающей стенки				
Модели теплопередающей стенки	+	+	+	+
Модели гидродинамических процессов				
Модели гидродинамических процессов		+	+	+
Обобщенная математическая модель теплообменников				
Обобщенная математическая модель теплообменников		+	+	+
Математическое моделирование процессов оборудования ТЭС				
Математическое моделирование процессов оборудования ТЭС	+	+	+	+
Математическое моделирование процессов оборудования АЭС				
Математическое моделирование процессов оборудования АЭС	+	+	+	+
Bec KM:	25	25	25	25

БРС курсовой работы/проекта

2 семестр

Перечень контрольных мероприятий <u>текущего контроля</u> успеваемости по курсовой работе:

КМ-1 соблюдение графика выполнения КР

КМ-2 соблюдение графика выполнения КР

КМ-3 соблюдение графика выполнения КР

КМ-4 соблюдение графика выполнения КР и качество оформления КР

Вид промежуточной аттестации – защита КР.

	Веса контрольных мероприятий, %					
Вормон нионинании	Индекс	KM-1	KM-2	KM-3	KM-4	
Раздел дисциплины	KM:					
	Срок КМ:	4	8	12	15	
Расчет КЧХ потока внутри труб		+				
Расчет КЧХ стенки			+			

Расчет статики теплообменной поверхности			+	
Расчет КЧХ теплообменной поверхности				+
Bec KM:	20	20	30	30

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ТЕКУЩЕГО КОНТРОЛЯ

I. Оценочные средства для оценки запланированных результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций

Индекс	Индикатор	Запланированные	Контрольная точка
компетенции	_	результаты обучения по	
		дисциплине	
ПК-2	ИД-4 _{ПК-2} Применяет методы получения, сравнительного анализа моделей различной степени приближения и выбора наилучшей модели в зависимости от ее назначения	дисциплине Знать: принципы и методы получения моделей теплотехнических	КМ-1 Введение. Основные понятия математического моделирования. Принципы построения моделей. (Лабораторная работа) КМ-2 Модели одномерного потока. Модели передающей тепло стенки. (Лабораторная работа) КМ-3 Модели гидродинамических процессов. Обобщенная математическая модель теплообменников. (Лабораторная работа) КМ-4 Модели оборудования ТЭС и АЭС. (Лабораторная работа)
		зависимости от ее назначения применять методы	

математического	
моделирования,	
теоретического и	
экспериментального	
исследования при	
математическом	
моделировании объектов	
управления	

II. Содержание оценочных средств. Шкала и критерии оценивания

КМ-1. Введение. Основные понятия математического моделирования.

Принципы построения моделей.

Формы реализации: Допуск к лабораторной работе **Тип контрольного мероприятия:** Лабораторная работа

Вес контрольного мероприятия в БРС: 25

Процедура проведения контрольного мероприятия: Группа разделена на бригады для

выполнения работы. Происходит устный опрос бригады на тему занятия.

Краткое содержание задания:

Работа ориентирована на проверку основных понятий математического моделирования

Контрольные вопросы/задания:

контрольные вопросы/задания:	,
Запланированные результаты обучения	Вопросы/задания для проверки
по дисциплине	
Знать: принципы и методы получения	1.Основные понятия математического
моделей теплотехнических объектов,	моделирования?
способы упрощения моделей с анализом	
влияния допущений на точность модели	Ответ: процесс, при котором описание
	объекта осуществляется на языке математики,
	а исследование модели проводится с
	использованием тех или иных
	математических методов.
	2.Классификация моделей?
	Ответ: распределенные и сосредоточенные,
	линейные и нелинейные, статические и
	динамические.
	3.Способы представления математических
	моделей?
	Ответ: системой дифференциальных
	уравнений, векторно-матричной формой,
	структурными схемами, сигнальными
	графами.
Уметь: выбирать наилучшую	1.Получить передаточные функции и
математическую модель в зависимости	построить графики изменения расхода и
от ее назначения	температуры воды на входе в котел
	2.Разобрать СП модель трубопровода
	питательной воды в линейном приблежении
	3. Как изменится вид переходной
	характеристики по температуре воды, если
	рассматривается распределенная модель
	поток в трубопроводе

Описание шкалы оценивания:

Оценка: «зачтено»

Описание характеристики выполнения знания:

Оценка: «не зачтено» Описание характеристики выполнения знания:

КМ-2. Модели одномерного потока. Модели передающей тепло стенки.

Формы реализации: Допуск к лабораторной работе **Тип контрольного мероприятия:** Лабораторная работа

Вес контрольного мероприятия в БРС: 25

Процедура проведения контрольного мероприятия: Группа разделена на бригады для

выполнения работы. Происходит устный опрос бригады на тему занятия.

Краткое содержание задания:

Работа ориентирована на проверку моделей одномерного потока и модели передающей тепло стенки.

Контрольные вопросы/задания:

контрольные вопросы/задания.	
Запланированные результаты обучения по дисциплине	Вопросы/задания для проверки
Знать: влияние технологических особенностей и	1.В чем заключается метод
режимов работы теплообменных устройств на	двойного преобразования
структуру и характеристики математической модели,	Лапласа?
способы сравнительного анализа моделей различной	
степени приближения	
Знать: принципы и методы получения моделей	1.Модели тепловых процессов
теплотехнических объектов, способы упрощения	одномерного однофазного
моделей с анализом влияния допущений на точность	потока?
модели	2.Перечислите статические и
	динамические характеристики
	различных моделей потока.
	Ответ: с распределенными и
	сосредоточенными
	параметрами, точечные и
	многоточечные.
Уметь: применять методы математического	1.Определить передаточную
моделирования, теоретического и экспериментального	функцию и динамические
исследования при математическом моделировании	характеристики канала
объектов управления	2.Разобрать СП модель
	подогревателя в линейном
	приближении

Описание шкалы оценивания:

Оценка: «зачтено»

Описание характеристики выполнения знания:

Оценка: «не зачтено»

Описание характеристики выполнения знания:

КМ-3. Модели гидродинамических процессов. Обобщенная математическая модель теплообменников .

Формы реализации: Допуск к лабораторной работе

Тип контрольного мероприятия: Лабораторная работа

Вес контрольного мероприятия в БРС: 25

Процедура проведения контрольного мероприятия: Группа разделена на бригады для выполнения работы. Происходит устный опрос бригады на тему занятия.

Краткое содержание задания:

Работа ориентирована на построение моделей гидродинамических процессов и обобщенной математической модели теплообменников.

Контрольные вопросы/задания:

Запланированные результаты обучения по	Вопросы/задания для проверки
дисциплине	Бопросы/задания для проверки
Знать: влияние технологических особенностей и	1.Виды теплообменников:
режимов работы теплообменных устройств на	1.Виды теплоооменников.
	OTTO OTTO MONTH ON THE VI
структуру и характеристики математической	Ответ: конвективные и
модели, способы сравнительного анализа моделей	радиационные, прямоточные и
различной степени приближения	противоточные, с однофазными и
	двухфазными теплоносителями
	2.Выбор метода решения модели
	теплообменника
Знать: принципы и методы получения моделей	1.Опишите модели
теплотехнических объектов, способы упрощения	гидродинамических процессов
моделей с анализом влияния допущений на	несжимаемых, слабо сжимаемых и
точность модели	сжимаемых потоков
Уметь: выбирать наилучшую математическую	1. Разработать СП модель
модель в зависимости от ее назначения	подогревателя в линейном
	приближении
	2.Определить передаточную
	функцию и динамические
	характеристики канала

Описание шкалы оценивания:

Оценка: «зачтено»

Описание характеристики выполнения знания:

Оценка: «не зачтено»

Описание характеристики выполнения знания:

КМ-4. Модели оборудования ТЭС и АЭС.

Формы реализации: Допуск к лабораторной работе

Тип контрольного мероприятия: Лабораторная работа

Вес контрольного мероприятия в БРС: 25

Процедура проведения контрольного мероприятия: Группа разделена на бригады для

выполнения работы. Происходит устный опрос бригады на тему занятия.

Краткое содержание задания:

Работа ориентирована на описание моделей ТЭС и АЭС

Контрольные вопросы/задания:

Запланированные дисциплине	результаты	обучения	ПО	Вопросы/задания для проверки
Знать: влияние тех	кнологических	особенносте	ей и	1.Динамические характеристики

Запланированные результаты обучения по дисциплине	Вопросы/задания для проверки
режимов работы теплообменных устройств на структуру и характеристики математической модели, способы сравнительного анализа моделей различной степени приближения	различных поверхностей котла? 2.В чем особенности моделирования динамики циркуляционного контура? 3.Опишите структуру математической модели энергоблока с реактором ВВЭР
Уметь: применять методы математического моделирования, теоретического и экспериментального исследования при математическом моделировании объектов управления	1. Разработать линейную модель объекта, состоящую из РП модели потока и точечных моделей труб и корпуса 2. Получить передаточную функцию и динамические характеристики канала "радиационный поток — температура потока в среднем сечении трубы"

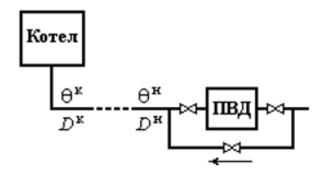
Описание шкалы оценивания:

Оценка: «зачтено»

Описание характеристики выполнения знания:

Оценка: «не зачтено»

Описание характеристики выполнения знания:


СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

2 семестр

Форма промежуточной аттестации: Экзамен

Пример билета

Задача

В линии питательной воды аварийно отключился подогреватель высокого давления (ПВД). В результате на входе в трубопровод ступенчатым образом изменились расход и температура воды.

- 1. Разработать СП модель трубопровода питательной воды в линейном приближении. Считать коэффициент теплоотдачи, плотность воды и теплоемкость постоянными. Потерями тепла в окружающую среду пренебречь.
- 2. Получить передаточные функции и построить графики изменения расхода и температуры воды на входе в котел.
- 3. Как изменится вид переходной характеристики по температуре воды, если рассматривается распределенная модель потока в трубопроводе?

Вопросы

1. Какие процессы в теплообменнике описывает данная система уравнений?

$$V\frac{\partial \rho}{\partial t} + \frac{\partial D}{\partial z} = 0;$$
$$\frac{\partial P}{\partial z} + \xi \frac{D^2}{\rho} = 0.$$

- 2. Запишите для системы предыдущего вопроса уравнения модели статики.
- 3. Перечислите допущения, принятые для уравнения

$$\frac{\partial P}{\partial z} + \xi \frac{D^2}{\rho} = 0.$$

4. Какому каналу и каким моделям соответствуют передаточные функции

$$W_1(p) = \frac{1}{\tau p + 1 + St}$$
 И $W_2(p,s) = \frac{1}{\tau p + s + St}$?

5. Какой закон физики отражает данное уравнение:

$$V\rho \frac{\partial i}{\partial t} + D \frac{\partial i}{\partial z} = \alpha H(\vartheta - \theta) ?$$

6. Классифицируйте модель, представленную уравнением

$$\tau \frac{\partial \Delta \theta}{\partial t} + \frac{\partial \Delta \theta}{\partial z} + \text{St}\Delta \theta = \text{St}\Delta \theta - k_D \Delta D .$$

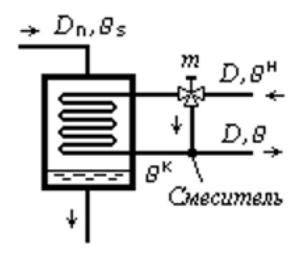
7. Для преобразованной по Лапласу системы уравнений

$$\begin{cases} \theta_{2}^{\text{M}}(p) = W_{2}(p)\theta_{2}^{\text{H}}(p) + \operatorname{St}_{2}W_{2}(p)\vartheta(p) - k_{D2}W_{2}(p)D_{2}(p); \\ \vartheta(p) = k_{1}W_{\text{M}}(p)\theta_{1s}(p) + k_{2}W_{\text{M}}(p)\theta_{2}^{\text{M}}(p) \end{cases}$$

построить сигнальный граф и найти передаточную функцию теплообменника по каналу 8. Постройте линейную модель уравнения

$$I \rho_{M} c_{M} \delta \frac{\mathrm{d} \theta}{\mathrm{d} t} = \alpha_{1} (\theta_{1} - \theta) - \alpha_{2} (\theta - \theta_{2}),$$

- , учитывающую нелинейность зависимости (к и т константы).
- 9. Когда целесообразно применять двойное преобразование Лапласа?
- 10. Покажите на примере годографов КЧХ потока, что СП модель дает низкую точность по сравнению с РП моделью.


Процедура проведения

Проводится в письменной форме по билетам в виде подготовки и изложения развернутого ответа. Время на выполнение экзаменационного подготовку ответа -60 минут.

I. Перечень компетенций/индикаторов и контрольных вопросов проверки результатов освоения дисциплины

1. Компетенция/Индикатор: ИД-4_{ПК-2} Применяет методы получения, сравнительного анализа моделей различной степени приближения и выбора наилучшей модели в зависимости от ее назначения

Вопросы, задания

1.

Трехходовой клапан с линейной расходной характеристикой изменяет соотношение подогреваемого и холодного потоков воды, поступающих в смеситель. Подогрев воды осуществляется за счет конденсации греющего пара, находящегося на линии насыщения при постоянном давлении. Корпус подогревателя выполнен из теплоизолирующего материала.

- 1. Разработать СП модель подогревателя в линейном приближении. Считать давление пара, коэффициент теплоотдачи , плотность
- и теплоемкость воды постоянными. Потерями тепла в окружающую среду пренебречь.
- 2. Определить передаточную функцию и динамические характеристики канала
- 3. Как изменится вид переходной характеристики канала, если рассматривается распределенная модель потока воды в подогревателе?
- 2. Какая модель необходима для исследования аварийных режимов?
- 3. Какое допущение обычно принимается при описании радиационного теплообменника?
- 4. Какая модель необходима для исследования режимов пуска?
- 5.В чем заключается особенность расчета статического распределения температур противоточного конвективного теплообменника с однофазными теплоносителями?
- 6. Можно ли использовать модель прямоточного КТО для расчета противоточного экономайзера котла?

Материалы для проверки остаточных знаний

- 1. Что такое математическое моделирование объекта? Ответы:
- а) условное описание объекта
- б) строительство объекта
- в) построение модели, обладающей свойствами, подобными свойствам рассматриваемой системы и записанной в виде символов с помощью системы математических соотношений

Верный ответ: ответ: в

2. Что представлено в данной формуле?

$$St = \frac{\alpha H}{c_p D}$$

Ответы:

- а) число Стентона
- б) температура теплопередающей стенки
- в) температура нарежнего теплоносителя Верный ответ: ответ: а
- 3. Что представлено в данной формуле?

$$\tau_2 = \frac{\mathbf{V}_2 \cdot \mathbf{\rho}_2}{\mathbf{D}_2}$$

Ответы:

- а) постоянная времени потока, равная времени прохождения потока по трубе
- б) температура теплопередающей стенки
- в) температура нарежнего теплоносителя Верный ответ: ответ: а
- 4. Какое уравнение представлено ниже?

$$\mathbf{V}_{2} \cdot \mathbf{\rho}_{2} \cdot \mathbf{C} \mathbf{p}_{2} \cdot \frac{\partial \mathbf{\theta}_{2}}{\partial \mathbf{t}} + \mathbf{D}_{2} \cdot \mathbf{C} \mathbf{p}_{2} \cdot \frac{\partial \mathbf{\theta}_{2}}{\partial \mathbf{z}_{H}} = -\mathbf{q}_{2} \cdot \mathbf{H}_{2}$$

Ответы:

- а) уравнение сохранения массы
- б) уравнение сохранения энергии
- в) уравнения количества движения

Верный ответ: ответ: б

5. Какое уравнение представлено ниже?

$$V_2 \cdot \frac{\partial \rho_2}{\partial t} + \frac{\partial D_2}{\partial z_H} = 0$$

Ответы:

- а) уравнение сохранения массы
- б) уравнение сохранения энергии
- в) уравнения количества движения

Верный ответ: ответ: а

6. Какое уравнение представлено ниже?

$$\frac{\partial P_2}{\partial z_{_{\rm H}}} + \xi_2 \cdot \frac{D_2^2}{\rho_2} = 0$$

Ответы:

- а) уравнение сохранения массы
- б) уравнение сохранения энергии
- в) уравнения количества движения

Верный ответ: ответ: в

II. Описание шкалы оценивания

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: Оценка «ОТЛИЧНО» выставляется студенту, правильно выполнившему практическое зада-ние, который показал при ответе на вопросы экзаменационного билета и на дополнительные вопросы, что владеет материалом изученной дисциплины, свободно применяет свои знания для объяснения различных явлений и решения задач.

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Оценка «ХОРОШО» выставляется студенту, правильно выполнившему практическое зада-ние и в основном правильно ответившему на вопросы экзаменационного билета и на допол-нительные вопросы, но допустившему при этом непринципиальные ошибки.

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка «УДОВЛЕТВОРИТЕЛЬНО» выставляется студенту, который в ответах на вопросы экзаменационного билета допустил существенные и даже грубые ошибки, но затем исправил их сам, а также не выполнил практическое задание из экзаменационного билета, но либо наметил правильный путь его выполнения, либо по указанию экзаменатора решил другую задачу из того же раздела дисциплины.

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка «НЕУДОВЛЕТВОРИТЕЛЬНО» выставляется студенту, который: а) не ответил на вопросы экзаменационного билета и не смог решить, либо наметить правильный путь решения задачи из билета; б) не смог решить, либо наметить правильный путь решения задачи из экзаменацион-ного билета и другой задачи на тот же раздел дисциплины, выданной взамен нее; в) при ответе на дополнительные вопросы обнаружил незнание большого раздела эк-заменационной программы.

III. Правила выставления итоговой оценки по курсу

0.2x (среднеарифметическая оценка за лабораторные работы и опросы) + 0.3 х оценка за курсовую работу + 0.5 х оценка на экзамене.).

Для курсового проекта/работы:

2 семестр

Форма проведения: Защита КП/КР

І. Процедура защиты КП/КР

1. Составить структурную схему математической модели заданного объекта (Л.1, § 5.1 или Л.2, § 4.1). 2. Представить таблицу исходных данных. 3. Записать исходные нелинейные уравнения динамики для а) основного теплоносителя (внутри труб); б) теплопередающей стенки; в) наружного теплоносителя (Л.1, § 5.1 или Л.2, § 4.1). 4. Перечислить принятые допущения при выводе уравнений п. 3. (Л.1, § 1.4 или Л.2, § 1.3). 5. Записать уравнение энергии основного теплоносителя а) в линейном распределенном приближении; б) в линейном точечном приближении. Получить передаточные функции и КЧХ моделей основного теплоносителя по заданным преподавателем каналам. Составить программу и выполнить расчеты на ЭВМ (Л.1, §§ 2.1, 2.2 или Л.2, §§ 2.1, 2.4). 6. Выполнить аналогичное п. 5 задание для теплопередающей стенки труб. (Л.1, § 3.3; Л.2, §§ 3.1—3.3; Л.4). 7. Получить из исходной системы уравнений модель статики объекта. Перечислить до-полнительно принятые упрощения (Л.1, § 5.3, § 5.4—5.6). Составить программу и рассчитать на ЭВМ распределение по длине параметров по задан-ным преподавателем каналам. Выполнить аналогичные расчеты с помощью программного обеспечения КВЛ АСУ ТП. Сравнить результаты. Сделать выводы. 8. Записать модель заданного объекта в целом в линейном распределенном приближе-нии при согласованных с преподавателем допущениях (Л.1, § 5.4—5.6; Л.2 и Л.3). Получить передаточные функции и выражения для КЧХ заданных каналов. Составить программу и рассчитать на ЭВМ частотные характеристики каналов. Построить годографы КЧХ. Выполнить аналогичные расчеты с помощью программного обеспечения КВЛ АСУ ТП. Сравнить результаты расчетов. Сделать выводы. 9. Получить математическую модель объекта в точечном линейном приближении (Л.1, §§ 5.4—5.6; Л.2, § 4.3; Л.3 и Л.4). Составить программу и рассчитать на ЭВМ КЧХ точечной модели аналогичных п. 8 каналов. Построить годографы КЧХ. Выполнить сравнение динамики распределенной и точечной модели. Сделать выводы.

II. Описание шкалы оценивания

Оценка: «зачтено» Описание характеристики выполнения знания:

Оценка: «не зачтено» Описание характеристики выполнения знания:

ІІІ. Правила выставления итоговой оценки по курсу