Министерство науки и высшего образования РФ Федеральное государственное бюджетное образовательное учреждение высшего образования

«Национальный исследовательский университет «МЭИ»

Направление подготовки/специальность: 13.04.01 Теплоэнергетика и теплотехника

Наименование образовательной программы: Технология воды и топлива в энергетике

Уровень образования: высшее образование - магистратура

Форма обучения: Очная

Рабочая программа дисциплины ОСНОВЫ ГИДРОКИНЕТИКИ И ГИДРОМЕХАНИЧЕСКИЕ ПРОЦЕССЫ РАЗДЕЛЕНИЯ

Блок:	Блок 1 «Дисциплины (модули)»
Часть образовательной программы:	Часть, формируемая участниками образовательных отношений
№ дисциплины по учебному плану:	Б1.Ч.02
Трудоемкость в зачетных единицах:	1 семестр - 4;
Часов (всего) по учебному плану:	144 часа
Лекции	1 семестр - 32 часа;
Практические занятия	1 семестр - 16 часов;
Лабораторные работы	не предусмотрено учебным планом
Консультации	1 семестр - 2 часа;
Самостоятельная работа	1 семестр - 93,5 часа;
в том числе на КП/КР	не предусмотрено учебным планом
Иная контактная работа	проводится в рамках часов аудиторных занятий
включая: Коллоквиум	
Промежуточная аттестация:	
Экзамен	1 семестр - 0,5 часа;

Москва 2022

ПРОГРАММУ СОСТАВИЛ:

Преподаватель

(должность)

Подписано электронной подписью ФГБОУ ВО «НИУ «МЭИ» Сведения о владельце ЦЭП МЭИ Владелец Громов С.Л. Идентификатор Rb7dd97ab-GromovSL-e5b96e3b

(подпись)

С.Л. Громов

(расшифровка подписи)

СОГЛАСОВАНО:

Руководитель образовательной программы

(должность, ученая степень, ученое звание)

NOSO RE	Подписано электронн	ой подписью ФГБОУ ВО «НИУ «МЭИ»								
2 818 1000 1000 100 5	Сведения о владельце ЦЭП МЭИ									
-	Владелец	Шацких Ю.В.								
» <u>МэИ</u> «	Идентификатор	R6ca75b8e-ShatskikhYV-f045f12f								
	(подпись)									

NGO NGO	Подписано электронной подписью ФГБОУ ВО «НИУ «МЭИ»										
	Сведен	ия о владельце ЦЭП МЭИ									
	Владелец	Орлов К.А.									
» <u>МЭИ</u> «	Идентификатор	R24178de8-OrlovKA-0ab64072									

(подпись)

Ю.В. Шацких

(расшифровка подписи)

К.А. Орлов

(расшифровка подписи)

Заведующий выпускающей кафедры

(должность, ученая степень, ученое звание)

1. ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Цель освоения дисциплины: изучение явлений и процессов, лежащих в основе всех существующих на сегодняшний день технологий очистки жидкостей от посторонних примесей, осуществляемых без использования эффектов изменения фазового состояния обрабатываемой среды; анализ основных закономерностей изучаемых процессов и видов оборудования, применяемого для их реализации; изучение подходов к решению задач масштабного перехода в технологических процессах в условиях ограниченных возможностей применения методов компьютерного моделирования; формирование базы знаний для изучения дисциплин «Иониты и ионообменные технологии в водоподготовке», «Мембранные технологии очистки воды» (ультраи микрофильтрация), «Проектирование водоподготовительных систем»

Задачи дисциплины

- изучение принципиальных подходов к решению основных задач гидрокинетики обтекания падающего в жидкой среде тела и течения жидкости по каналам;
- формирование представлений о подходах к определению скоростей процессов разделения двухфазных систем;
 - классификация жидких неоднородных систем;
- изучение основных закономерностей процессов гидромеханического разделения осаждения, фильтрования и псевдоожижения;
- изучение принципиальных конструкций основных аппаратов применяемых в гидромеханических процессах разделения;;
- изучение методов экспериментального и теоретического моделирования гидромеханических процессов разделения;
- определение областей водоподготовки и очистки стоков в которых применяются процессы гидромеханического разделения.

Формируемые у обучающегося компетенции и запланированные результаты обучения по лисшиплине, соотнесенные с инликаторами лостижения компетенций:

Код и наименование компетенции	Код и наименование индикатора достижения компетенции	Запланированные результаты обучения
ПК-2 Способность участвовать в проектировании водоподготовительных и водоочистительных установок и систем с использованием серийного оборудования	ИД-1 _{ПК-2} Выбирает современные технологии подготовки воды и топлива для использования в энергетических установках	знать: - закономерности процесса псевдоожижения и перемешивания и подходы к их моделированию основные виды оборудования применяемые для псевдоожижения; - механизмы фильтрования; основные процессы и виды оборудования применяемые для фильтрования; подходы к лабораторному моделированию процессов фильтрования; базовые критерии для сравнения работоспособности и целесообразности возможных технических решений для задач фильтрования в конкретных условиях эксплуатации области применения и назначение технологий и оборудования для фильтрования принципиальные подходы к обеспечению равномерности распределения потоков жидкости по поперечному сечению аппаратов;

Код и наименование компетенции	Код и наименование индикатора достижения компетенции	Запланированные результаты обучения
		- механизмы осаждения основные
		процессы и виды оборудования
		применяемые для осаждения; подходы к
		лабораторному моделированию
		процессов осаждения базовые критерии
		для сравнения работоспособности и
		целесообразности возможных
		технических решений для задач
		осаждения в конкретных условиях
		эксплуатации области применения и
		назначение технологий и оборудования,
		для осаждения;
		- основные определения и
		закономерности, относящиеся к
		гидромеханике основы теории подобия
		и ее приложений для задач
		гидромеханического разделения
		основные методы контроля
		гранулометрического состава
		дисперсной фазы возможности и
		ограничения методов
		гидромеханического разделения.
		уметь:
		- ставить эксперименты для получения
		необходимых исходных данных для
		проектирования промышленного
		оборудования для конкретных условий
		эксплуатации и пользоваться числами
		гидродинамического подобия для оценочных решений задач
		масштабирования при переходе от
		лабораторных экспериментов к
		проектированию промышленного
		оборудования;
		- анализировать конструкции основного
		технологического оборудования для
		псевдоожижения и проводить выбор
		оптимального технического решения в
		зависимости от условий поставленной
		задачи;
		- анализировать конструкции основного
		технологического оборудования для
		фильтрования и проводить выбор
		оптимального технического решения в
		зависимости от условий поставленной
		задачи;
		- анализировать конструкции основного
		технологического оборудования для
		телнологи теского оборудования для

Код и наименование компетенции	Код и наименование индикатора достижения компетенции	Запланированные результаты обучения
		осаждения и проводить выбор
		оптимального технического решения в
		зависимости от условий поставленной
		задачи.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ ВО

Дисциплина относится к основной профессиональной образовательной программе Технология воды и топлива в энергетике (далее – ОПОП), направления подготовки 13.04.01 Теплоэнергетика и теплотехника, уровень образования: высшее образование - магистратура.

Требования к входным знаниям и умениям:

- знать программу бакалавриата по направлению "Технологии воды и топлива"

Результаты обучения, полученные при освоении дисциплины, необходимы при выполнении выпускной квалификационной работы.

3. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

3.1 Структура дисциплины Общая трудоемкость дисциплины составляет 4 зачетных единицы, 144 часа.

	D	В		Распределение трудоемкости раздела (в часах) по видам учебной работы										
No	Разделы/темы дисциплины/формы	асод	стр				Конта	ктная раб	ота				СР	Содержание самостоятельной работы/
п/п	промежуточной	сего часов на раздел	Семестр				Консу	льтация	ИК	P		Работа в	Подготовка к	методические указания
	аттестации	Всего часов на раздел	Ü	Лек	Лаб	Пр	КПР	ГК	ИККП	ТК	ПА	семестре	аттестации /контроль	·
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	Жидкие неоднородные системы и основные процессы разделения	10	1	5	ı	-	-	-	-	ı	ı	5	-	Подготовка к текущему контролю: Изучение материалов и подготовка к коллоквиуму Изучение материалов литературных
1.1	Жидкие неоднородные системы и основные процессы разделения	10		5	ı	-	-	-	-	ı	ı	5	-	<u>источников:</u> [1], 8-83, 176-178 [2], 200-202
2	Осаждение. Его виды. Основные закономерности. Оборудование для реализации	39		12	-	7	-	-	-	-	1	20	-	Подготовка к текущему контролю: Изучение материалов и подготовка к коллоквиуму Изучение материалов литературных источников:
2.1	Осаждение. Его виды. Основные закономерности. Оборудование для реализации	39		12	-	7	-	-	-	-	-	20	-	[1], 178-186, 212-216 [2], 202-208
3	Фильтрование. Его виды. Основные закономерности. Оборудование для реализации	44		12	-	7	-	-	-	-	-	25	-	Подготовка к текущему контролю: Изучение материалов и подготовка к коллоквиуму Изучение материалов литературных источников:
3.1	Фильтрование. Его виды. Основные закономерности. Оборудование для реализации	44		12	-	7	-	-	-	-	-	25	_	[1], 186-211, 216-226 [2], 209-239

4	Псевдоожижение и перемешивание. Основные закономерности. Оборудование для	15	3	-	2	-	-	-	-	-	10	-	Подготовка к текущему контролю: Изучение материалов и подготовка к коллоквиуму Изучение материалов литературных источников:
4.1	реализации Псевдоожижение и перемешивание. Основные закономерности. Оборудование для реализации	15	3	-	2	-	-	-	-	-	10	-	[1], 106-111
	Экзамен	36.0	-	-	-	-	2	-	-	0.5	-	33.5	
	Всего за семестр	144.0	32	-	16	-	2	-	-	0.5	60	33.5	
	Итого за семестр	144.0	32	-	16		2	-	•	0.5	93.5		

Примечание: Лек – лекции; Лаб – лабораторные работы; Пр – практические занятия; КПР – аудиторные консультации по курсовым проектам/работам; ИККП – индивидуальные консультации по курсовым проектам/работам; ГК- групповые консультации по разделам дисциплины; СР – самостоятельная работа студента; ИКР – иная контактная работа; ТК – текущий контроль; ПА – промежуточная аттестация

3.2 Краткое содержание разделов

1. Жидкие неоднородные системы и основные процессы разделения

1.1. Жидкие неоднородные системы и основные процессы разделения

Определение гидрокинетики и ее основных задач: «внешней» и «внутренней». Основная цель гидрокинетики. Классификация жидких неоднородных систем: аэрозоли, суспензии, эмульсии, пены. Понятия дисперсной и дисперсионной сред. Инверсия фаз и их соотношения. Методы анализа гранулометрии дисперсных сред. Классификация гидромеханических процессов: осаждение, фильтрование, псевдоожижение, перемешивание в жидкой среде. Основные определения. Условия равновесия. Материальный баланс гидромеханических процессов.

2. Осаждение. Его виды. Основные закономерности. Оборудование для реализации

2.1. Осаждение. Его виды. Основные закономерности. Оборудование для реализации

Определение И терминология. Силы, вызывающие осаждение: гравитация, центробежные, электростатические. Процессы осаждения: отстаивание, циклонное осадительное центрифугирование, электроосаждение. Гравитационное осаждение (отстаивание). Кинетика осаждения. Дифференциальное уравнение процесса осаждения твердой частицы. Безразмерные числа подобия: Архимеда и Рейнольдса. Их физический смысл и уравнение подобия. Режимы осаждения частицы в жидкости: ламинарный, переходный, турбулентный. Закон Стокса. Практические соотношения для различных режимов. Зависимость скорости осаждения от размеров частицы. Проблемы математического моделирования процессов осаждения после коагуляции/флокуляции. Возможности лабораторного тестирования и его ограничения. Экспериментальное моделирование осаждения после коагуляции/флокуляции с нанесением «процента удаления» взвесей на диаграмму «глубина от времени». Расчет допустимой расходной нагрузки отстойника. Пример реализации. Экспериментальные коэффициенты масштабного перехода. Условия перехода от дискретного режима осаждения к флокуляционному. Случаи зонирования осаждения. Условия перехода от «свободного» осаждения к «стесненному» в зависимости от значения объемной концентрации твердой фазы. Способ измерения объемной концентрации твердой фазы. Стесненное осаждение – шламообразование – шламоуплотнение. Особенности стесненного осаждения. Достоинства процессов осаждения. Основные требования к аппаратурному оформлению. Принципиальные конструкции Интенсификация процессов гравитационных отстойников. отстаивания. тонкослойного разделения. Зависимость кап. затрат от формы отстойника. Типы отстойников. Приоритеты В выборе типа конструкции отстойника. Принципы проектирования отстойников коридорного типа с горизонтальным течением. Радиальные отстойники: схемы конструкций и рекомендации по проектированию. Процессы с «затравкой» в отстойниках коридорного типа. Технология «Sirofloc». Осветлители в отечественной энергетике: «медленные» и «вихревые реакторы», коридорного типа. Комбинированные осветлители «отечественной» разработки типов: ЦНТИ, ВТИ, ОРАШ. Их достоинства и недостатки, проблемы при эксплуатации. Характеристики «вихревых» реакторов. Осветлители «Actiflo» и его аналоги. Осветлители «Densadeg». Контактные осветлители «Диклар». Принципы обработки поверхностных и подземных вод для получения воды питьевого качества. Пример ВПУ Юго-Западной ВС «Мосводоканала». Осаждение под действием центробежной силы. Области применения и назначение. Циклонный процесс и осадительное (отстойное) центрифугирование. Дифференциальное уравнение движения частицы в поле действия центробежных сил. Центробежный фактор (фактор разделения). Модифицированное число Архимеда и время осаждения. Расчет времени осаждения частицы в роторе центрифуги. Схемы конструкций циклонов НИОГАЗ. Батарейные циклоны. Гидроциклоны и их комбинации с ЧОМ. Центрифуги и сепараторы.

Классификация отстойных центрифуг: по режиму работы; способу удаления осадка; по расположению вала; по частоте вращения ротора (по фактору разделения). Дисперсность удаляемой твердой фазы. Критерии выбора центрифуг и факторы, влияющие на показатели их работы. Понятие критического числа оборотов ротора и его расчет. Прямая и обратная прецессии. Типовой рабочий цикл центрифуги периодического действия. Основные показатели качества осадка после центрифугирования. Схемы конструкций отстойных центрифуг и их типы: ОГП, ОГН, ОГШ, ОМБ, ОМД, лабораторные центрифуги. Трубчатые центрифуги (супер- или ультрацентрифуги) и некоторые области их применения. многокамерные, Центробежные сепараторы: однокамерные, тарельчатые. применения сепараторов. Осаждение действием электростатических ПОД Эффективность. Самостоятельная и несамостоятельная ионизация. Схема организации процесса и типовые параметры электрического поля. Основные закономерности и дефицит средств моделирования. Типовые конструкции электрофильтров..

3. Фильтрование. Его виды. Основные закономерности. Оборудование для реализации

3.1. Фильтрование. Его виды. Основные закономерности. Оборудование для реализации Основные определения и терминология. Движущая сила процесса фильтрования. Гидравлическое сопротивление при фильтровании. Виды фильтрования: «тупиковое», из тангенциального потока, вибрационное. Закон Дарси. Уравнение Хагена-Пуазейля. Уравнение Козени-Кармана. Механизмы фильтрования: поверхностное (пленочное), объемное, с закупориванием пор, с формированием осадка вспомогательного вещества, с частичным разделением и сгущением суспензии. Сжимаемые и несжимаемые осадки и перегородки. Капиллярная и капиллярно-пористая модели фильтровальных перегородок и осадков. Осадкообразование в капиллярно-пористых структурах. Регенерация капиллярнопористых структур. Классификация фильтров: периодического и непрерывного действия; статические и динамические; по направлениям движения фильтрата и силы тяжести (совпадающие, противоположно направленные, перпендикулярно направленные); под вакуумом и под избыточным давлением; по способу создания разности давлений (гидростатикой, насосами, компрессорами, вакуум-насосами); по виду применяемых фильтровальных перегородок (дисковые, сетчатые, тканевые и из нетканых материалов, пористые, мембранные, засыпные /зернистые и волокнистые/, намывные /иониты, перлит, кизельгур, диатомит/); по назначению (для очистного и продуктового фильтрования); по конструкции (нутч – и друк-фильтры, барабанные, дисковые, ленточные, емкостные, карусельные, тарельчатые, фильтр-прессы /камерные, горизонтальные и вертикальные/, патронные, комбинированные). Технологическая схема фильтровальной установки на базе автоматизированного фильтр-пресса. Конструкция динамического дискового фильтра. Типовые конструкции рукавных и патронных фильтров. Конструкции комбинированных аппаратов фильтр-сушилка. Типовые фильтры в отечественной энергетике: сетчатые и дисковые, засыпные, многослойные, намывные, непрерывного действия, адсорбционные. Их назначение, области применения, основные характеристики, конструктивные особенности, достоинства и недостатки. Задерживающая способность фильтровальных перегородок и загрузок. Сетчатые и дисковые фильтры. Однокамерные и многокамерные засыпные фильтры. Виды загрузок. Технологические операции. Стандартная номенклатура ФОВ. Распределительные устройства (НРУ и ВРУ) и распределительные элементы. Их функционал и конструктивные решения. Проблемы при эксплуатации многокамерных засыпных фильтров. Намывные фильтры. Виды загрузок. Технологические операции. Типовые конструкции. Фильтры непрерывного действия на примере Dynasand и Vortisand. Адсорбционные фильтры. Общее представление о процессах сорбции: абсорбция, адсорбция и хемосорбция, ионный обмен. Назначение и области применения. Основные свойства сорбентов (актуальные для очистки воды). Типы адсорбционных фильтров.

Номенклатура ФСУ. Технологические операции при эксплуатации ФСУ и АЗФ. Патронные элементы для адсорбции. Технология углевания..

<u>4. Псевдоожижение и перемешивание. Основные закономерности. Оборудование для реализации</u>

4.1. Псевдоожижение и перемешивание. Основные закономерности. Оборудование для реализации

Основные терминология. Понятие определения И псевдоожиженного Представление о «взвешенном», «кипящем», «виброкипящем» и «вибропсевдоожиженном» слоях. Свойства псевдоожиженного слоя: текучесть, вязкость, поверхностное натяжение, непостоянство формы, горизонтальность поверхности, всплытие и погружение тел в зависимости от плотности (исключение - «виброкипящий» слой). Достоинства и недостатки псевдоожижения. Области применения. Изменение состояния слоя дисперсной загрузки при воздействии восходящего потока жидкости (газа). Понятие критических скоростей псевдоожижения: начала псевдоожижения и витания (уноса). Изменение перепада давления в слое дисперсного материала при псевдоожижении. Влияние конструкции аппарата на псевдоожижения. Состояния равновесия при псевдоожижении. режимы псевдоожижения. Формулы О.М.Тодеса для определения скорости начала псевдоожижения и витания. Фактор формы частиц и его влияние. Схемы конструкций аппаратов с Фонтанирующий слой. Секционированные аппараты для псевдоожиженным слоем. противоточного взаимодействия. Примеры реализации.

3.3. Темы практических занятий

- 1. Оценочные расчеты процессов осаждения;
- 2. Оценочные расчеты процессов фильтрования;
- 3. Расчеты скоростей псевдоожижения и витания (уноса).

3.4. Темы лабораторных работ

не предусмотрено

3.5 Консультации

Групповые консультации по разделам дисциплины (ГК)

- 1. Консультации проводятся по разделу "Жидкие неоднородные системы и основные процессы разделения"
- 2. Консультации проводятся по разделу "Осаждение"
- 3. Консультации проводятся по разделу "Фильтрование"
- 4. Консультации проводятся по разделу "Псевдоожижение и перемешивание"

3.6 Тематика курсовых проектов/курсовых работ

Курсовой проект/ работа не предусмотрены

3.7. Соответствие разделов дисциплины и формируемых в них компетенций

Запланированные результаты обучения по дисциплине (в соответствии с разделом 1)	Коды индикаторов	дис	мер ј сцип. ответ п.3	линь стви (.1)	ы (в пи с	Оценочное средство (тип и наименование)
Знать:		1	2	3	4	
основные определения и закономерности, относящиеся к гидромеханике основы теории подобия и ее приложений для задач гидромеханического разделения основные методы контроля гранулометрического состава дисперсной фазы возможности и ограничения методов гидромеханического разделения	ИД-1пк-2	+				Коллоквиум/Жидкие неоднородные системы и основные процессы разделения
механизмы осаждения основные процессы и виды оборудования применяемые для осаждения; подходы к лабораторному моделированию процессов осаждения базовые критерии для сравнения работоспособности и целесообразности возможных технических решений для задач осаждения в конкретных условиях эксплуатации области применения и назначение технологий и оборудования, для осаждения	ИД-1 _{ПК-2}		+			Коллоквиум/Осаждение. Его виды. Основные закономерности. Оборудование для реализации
механизмы фильтрования; основные процессы и виды оборудования применяемые для фильтрования; подходы к пабораторному моделированию процессов фильтрования; базовые критерии для сравнения работоспособности и целесообразности возможных технических решений для задач фильтрования в конкретных условиях эксплуатации области применения и назначение технологий и оборудования для фильтрования принципиальные подходы к обеспечению равномерности распределения потоков жидкости по поперечному сечению аппаратов	ИД-1 _{ПК-2}			+		Коллоквиум/Фильтрование. Его виды. Основные закономерности. Оборудование для реализации
закономерности процесса псевдоожижения и перемешивания и подходы к их моделированию основные виды оборудования применяемые для псевдоожижения	ИД-1 _{ПК-2}				+	Коллоквиум/Псевдоожижение и перемешивание. Основные закономерности. Оборудование для

					реализации
Уметь:					
анализировать конструкции основного технологического оборудования для осаждения и проводить выбор оптимального технического решения в зависимости от условий поставленной задачи	ИД-1 _{ПК-2}		+		Коллоквиум/Осаждение. Его виды. Основные закономерности. Оборудование для реализации
анализировать конструкции основного технологического оборудования для фильтрования и проводить выбор оптимального технического решения в зависимости от условий поставленной задачи	ИД-1 _{ПК-2}			+	Коллоквиум/Фильтрование. Его виды Основные закономерности. Оборудование для реализации
анализировать конструкции основного технологического оборудования для псевдоожижения и проводить выбор оптимального технического решения в зависимости от условий поставленной задачи	ИД-1 _{ПК-2}				+ Коллоквиум/Псевдоожижение и перемешивание. Основные закономерности. Оборудование для реализации
ставить эксперименты для получения необходимых исходных данных для проектирования промышленного оборудования для конкретных условий эксплуатации и пользоваться числами гидродинамического подобия для оценочных решений задач масштабирования при переходе от лабораторных экспериментов к проектированию промышленного оборудования	ИД-1 _{ПК-2}	+			Коллоквиум/Жидкие неоднородные системы и основные процессы разделения Коллоквиум/Осаждение. Его виды. Основные закономерности. Оборудование для реализации Коллоквиум/Псевдоожижение и перемешивание. Основные закономерности. Оборудование для реализации Коллоквиум/Фильтрование. Его виды Основные закономерности. Оборудование для реализации

4. КОМПЕТЕНТНОСТНО-ОРИЕНТИРОВАННЫЕ ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ КОНТРОЛЯ ОСВОЕНИЯ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ (ТЕКУЩИЙ КОНТРОЛЬ УСПЕВАЕМОСТИ, ПРОМЕЖУТОЧНАЯ АТТЕСТАЦИЯ ПО ДИСЦИПЛИНЕ)

4.1. Текущий контроль успеваемости

1 семестр

Форма реализации: Смешанная форма

- 1. Жидкие неоднородные системы и основные процессы разделения (Коллоквиум)
- 2. Осаждение. Его виды. Основные закономерности. Оборудование для реализации (Коллоквиум)
- 3. Псевдоожижение и перемешивание. Основные закономерности. Оборудование для реализации (Коллоквиум)
- 4. Фильтрование. Его виды. Основные закономерности. Оборудование для реализации (Коллоквиум)

Балльно-рейтинговая структура дисциплины является приложением А.

4.2 Промежуточная аттестация по дисциплине

Экзамен (Семестр №1)

в соответствии с требованиями текущей версии БАРС

В диплом выставляется оценка за 1 семестр.

Примечание: Оценочные материалы по дисциплине приведены в фонде оценочных материалов ОПОП.

5. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

5.1 Печатные и электронные издания:

- 1. Касаткин, А. Г. Основные процессы и аппараты химической технологии : учебник для вузов / А. Г. Касаткин . 11-е изд., стереотип. доработанное . М. : Альянс, 2005 . 753 с. ISBN 5-9853500-5-3 .;
- 2. А. Г. Касаткин- "Основные процессы и аппараты химической технологии", (7-е изд.), Издательство: "Государственное научно-техническое издательство химической литературы", Москва, 1961 (831 с.)

https://biblioclub.ru/index.php?page=book&id=220605.

5.2 Лицензионное и свободно распространяемое программное обеспечение:

- 1. Office / Российский пакет офисных программ;
- 2. Windows / Операционная система семейства Linux;
- 3. SmathStudio.

5.3 Интернет-ресурсы, включая профессиональные базы данных и информационносправочные системы:

1. ЭБС "Университетская библиотека онлайн" -

http://biblioclub.ru/index.php?page=main_ub_red

2. Электронная библиотека МЭИ (ЭБ МЭИ) - http://elib.mpei.ru/login.php

6. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Тип помещения	Номер аудитории,	Оснащение
	наименование	
Учебные аудитории	В-209/14, Учебно-	рабочее место сотрудника, стул, шкаф
для проведения	исследовательская	для одежды, инвентарь
лекционных занятий	лаборатория	специализированный
и текущего контроля	«Теплонасосные системы»;	-
	Учебно-демонстрационный	
	пункт теплоснабжения;	
	Компьютерный класс	
Учебные аудитории	В-209/14, Учебно-	рабочее место сотрудника, стул, шкаф
для проведения	исследовательская	для одежды, инвентарь
практических	лаборатория	специализированный
занятий, КР и КП	«Теплонасосные системы»;	
	Учебно-демонстрационный	
	пункт теплоснабжения;	
	Компьютерный класс	
Учебные аудитории	В-411, Учебная лаборатория	стол преподавателя, стол
для проведения	«Вычислительный центр	компьютерный, стул, шкаф для
промежуточной	TBT»	одежды, компьютерная сеть с выходом
аттестации		в Интернет, мультимедийный
		проектор, экран, доска маркерная,
		доска маркерная передвижная,
		компьютер персональный,
		кондиционер
Помещения для	НТБ-303, Компьютерный	стол компьютерный, стул, стол
самостоятельной	читальный зал	письменный, вешалка для одежды,
работы		компьютерная сеть с выходом в
		Интернет, компьютер персональный,
		принтер, кондиционер
Помещения для	В-413/1, Кабинет	стул, шкаф для хранения инвентаря,
консультирования	сотрудников каф. "ТОТ"	стол письменный, холодильник
Помещения для	В-417, Помещение учебно-	кресло рабочее, рабочее место
хранения	вспомогательного	сотрудника, стол, стул, шкаф для
оборудования и	персонала каф. "ТОТ"	документов, шкаф для хранения
учебного инвентаря		инвентаря, компьютерная сеть с
		выходом в Интернет, доска маркерная,
		многофункциональный центр,
		компьютер персональный, принтер,
		кондиционер

БАЛЛЬНО-РЕЙТИНГОВАЯ СТРУКТУРА ДИСЦИПЛИНЫ

Основы гидрокинетики и гидромеханические процессы разделения

(название дисциплины)

1 семестр

Перечень контрольных мероприятий текущего контроля успеваемости по дисциплине:

- КМ-1 Жидкие неоднородные системы и основные процессы разделения (Коллоквиум)
- КМ-2 Осаждение. Его виды. Основные закономерности. Оборудование для реализации (Коллоквиум)
- КМ-3 Фильтрование. Его виды. Основные закономерности. Оборудование для реализации (Коллоквиум)
- КМ-4 Псевдоожижение и перемешивание. Основные закономерности. Оборудование для реализации (Коллоквиум)

Вид промежуточной аттестации – Экзамен.

Номер		Индекс КМ:	КМ- 1	KM- 2	КМ- 3	КМ- 4
раздела		Неделя КМ:	4	8	12	16
1	Жидкие неоднородные системы и основные празделения	роцессы				
1.1	Жидкие неоднородные системы и основные празделения	роцессы	+	+	+	+
2	Осаждение. Его виды. Основные закономерно Оборудование для реализации	сти.				
2.1	Осаждение. Его виды. Основные закономерно Оборудование для реализации	сти.		+		
3	Фильтрование. Его виды. Основные закономер Оборудование для реализации	рности.				
3.1	Фильтрование. Его виды. Основные закономер Оборудование для реализации	рности.			+	
4	Псевдоожижение и перемешивание. Основные закономерности. Оборудование для реализаци					
4.1	Псевдоожижение и перемешивание. Основные закономерности. Оборудование для реализаци					+
	I	Bec KM, %:	10	40	40	10